Electric vehicles can now power your home for three days


ev

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Vehicle-to-Home (V2H) Power enables EVs to act as backup generators and home batteries, using bidirectional charging, inverters, and rooftop solar to cut energy costs, stabilize the grid, and provide resilient, outage-proof electricity.

 

Key Points

Vehicle-to-Home (V2H) Power lets EV batteries run household circuits via bidirectional charging and an inverter.

✅ Cuts energy bills using solar, time-of-use rates, and storage

✅ Provides resilient backup during outages, storms, and blackouts

✅ Enables grid services via V2G/V2H with smart chargers

 

When the power went out at Nate Graham’s New Mexico home last year, his family huddled around a fireplace in the cold and dark. Even the gas furnace was out, with no electricity for the fan. After failing to coax enough heat from the wood-burning fireplace, Graham’s wife and two children decamped for the comfort of a relative’s house until electricity returned two days later.

The next time the power failed, Graham was prepared. He had a power strip and a $150 inverter, a device that converts direct current from batteries into the alternating current needed to run appliances, hooked up to his new Chevy Bolt, an electric vehicle. The Bolt’s battery powered his refrigerator, lights and other crucial devices with ease. As the rest of his neighborhood outside Albuquerque languished in darkness, Graham’s family life continued virtually unchanged. “It was a complete game changer making power outages a nonissue,” says Graham, 35, a manager at a software company. “It lasted a day-and-a-half, but it could have gone much longer.”

Today, Graham primarily powers his home appliances with rooftop solar panels and, when the power goes out, his Chevy Bolt. He has cut his monthly energy bill from about $220 to $8 per month. “I’m not a rich person, but it was relatively easy,” says Graham “You wind up in a magical position with no [natural] gas, no oil and no gasoline bill.”

Graham is a preview of what some automakers are now promising anyone with an EV: An enormous home battery on wheels that can reverse the flow of electricity to power the entire home through the main electric panel.

Beyond serving as an emissions-free backup generator, the EV has the potential of revolutionizing the car’s role in American society, with California grid programs piloting vehicle-to-grid uses, transforming it from an enabler of a carbon-intensive existence into a key step in the nation’s transition into renewable energy.

Home solar panels had already been chipping away at the United States’ centralized power system, forcing utilities to make electricity transfer a two-way street. More recently, home batteries have allowed households with solar arrays to become energy traders, recharging when electricity prices are low, replacing grid power when prices are high, and then sell electricity back to the grid for a profit during peak hours.

But batteries are expensive. Using EVs makes this kind of home setup cheaper and a real possibility for more Americans as the American EV boom accelerates nationwide.

So there may be a time, perhaps soon, when your car not only gets you from point A to point B, but also serves as the hub of your personal power plant.

I looked into new vehicles and hardware to answer the most common questions about how to power your home (and the grid) with your car.


Why power your home with an EV battery

America’s grid is not in good shape. Prices are up and reliability is down, and many state power grids face new challenges from rising EV adoption. Since 2000, the number of major outages has risen from less than two dozen to more than 180 per year, based on federal data, the Wall Street Journal reports. The average utility customer in 2020 endured about eight hours of power interruptions, double the previous decade.

Utilities’ relationship with their customers is set to get even rockier. Residential electricity prices, which have risen 21 percent since 2008, are predicted to keep climbing as utilities spend more than $1 trillion upgrading infrastructure, erecting transmission lines for renewable energy and protecting against extreme weather, even though grids can handle EV loads with proper management and planning.

U.S. homeowners, increasingly, are opting out. About 8 percent of them have installed solar panels. An increasing number are adding home batteries from companies such as LG, Tesla and Panasonic. These are essentially banks of battery cells, similar to those in your laptop, capable of storing energy and discharging electricity.

EnergySage, a renewable energy marketplace, says two-thirds of its customers now request battery quotes when soliciting bids for home solar panels, and about 15 percent install them. This setup allows homeowners to declare (at least partial) independence from the grid by storing and consuming solar power overnight, as well as supplying electricity during outages.

But it doesn’t come cheap. The average home consumes about 20 kilowatt-hours per day, a measure of energy over time. That works out to about $15,000 for enough batteries on your wall to ensure a full day of backup power (although the net cost is lower after incentives and other potential savings).

