Electric vehicles can now power your home for three days


ev

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Vehicle-to-Home (V2H) Power enables EVs to act as backup generators and home batteries, using bidirectional charging, inverters, and rooftop solar to cut energy costs, stabilize the grid, and provide resilient, outage-proof electricity.

 

Key Points

Vehicle-to-Home (V2H) Power lets EV batteries run household circuits via bidirectional charging and an inverter.

✅ Cuts energy bills using solar, time-of-use rates, and storage

✅ Provides resilient backup during outages, storms, and blackouts

✅ Enables grid services via V2G/V2H with smart chargers

 

When the power went out at Nate Graham’s New Mexico home last year, his family huddled around a fireplace in the cold and dark. Even the gas furnace was out, with no electricity for the fan. After failing to coax enough heat from the wood-burning fireplace, Graham’s wife and two children decamped for the comfort of a relative’s house until electricity returned two days later.

The next time the power failed, Graham was prepared. He had a power strip and a $150 inverter, a device that converts direct current from batteries into the alternating current needed to run appliances, hooked up to his new Chevy Bolt, an electric vehicle. The Bolt’s battery powered his refrigerator, lights and other crucial devices with ease. As the rest of his neighborhood outside Albuquerque languished in darkness, Graham’s family life continued virtually unchanged. “It was a complete game changer making power outages a nonissue,” says Graham, 35, a manager at a software company. “It lasted a day-and-a-half, but it could have gone much longer.”

Today, Graham primarily powers his home appliances with rooftop solar panels and, when the power goes out, his Chevy Bolt. He has cut his monthly energy bill from about $220 to $8 per month. “I’m not a rich person, but it was relatively easy,” says Graham “You wind up in a magical position with no [natural] gas, no oil and no gasoline bill.”

Graham is a preview of what some automakers are now promising anyone with an EV: An enormous home battery on wheels that can reverse the flow of electricity to power the entire home through the main electric panel.

Beyond serving as an emissions-free backup generator, the EV has the potential of revolutionizing the car’s role in American society, with California grid programs piloting vehicle-to-grid uses, transforming it from an enabler of a carbon-intensive existence into a key step in the nation’s transition into renewable energy.

Home solar panels had already been chipping away at the United States’ centralized power system, forcing utilities to make electricity transfer a two-way street. More recently, home batteries have allowed households with solar arrays to become energy traders, recharging when electricity prices are low, replacing grid power when prices are high, and then sell electricity back to the grid for a profit during peak hours.

But batteries are expensive. Using EVs makes this kind of home setup cheaper and a real possibility for more Americans as the American EV boom accelerates nationwide.

So there may be a time, perhaps soon, when your car not only gets you from point A to point B, but also serves as the hub of your personal power plant.

I looked into new vehicles and hardware to answer the most common questions about how to power your home (and the grid) with your car.


Why power your home with an EV battery

America’s grid is not in good shape. Prices are up and reliability is down, and many state power grids face new challenges from rising EV adoption. Since 2000, the number of major outages has risen from less than two dozen to more than 180 per year, based on federal data, the Wall Street Journal reports. The average utility customer in 2020 endured about eight hours of power interruptions, double the previous decade.

Utilities’ relationship with their customers is set to get even rockier. Residential electricity prices, which have risen 21 percent since 2008, are predicted to keep climbing as utilities spend more than $1 trillion upgrading infrastructure, erecting transmission lines for renewable energy and protecting against extreme weather, even though grids can handle EV loads with proper management and planning.

U.S. homeowners, increasingly, are opting out. About 8 percent of them have installed solar panels. An increasing number are adding home batteries from companies such as LG, Tesla and Panasonic. These are essentially banks of battery cells, similar to those in your laptop, capable of storing energy and discharging electricity.

EnergySage, a renewable energy marketplace, says two-thirds of its customers now request battery quotes when soliciting bids for home solar panels, and about 15 percent install them. This setup allows homeowners to declare (at least partial) independence from the grid by storing and consuming solar power overnight, as well as supplying electricity during outages.

But it doesn’t come cheap. The average home consumes about 20 kilowatt-hours per day, a measure of energy over time. That works out to about $15,000 for enough batteries on your wall to ensure a full day of backup power (although the net cost is lower after incentives and other potential savings).

 

How an EV battery can power your home

Ford changed how customers saw their trucks when it rolled out a hybrid version of the F-150, says Ryan O’Gorman of Ford’s energy services program. The truck doubles as a generator sporting as many as 11 outlets spread around the vehicle, including a 240-volt outlet typically used for appliances like clothes dryers. During disasters like the 2021 ice storm that left millions of Texans without electricity, Ford dealers lent out their hybrid F-150s as home generators, showing how mobile energy storage can bring new flexibility during outages.

The Lightning, the fully electric version of the F-150, takes the next step by offering home backup power. Under each Lightning sits a massive 98 kWh to 131 kWh battery pack. That’s enough energy, Ford estimates, to power a home for three days (10 days if rationing). “The vehicle has an immense amount of power to move that much metal down the road at 80 mph,” says O’Gorman.