 

How an EV battery can power your home

Ford changed how customers saw their trucks when it rolled out a hybrid version of the F-150, says Ryan O’Gorman of Ford’s energy services program. The truck doubles as a generator sporting as many as 11 outlets spread around the vehicle, including a 240-volt outlet typically used for appliances like clothes dryers. During disasters like the 2021 ice storm that left millions of Texans without electricity, Ford dealers lent out their hybrid F-150s as home generators, showing how mobile energy storage can bring new flexibility during outages.

The Lightning, the fully electric version of the F-150, takes the next step by offering home backup power. Under each Lightning sits a massive 98 kWh to 131 kWh battery pack. That’s enough energy, Ford estimates, to power a home for three days (10 days if rationing). “The vehicle has an immense amount of power to move that much metal down the road at 80 mph,” says O’Gorman.

 

Related News

Related News

Low-emissions sources are set to cover almost all the growth in global electricity demand in the next three years

IEA Electricity Market Outlook 2023-2025 projects faster demand growth as renewables and nuclear dominate supply, stabilizing power-sector carbon emissions, with Asia leading expansion despite energy crisis shocks and weather-driven volatility.

 

Key Points

IEA forecast for 2023-2025 electricity demand: renewables and nuclear meet growth as power-sector emissions hold steady.

✅ Asia drives >70% of demand growth

✅ Renewables and nuclear meet most new supply

✅ CO2 intensity declines; grid flexibility vital

 

The world’s electricity demand growth slowed only slightly in 2022, despite headwinds from the energy crisis, and is expected to accelerate in the years ahead

Renewables are set to dominate the growth of the world’s electricity supply over the next three years as, renewables eclipse coal in global generation, together with nuclear power they meet the vast majority of the increase in global demand through to 2025, making significant rises in the power sector’s carbon emissions unlikely, according to a new IEA report.

After slowing slightly last year to 2% amid the turmoil of the global energy crisis and exceptional weather conditions in some regions, the growth in world electricity demand is expected to accelerate to an average of 3% over the next three years, the IEA’s Electricity Market Report 2023 finds. Emerging and developing economies in Asia are the driving forces behind this faster pace, which is a step up from average growth of 2.4% during the years before the pandemic and above pre-pandemic levels globally.

More than 70% of the increase in global electricity demand over the next three years is expected to come from China, India and Southeast Asia, as Asia’s power use nears half of the world by mid-decade, although considerable uncertainties remain over trends in China as its economy emerges from strict Covid restrictions. China’s share of global electricity consumption is currently forecast to rise to a new record of one-third by 2025, up from one-quarter in 2015. At the same time, advanced economies are seeking to expand electricity use to displace fossil fuels in sectors such as transport, heating and industry.

“The world’s growing demand for electricity is set to accelerate, adding more than double Japan’s current electricity consumption over the next three years,” said IEA Executive Director Fatih Birol. “The good news is that renewables and nuclear power are growing quickly enough to meet almost all this additional appetite, suggesting we are close to a tipping point for power sector emissions. Governments now need to enable low-emissions sources to grow even faster and drive down emissions so that the world can ensure secure electricity supplies while reaching climate goals.”

While natural gas-fired power generation in the European Union is forecast to fall in the coming years, as wind and solar outpaced gas in 2022, based on current trends, significant growth in the Middle East is set to partly offset this decrease. Sharp spikes in natural gas prices amid the energy crisis have in turn fuelled soaring electricity prices in some markets, particularly in Europe, prompting debate in policy circles over reforms to power market design.

Meanwhile, expected declines in coal-fired generation in Europe and the Americas are likely to be matched by a rise in the Asia-Pacific region, despite increases in nuclear power deployment and restarts of plants in some countries such as Japan. This means that after reaching an all-time high in 2022, carbon dioxide (CO2) emissions from global power generation are set to remain around the same level through 2025.

The strong growth of renewables means their share of the global power generation mix is forecast to rise from 29% in 2022 to 35% in 2025, with the shares of coal- and gas-fired generation falling. As a result, the CO2 intensity of global power generation will continue to decrease in the coming years. Europe bucked this global trend last year, however. The CO2 intensity of Europe’s power generation increased as a result of higher use of coal and gas amid steep drops in output from both hydropower, due to drought, and nuclear power, due to plant closures and maintenance. This setback will be temporary, though, as Europe’s power generation emissions are expected to decrease on average by about 10% a year through 2025.

Electricity demand trends varied widely by region in 2022. India’s electricity consumption rose strongly, while China’s growth was more subdued due to its zero-Covid policy weighing heavily on economic activity. The United States recorded a robust increase in demand, driven by economic activity and higher residential use amid hotter summer weather and a colder-than-normal winter, even as electricity sales projections continue to decline according to some outlooks.

Demand in the European Union contracted due to unusually mild winter weather and a decline in electricity consumption in the industrial sector, which significantly scaled back production because of high energy prices and supply disruptions caused by Russia’s invasion of Ukraine. The 3.5% decrease in EU demand was its second largest percentage decline since the global financial crisis in 2009, with the largest being the exceptional contraction due to the COVID-19 shock in 2020.

The new IEA report notes that electricity demand and supply worldwide are becoming increasingly weather dependent, with extreme conditions a recurring theme in 2022. In addition to the drought in Europe, there were heatwaves in India, resulting in the country’s highest ever peak in power demand. Similarly, central and eastern regions of China were hit by heatwaves and drought, which caused demand for air conditioning to surge amid reduced hydropower generation in Sichuan province. The United States also saw severe winter storms in December, triggering massive power outages.

These highlight the need for faster decarbonisation and accelerated deployment of clean energy technologies, the report says. At the same time, as the clean energy transition gathers pace, the impact of weather events on electricity demand will intensify due to the increased electrification of heating, while the share of weather-dependent renewables will continue to grow in the generation mix. In such a world, increasing the flexibility of power systems, which are under growing strain across grids and markets, while ensuring security of supply and resilience of networks will be crucial.

 

Related News

View more

Solar Power Becomes EU’s Top Electricity Source

Solar has become the EU’s main source of electricity, marking a historic turning point in Europe’s energy mix as solar power surpasses nuclear and wind, accelerates renewable expansion, lowers carbon emissions, and strengthens the EU’s clean energy transition.

 

Why has Solar Become the EU’s Main Source of Electricity?

Solar has become the EU’s primary source of electricity due to rapid solar expansion, lower installation costs, and robust clean energy policies, which have boosted generation, reduced fossil fuel dependence, and accelerated Europe’s transition toward sustainability.

✅ Surging solar capacity and falling costs

✅ Policy support for renewable energy growth

✅ Reduced reliance on oil, gas, and coal

 

For the first time in history, solar energy became the leading source of electricity generation in the European Union in June 2025, marking a major milestone in the continent’s transition toward renewable energy, as renewables surpassed fossil fuels across the bloc this year. According to new data from Eurostat, more than half of the EU's net electricity production in the second quarter of the year came from renewable sources, with solar power leading the way.

Between April and June 2025, renewables accounted for 54 percent of the EU’s electricity generation, a 1.3 percent increase compared to the same period in 2024. The rise was driven primarily by solar energy, with countries like Germany seeing a solar boost amid the energy crisis, which generated 122,317 gigawatt-hours (GWh) in the second quarter—enough, in theory, to power around three million homes.

Rob Stait, a spokesperson for Alight, one of Europe’s leading solar developers, described the achievement as “heartening.” He said, “Solar’s boom is because it can generate huge energy cost savings, and it's easy and quick to install and scale. A solar farm can be developed in a year, compared to at least five years for wind and at least ten for nuclear. But most importantly, it provides clean, renewable power, and its increased adoption drastically reduces the reliance of Europe on Russian oil and gas supplies.”

Eurostat’s data shows that June 2025 was the first month ever when solar overtook all other energy sources, accounting for 22 percent of the EU’s energy mix, reflecting a broader renewables surge across the region. Nuclear power followed closely at 21.6 percent, wind at 15.8 percent, hydro at 14.1 percent, and natural gas at 13.8 percent.

The shift comes at a critical time as Europe continues to navigate the economic and energy challenges brought on by Russia’s ongoing war in Ukraine. With fossil fuel markets remaining volatile, countries have increasingly viewed investment in renewables as both an environmental and strategic imperative. As Stait noted, energy resilience and renewable infrastructure have now become a “strategic necessity.”