 

Related News

Related News

UK to fast-track vital grid connections

UK Grid Connection Fast-Track would let the Energy Secretary instruct network operators and National Grid ESO to accelerate substation upgrades and transmission links for Tata's gigafactory, electric arc furnaces, and ready-to-build renewable projects.

 

Key Points

A UK plan letting the energy secretary fast-track grid connections via priority substation and transmission upgrades.

✅ Prioritizes substations and lines for strategic projects

✅ Supports Tata gigafactory and electric arc furnace conversions

✅ Complements Ofgem queue reforms and National Grid ESO changes

 

The UK energy secretary could be handed powers to fast-track connecting electricity-hungry projects, such as Jaguar Land Rover’s owner Tata’s planned electric battery factory, to the grid, under plans being discussed between government and regulators as part of the government’s green industrial revolution strategy.

Amid concerns about supply delays of up to 15 years in hooking up large schemes, the Guardian understands the move would allow Claire Coutinho to request that energy network companies accelerate upgrades to substations and power lines to connect specific new developments.

It is understood that the government and the regulator Ofgem have told National Grid’s electricity systems operator that they are “minded” to adopt its grid reform proposals to change the model for connections, which now moves at a pace set by each network operator.

A source said: “Foreign investors need assurances that, if these things are going to be built, then they can be hooked up quickly. There are physical assets, like substations and cross-Channel cables that transmission companies will need to build or upgrade.”

The government is belatedly attempting to tackle a logjam that has resulted in some developments facing a 10- to 15-year wait for a connection to the grid. Ofgem announced on Monday plans to remove “zombie” projects from the queue to connect up to speed up those ready to produce renewable power for the grid, with wind leading the power mix.

Although no equivalent queue exists for those looking to take power from the grid, ministers and officials are concerned that large projects could struggle to secure final investment and proceed without guarantees over their connection to the electricity supply.

Sources said changes to the rules had been proposed with several big projects in mind: Tata’s new £4bn electric battery factory, expected to be built in Somerset; and the switch to electric arc furnaces at Britain’s biggest steelworks at Port Talbot in south Wales, also owned by the Indian group.

The £1.25bn plan from British Steel, which is owned by China’s Jingye, to replace two blast furnaces at Scunthorpe steelworks, with an electric arc furnace at the north Lincolnshire plant and another at a site in Teesside, North Yorkshire, has also formed part of the proposals. Negotiations over the closure of blast furnaces at Port Talbot and Scunthorpe are expected to lead to thousands of job losses.

All three projects are likely to involve significant investment from the UK government, where a state-owned generation firm has been touted as a cost-saving option, alongside the companies’ overseas owners.

Britain has 10 distribution network operators, including National Grid and Northern Powergrid, which operate monopolies in their regions and handle transmission of power from the grid to end users.

Sources said the move could be announced as soon as this month, and may be included within the “connections action plan”, a broader overhaul of Britain’s network connections.

The plan, which is expected to be announced alongside the chancellor’s autumn statement next week, will rebalance the planning system to help speed up the connection of new solar and windfarms to the grid, as the biggest offshore windfarm begins UK supply this week.

 

Related News

View more

US Army deploys its first floating solar array

Floating Solar at Fort Bragg delivers a 1 MW DoD-backed floatovoltaic array on Big Muddy Lake, boosting renewable energy, resilience, and efficiency via water cooling, with Duke Energy and Ameresco supporting backup power.

 

Key Points

A 1 MW floating PV array on Big Muddy Lake, built by the US Army to boost efficiency, resilience, and backup power.

✅ 1 MW array supplies backup power for training facilities.

✅ Water cooling improves panel efficiency and output.

✅ Partners: Duke Energy, Ameresco; DoD's first floating solar.

 

Floating solar had a moment in the spotlight over the weekend when the US Army unveiled a new solar plant sitting atop the Big Muddy Lake at Fort Bragg in North Carolina. It’s the first floating solar array deployed by the Department of Defense, and it’s part of a growing current of support in the US for “floatovoltaics” and other innovations like space-based solar research.

The army says its goal is to boost clean energy, support goals in the Biden solar plan for decarbonization, reduce greenhouse gas emissions, and give the nearby training facility a source of backup energy during power outages. The panels will be able to generate about one megawatt of electricity, which can typically power about 190 homes, and, when paired with solar batteries, enhance resilience during extended outages.

The installation, the largest in the US Southeast, is a big win for floatovoltaics, and projects like South Korea’s planned floating plant show global momentum for the technology, which has yet to make a big splash in the US. They only make up 2 percent of solar installations annually in the country, according to Duke Energy, which collaborated with Fort Bragg and the renewable energy company Ameresco on the project, even as US solar and storage growth accelerates nationwide.

Upfront costs for floating solar have typically been slightly more expensive than for its land-based counterparts. The panels essentially sit on a sort of raft that’s tethered to the bottom of the body of water. But floatovoltaics come with unique benefits, complementing emerging ocean and river power approaches in water-based energy. Hotter temperatures make it harder for solar panels to produce as much power from the same amount of sunshine. Luckily, sitting atop water has a cooling effect, which allows the panels to generate more electricity than panels on land. That makes floating solar more efficient and makes up for higher installation costs over time.