Denmark led the EU in renewable energy generation during the second quarter, producing 94.7% of its electricity from renewable sources. It was followed by Latvia (93.4%), Austria (91.8%), Croatia (89.5%), and Portugal (85.6%). Luxembourg recorded the largest year-on-year increase, up 13.5 percent, largely due to a surge in solar production. Belgium also saw strong growth, with a 9.1 percent rise in renewable generation compared to 2024, while Ireland targets over one-third green electricity within four years.

At the other end of the spectrum, Slovakia, Malta, and the Czech Republic lagged behind, producing just 19.9%, 21.2%, and 22.1% of their electricity from renewable sources, respectively.

Stait believes the continued expansion of renewables will help stabilize and eventually lower electricity prices across Europe. “The accelerated buildout of renewables will ultimately lower bills for both businesses and other users—but slower buildouts mean sky-high prices may linger,” he said.

He added a call for decisive action: “My advice to European nations would be to keep going further and faster. There needs to be political action to solve grid congestion, and to create opportunities for innovation and manufacturing in Europe will be critical to keep momentum.”

With solar energy now taking the lead for the first time, Europe’s clean energy transformation appears to be entering a new phase, as global renewables set new records and momentum builds—one that combines environmental sustainability with energy security and economic opportunity.

 

Related Articles

View more

Prairie Provinces to lead Canada in renewable energy growth

Canada Renewable Power sees Prairie Provinces surge as Canada Energy Regulator projects rising wind, solar, and hydro capacity in Alberta, Saskatchewan, and Manitoba, replacing coal, expanding the grid, and lowering emissions through 2023.

 

Key Points

A CER outlook on Canada's grid: Prairie wind, solar, and hydro growth replacing coal and cutting emissions by 2023.

✅ Prairie wind, solar capacity surge by 2023

✅ Alberta, Saskatchewan shift from coal to renewables, gas

✅ Manitoba strengthens hydro leadership, low-carbon grid

 

Canada's Prairie Provinces will lead the country's growth in renewable energy capacity over the next three years, says a new report by the Canada Energy Regulator (CER).

The online report, titled Canada's Renewable Power, says decreased reliance on coal and substantial increases in wind and solar capacity will increase the amount of renewable energy added to the grid in Alberta and Saskatchewan. Meanwhile, Manitoba will strengthen its position as a prominent hydro producer in Canada. The pace of overall renewable energy growth is expected to slow at the national level between 2021 and 2023, in part due to lagging solar demand in some markets, but with strong growth in provinces with a large reliance on fossil fuel generation.

The report explores electricity generation in Canada and provides a short-term outlook for renewable electricity capacity in each province and territory to 2023. It also features a series of interactive visuals that allow for comparison between regions and highlights the diversity of electricity sources across Canada.

Electricity generation from renewable sources is expected to continue increasing as demand for electricity grows and the country continues its transition to a lower-carbon economy. Canada will see gradual declines in overall carbon emissions from electricity generation largely due to Saskatchewan, Alberta, Nova Scotia and New Brunswick replacing coal with renewables and natural gas. The pace of growth beyond 2023 in renewable power will depend on technological developments; consumer preferences; and government policies and programs.

Canada is a world leader in renewable power, generating almost two-thirds of its electricity from renewables with hydro as the dominant source, and the country ranks in the top 10 for hydropower jobs worldwide. Canada also has one of the world's lowest carbon intensities for electricity.

The CER produces neutral and fact-based energy analysis to inform the energy conversation in Canada. This report is part of a portfolio of publications on energy supply, demand and infrastructure that the CER publishes regularly as part of its ongoing market monitoring.

Report highlights

  • Wind capacity in Saskatchewan is projected to triple and nearly double in Alberta between 2020 and 2023 as wind power becomes more competitive in the market. Significant solar capacity growth is also projected, with Alberta adding 1,200 MW by 2023, as Canada approaches a 5 GW solar milestone by that time.
  • In Alberta, the share of renewables in the capacity mix is expected to increase from 16% in 2017 to 26% by 2023, with a renewable energy surge supporting thousands of jobs. Similarly, Saskatchewan's renewable share of capacity is expected to increase from 25% in 2018 to 33% in 2023.
  • Renewable capacity growth slows most notably in Ontario, where policy changes have scaled back growth projections. Between 2010 and 2017, renewable capacity grew 6.8% per year. Between 2018 and 2023, growth in Ontario slows to 0.4% per year as capacity grows by 466 MW over this period.
  • New large-scale hydro, wind, and solar projects will push the share of renewables in Canada's electricity mix from 67% of installed capacity in 2017 to 71% in 2023.
  • Hydro is the dominant source of electricity in Canada accounting for 55% of total installed capacity and 59% of generation, though Alberta's limited hydro stands as a notable exception, with B.C., Manitoba, Quebec, Newfoundland and Labrador, and Yukon deriving more than 90% of their power from hydro.
  • The jurisdictions with the highest percentage of non-hydro renewable electricity generation are PEI (100%), Nova Scotia (15.8%), and Ontario (10.5%).
  • In 2010, 62.8% of Canada's total electricity generation (364 681 GW‧h) was from renewable sources. By 2018, 66.2% (425 722 GW‧h) was from renewable sources and projected to be 71.0% by 2023.

 

Related News

View more

NREL’s Electric Vehicle Infrastructure Projection Tool Helps Utilities, Agencies, and Researchers Predict Hour-by-Hour Impact of Charging on the Grid

EVI-Pro Lite EV Load Forecasting helps utilities model EV charging infrastructure, grid load shapes, and resilient energy systems, factoring home, workplace, and public charging behavior to inform planning, capacity upgrades, and flexible demand strategies.

 

Key Points

A NREL tool projecting EV charging demand and load shapes to help utilities plan the grid and right-size infrastructure.

✅ Visualizes weekday/weekend EV load by charger type.

✅ Tests home, workplace, and public charging access scenarios.

✅ Supports utility planning, demand flexibility, and capacity upgrades.

 

As electric vehicles (EVs) continue to grow in popularity, utilities and community planners are increasingly focused on building resilient energy systems that can support the added electric load from EV charging, including a possible EV-driven demand increase across the grid.

But forecasting the best ways to adapt to increased EV charging can be a difficult task as EV adoption will challenge state power grids in diverse ways. Planners need to consider when consumers charge, how fast they charge, and where they charge, among other factors.

To support that effort, researchers at the National Renewable Energy Laboratory (NREL) have expanded the Electric Vehicle Infrastructure Projection (EVI-Pro) Lite tool with more analytic capabilities. EVI-Pro Lite is a simplified version of EVI-Pro, the more complex, original version of the tool developed by NREL and the California Energy Commission to inform detailed infrastructure requirements to support a growing EV fleet in California, where EVs bolster grid stability through coordinated planning.

EVI-Pro Lite’s estimated weekday electric load by charger type for El Paso, Texas, assuming a fleet of 10,000 plug-in electric vehicles, an average of 35 daily miles traveled, and 50% access to home charging, among other variables, as well as potential roles for vehicle-to-grid power in future scenarios. The order of the legend items matches the order of the series stacked in the chart.

Previously, the tool was limited to letting users estimate how many chargers and what kind of chargers a city, region, or state may need to support an influx of EVs. In the added online application, those same users can take it a step further to predict how that added EV charging will impact electricity demand, or load shapes, in their area at any given time and inform grid coordination for EV flexibility strategies.

“EV charging is going to look different across the country, depending on the prevalence of EVs, access to home charging, and the kind of chargers most used,” said Eric Wood, an NREL researcher who led model development. “Our expansion gives stakeholders—especially small- to medium-size electric utilities and co-ops—an easy way to analyze key factors for developing a flexible energy strategy that can respond to what’s happening on the ground.”

Tools to forecast EV loads have existed for some time, but Wood said that EVI-Pro Lite appeals to a wider audience, including planners tracking EVs' impact on utilities in many markets. The tool is a user-friendly, free online application that displays a clear graphic of daily projected electric loads from EV charging for regions across the country.

After selecting a U.S. metropolitan area and entering the number of EVs in the light-duty fleet, users can change a range of variables to see how they affect electricity demand on a typical weekday or weekend. Reducing access to home charging by half, for example, results in higher electric loads earlier in the day, although energy storage and mobile charging can help moderate peaks in some cases. That is because under such a scenario, EV owners might rely more on public or workplace charging instead of plugging in at home later in the evening or at night.

“Our goal with the lite version of EVI-Pro is to make estimating loads across thousands of scenarios fast and intuitive,” Wood said. “And if utilities or stakeholders want to take that analysis even deeper, our team at NREL can fill that gap through partnership agreements, too. The full version of EVI-Pro can be tailored to develop detailed studies for individual planners, agencies, or utilities.”