And while solar in general has already become the cheapest electricity source globally, it’s pretty land-hungry, so complementary options like wave energy are drawing interest worldwide. A solar farm might take up 20 times more land than a fossil fuel power plant to produce a gigawatt of electricity. Solar projects in the US have already run into conflict with some farmers who want to use the same land, for example, and with some conservationists worried about the impact on desert ecosystems.

 

Related News

View more

Tesla prepares to bring its electric cars to South America

Tesla Chile Market Entry signals EV expansion into South America, with a Santiago country manager, service technicians, and advisors, leveraging lithium supply, competing with BYD, and preparing sales, service, and charging infrastructure.

 

Key Points

Tesla will enter Chile to launch EV sales, service, and charging from Santiago, opening its South America expansion.

✅ Country manager role based in Santiago to lead market launch

✅ Focus on EV sales, service centers, and charging infrastructure

✅ Leverages Chile's lithium ecosystem; competes with BYD

 

Tesla is preparing to bring its electric cars to South America, according to a new job posting in Chile.

It has been just over a decade since Tesla launched the Model S and significantly accelerated EV inflection point in the deployment of electric vehicles around the world.

The automaker has expanded its efforts across North America, where the U.S. EV tipping point has been reached, and most countries in Europe, and it is still gradually expanding in Asia.

But there’s one continent that Tesla hasn’t touched yet: South America, even as global EV adoption raced to two million in five years.

It sounds like it is about to change.

Tesla has started to promote a job posting on LinkedIn for a country manager in Chile, aligning with international moves like UK expansion plans it has signaled.

The country manager is generally the first person hired when Tesla expands in a new market.

The job is going to be based in Santiago, the capital of Chile, where the company is also looking for some Tesla advisors and service technicians.

Chile is an interesting choice for a first entry into the South American market. The Chilean auto market consists of only about 234,000 vehicles sold year-to-date and that’s down 29% versus the previous year.

That’s roughly the number of vehicles sold in Brazil every month.

While the size of the auto market in the country is small, there’s a strong interest for electric vehicles as the EV era arrives ahead of schedule there, which might explain Tesla’s foray.

The country is rich in lithium, a critical material for EV batteries, where lithium supply concerns have also emerged, which has helped create interest for electric vehicles in the country. The government also announced an initiative to allow for only new sales of electric vehicles in the country starting in 2035.

Tesla’s Chinese competitor BYD has set its sight on the South American market by bringing its cheaper China-made EVs to the market, part of a broader Chinese EV push in Europe as well, but now it looks like Tesla is willing to test the market on the higher-end.

 

Related News

View more

New Brunswick announces rebate program for electric vehicles

New Brunswick EV Rebates deliver stackable provincial and federal incentives for electric vehicles, used EVs, and home chargers, supporting NB Power infrastructure, lower GHG emissions, and climate goals with fast chargers across the province.

 

Key Points

Stackable provincial and federal incentives up to $10,000 for EV purchases, plus support for home charging.

✅ $5,000 new EVs; $2,500 used; stackable with federal $5,000

✅ 50% home charger rebate up to $750 through NB Power

✅ Supports GHG cuts, charging network growth, climate targets

 

New Brunswickers looking for an electric vehicle (EV) can now claim up to $10,000 in rebates from the provincial and federal governments.

The three-year provincial program was announced Thursday and will give rebates of $5,000 on new EVs and $2,500 on used ones. It closely mirrors the federal program and is stackable, meaning new owners will be able to claim up to $5,000 from the feds as well.

Minister of Environment and Climate Change Gary Crossman said the move is hoped to kickstart the province’s push toward a target of having 20,000 EVs on the road by 2030.

“This incentive has to make a positive difference,” Crossman said.

“I truly believe people have been waiting for it, they’ve been asking about it, and this will make a difference from today moving forward to put new or used cars in their hands.”

The first year of the program will cost $1.95 million, which will come from the $36 million in the Climate Change Fund and will be run by NB Power, whose public charging network has been expanding across the province. The department says if the full amount is used this year it could represent a reduction of 850 tonnes of greenhouse gasses (GHGs) annually.

Both the Liberal and Green parties welcomed the move calling it long overdue, but Green MLA Kevin Arseneau said it’s not a “miracle solution.”

“Yes, we need to electrify cars, but this kind of initiative without proper funding of public transportation, urban planning for biking … without this kind of global approach this is just another swipe of a sword in water,” he said.

Liberal environment critic Francine Landry says she hopes this will make the difference for those considering the purchase of an EV and says the government should consider further methods of incentivization like waiving registration fees.

The province’s adoption of EVs has not been overly successful so far, reflecting broader Atlantic EV buying interest trends across the region. At the end of 2020, there were 646 EVs registered in the province, far short of the 2,500 target set out in the Climate Action Plan. That was up significantly from the 437 at the end of 2019, but still a long way from the goal.

New Brunswick has a fairly expansive network of charging stations across the province, claiming to be the first “fully-connected province” in the country, and had hoped that the available infrastructure, including plans for new fast-charging