 

Related News

View more

Electric car charging networks jostle for pole position amid Biden's push to electrify

EV Charging Infrastructure Expansion accelerates as DC fast charging, Level 2 stations, and 150-350 kW networks grow nationwide, driven by Biden's plan, ChargePoint, EVgo, and Electrify America partnerships at retailers like Walmart and 7-Eleven.

 

Key Points

The nationwide build-out of public EV chargers, focusing on DC fast charging, kW capacity, and retailer partnerships.

✅ DC fast chargers at 150-350 kW cut charge times

✅ Retailers add ports: Walmart and 7-Eleven expand access

✅ Investments surge via ChargePoint, EVgo, Electrify America

 

Today’s battery-electric vehicles deliver longer range at a lower cost, are faster and more feature-laden than earlier models. But there’s one particular challenge that still must be addressed: charging infrastructure across the U.S.

That’s a concern that President Joe Biden wants to address, with $174 billion of his proposed infrastructure bill to be used to promote the EV boom while expanding access. About 10 percent of that would help fund a nationwide network of 500,000 chargers.

However, even before a formal bill is delivered to Congress, the pace at which public charging stations are switching on is rapidly accelerating.

From Walmart to 7-Eleven, electric car owners can expect to find more and more charging stations available, as automakers strike deals with regulators, charger companies and other businesses, even as control of charging remains contested.

7-Eleven convenience chain already operates 22 charging stations and plans to grow that to 500 by the end of 2022. Walmart now lets customers charge up at 365 stores around the country and plans to more than double that over the next several years.

According to the Department of Energy, there were 20,178 public chargers available at the end of 2017. That surged to 41,400 during the first quarter of this year, as electric utilities pursue aggressive charging plans.

The vast majority of those available three years ago were “Level 2,” 240-volt AC chargers that would take as much as 12 hours to fully recharge today’s long-range BEVs, like the Tesla Model 3 or Ford Mustang Mach-E. Increasingly, new chargers are operating at 400 volts and even 800 volts, delivering anywhere from 50 to 350 kilowatts. The new Kia EV6 will be able to reach 80 percent of its full capacity in just 18 minutes.

“Going forward, unless there is a limit to the power we can access at a particular location, all our new chargers will have 150 to 350 kilowatt capacity,” Pat Romano, CEO of ChargePoint, one of the world’s largest providers of chargers, told NBC News.

ChargePoint saw its first-quarter revenues jump by 24 percent to $40.5 million this year, a surge largely driven by rapid growth in the EV market. Sales of battery cars were up 45 percent during the first quarter, compared to a year earlier. To take advantage of that growth, ChargePoint added another 6,000 active ports — the electric equivalent of a gas pump — during the quarter. It now has 112,000 active charge ports.

In March, ChargePoint became the world’s first publicly traded global EV charging network. It completed a SPAC-style merger with Switchback Energy Acquisition Corporation. Rival EVgo plans to go through a similar deal this month with the "blank check" company Climate Change Crisis Real Impact Acquisition Corporation (CRIS), which has valued the charge provider at $2.6 billion.

“We look forward to highlighting EVgo’s leadership position and its significant opportunity for long-term growth in the climate critical electrification of transport sector,” CRIS CEO David Crane said Tuesday, ahead of an investor meeting with EVgo.

Electrify America, another emerging giant, has its own deep-pocket backer. The suburban Washington, D.C.-based firm was created using $2 billion of the settlement Volkswagen agreed to pay to settle its diesel emissions scandal. It is doling that out in regular tranches and just announced $200 million in additional investments — much of that to set up new chargers.

Industry investments in BEVs will top $250 million this decade, and could even reach $500 billion. That's encouraging automakers like Volkswagen, Ford and General Motors to tie up with individual charger companies, including plans to build 30,000 chargers nationwide.

In 2019, GM set up a partnership with Bechtel to build a charger network that will stretch across the U.S.

Others are establishing networks of their own, as Tesla has done with its Supercharger network.

Each charging network is leveraging relationships to speed up installations. Ford is offering buyers of its Mustang Mach-E 250 kilowatt-hours of free energy through Electrify America stations and is also partnering with Bank of America to “let you charge where you bank,” the automaker said.

Even if Biden gets his infrastructure plan through Congress quickly, other government agencies are already getting in to the charger business, even as state power grids brace for increased loads. That includes New York State which, in May, announced plans to put 150 new ports into place by year-end.

"Expanding high-speed charging in local markets across the state is a crucial step in encouraging more drivers to choose EVs,” said Gov. Andrew Cuomo, adding that, "public-private partnerships enable New York to build a network of fast, affordable and reliable electric vehicle public charging stations in a nimble and affordable way."

One of the big questions is how many charging stations actually are needed. There are 168,000 gas stations in the U.S., according to the Dept. of Energy. But the goal is not a one-for-one match, stressed ChargePoint CEO Romano, because “80 percent of EV owners today charge at home, and energy storage promises added flexibility, … and we expect that to continue to be the case."

But there are still many potential owners who won’t be able to set up their own chargers, and a network will still be needed for those driving long distances. Until that happens, many motorists will be reluctant to switch.

 

Related News

View more

Reversing the charge - Battery power from evs to the grid could open a fast lane

Vehicle-to-Grid V2G unlocks EV charging flexibility and grid services, integrating renewable energy, demand response, and peak shaving to displace stationary storage and firm generation while lowering system costs and enhancing reliability.

 

Key Points

Vehicle-to-Grid V2G lets EV batteries discharge to grid, balancing renewables and cutting storage and firm generation.

✅ Displaces costly stationary storage and firm generation

✅ Enables demand response and peak shaving at scale

✅ Supports renewable integration and grid reliability

 

Owners of electric vehicles (EVs) are accustomed to plugging into charging stations at home and at work and filling up their batteries with electricity from the power grid. But someday soon, when these drivers plug in, their cars will also have the capacity to reverse the flow and send electrons back to the grid. As the number of EVs climbs, the fleet’s batteries could serve as a cost-effective, large-scale energy source, with potentially dramatic impacts on the energy transition, according to a new paper published by an MIT team in the journal Energy Advances.

“At scale, vehicle-to-grid (V2G) can boost renewable energy growth, displacing the need for stationary energy storage and decreasing reliance on firm [always-on] generators, such as natural gas, that are traditionally used to balance wind and solar intermittency,” says Jim Owens, lead author and a doctoral student in the MIT Department of Chemical Engineering. Additional authors include Emre Gençer, a principal research scientist at the MIT Energy Initiative (MITEI), and Ian Miller, a research specialist for MITEI at the time of the study.

The group’s work is the first comprehensive, systems-based analysis of future power systems, drawing on a novel mix of computational models integrating such factors as carbon emission goals, variable renewable energy (VRE) generation, and costs of building energy storage, production, and transmission infrastructure.

“We explored not just how EVs could provide service back to the grid — thinking of these vehicles almost like energy storage on wheels providing flexibility — but also the value of V2G applications to the entire energy system and if EVs could reduce the cost of decarbonizing the power system,” says Gençer. “The results were surprising; I personally didn’t believe we’d have so much potential here.”

Displacing new infrastructure

As the United States and other nations pursue stringent goals to limit carbon emissions, electrification of transportation has taken off, with the rate of EV adoption rapidly accelerating. (Some projections show EVs supplanting internal combustion vehicles over the next 30 years.) With the rise of emission-free driving, though, there will be increased demand for energy on already stressed state power grids nationwide. “The challenge is ensuring both that there’s enough electricity to charge the vehicles and that this electricity is coming from renewable sources,” says Gençer.

But solar and wind energy is intermittent. Without adequate backup for these sources, such as stationary energy storage facilities using lithium-ion batteries, for instance, or large-scale, natural gas- or hydrogen-fueled power plants, achieving clean energy goals will prove elusive. More vexing, costs for building the necessary new energy infrastructure runs to the hundreds of billions.

This is precisely where V2G can play a critical, and welcome, role, the researchers reported. In their case study of a theoretical New England power system meeting strict carbon constraints, for instance, the team found that participation from just 13.9 percent of the region’s 8 million light-duty (passenger) EVs displaced 14.7 gigawatts of stationary energy storage. This added up to $700 million in savings — the anticipated costs of building new storage capacity.

Their paper also described the role EV batteries could play at times of peak demand, such as hot summer days. “With proper grid coordination practices in place, V2G technology has the ability to inject electricity back into the system to cover these episodes, so we don’t need to install or invest in additional natural gas turbines,” says Owens. “The way that EVs and V2G can influence the future of our power systems is one of the most exciting and novel aspects of our study.”

Modeling power

To investigate the impacts of V2G on their hypothetical New England power system, the researchers integrated their EV travel and V2G service models with two of MITEI’s existing modeling tools: the Sustainable Energy System Analysis Modeling Environment (SESAME) to project vehicle fleet and electricity demand growth, and GenX, which models the investment and operation costs of electricity generation, storage, and transmission systems. They incorporated such inputs as different EV participation rates, costs of generation for conventional and renewable power suppliers, charging infrastructure upgrades, travel demand for vehicles, changes in electricity demand, and EV battery costs.

Their analysis found benefits from V2G applications in power systems (in terms of displacing energy storage and firm generation) at all levels of carbon emission restrictions, including one with no emissions caps at all. However, their models suggest that V2G delivers the greatest value to the power system when carbon constraints are most aggressive — at 10 grams of carbon dioxide per kilowatt hour load. Total system savings from V2G ranged from $183 million to $1,326 million, reflecting EV participation rates between 5 percent and 80 percent.

“Our study has begun to uncover the inherent value V2G has for a future power system, demonstrating that there is a lot of money we can save that would otherwise be spent on storage and firm generation,” says Owens.


Harnessing V2G

For scientists seeking ways to decarbonize the economy, the vision of millions of EVs parked in garages or in office spaces and plugged into the grid via vehicle-to-building charging for 90 percent of their operating lives proves an irresistible provocation. “There is all this storage sitting right there, a huge available capacity that will only grow, and it is wasted unless we take full advantage of it,” says Gençer.

This is not a distant prospect. Startup companies are currently testing software that would allow two-way communication between EVs and grid operators or other entities. With the right algorithms, EVs would charge from and dispatch energy to the grid according to profiles tailored to each car owner’s needs, never depleting the battery and endangering a commute.

“We don’t assume all vehicles will be available to send energy back to the grid at the same time, at 6 p.m. for instance, when most commuters return home in the early evening,” says Gençer. He believes that the vastly varied schedules of EV drivers will make enough battery power available to cover spikes in electricity use over an average 24-hour period. And there are other potential sources of battery power down the road, such as electric school buses that are employed only for short stints during the day and then sit idle, with the potential to power buildings during peak hours.

The MIT team acknowledges the challenges of V2G consumer buy-in. While EV owners relish a clean, green drive, they may not be as enthusiastic handing over access to their car’s battery to a utility or an aggregator working with power system operators. Policies and incentives would help.

“Since you’re providing a service to the grid, much as solar panel users do, you could get paid to sell electricity back for your participation, and paid at a premium when electricity prices are very high,” says Gençer.

“People may not be willing to participate ’round the clock, but as states like California explore EVs for grid stability programs and incentives, if we have blackout scenarios like in Texas last year, or hot-day congestion on transmission lines, maybe we can turn on these vehicles for 24 to 48 hours, sending energy back to the system,” adds Owens. “If there’s a power outage and people wave a bunch of money at you, you might be willing to talk.”

“Basically, I think this comes back to all of us being in this together, right?” says Gençer. “As you contribute to society by giving this service to the grid, you will get the full benefit of reducing system costs, and also help to decarbonize the system faster and to a greater extent.”


Actionable insights

Owens, who is building his dissertation on V2G research, is now investigating the potential impact of heavy-duty electric vehicles in decarbonizing the power system. “The last-mile delivery trucks of companies like Amazon and FedEx are likely to be the earliest adopters of EVs,” Owen says. “They are appealing because they have regularly scheduled routes during the day and go back to the depot at night, which makes them very useful for providing electricity and balancing services in the power system.”

Owens is committed to “providing insights that are actionable by system planners, operators, and to a certain extent, investors,” he says. His work might come into play in determining what kind of charging infrastructure should be built, and where.

“Our analysis is really timely because the EV market has not yet been developed,” says Gençer. “This means we can share our insights with vehicle manufacturers and system operators — potentially influencing them to invest in V2G technologies, avoiding the costs of building utility-scale storage, and enabling the transition to a cleaner future. It’s a huge win, within our grasp.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified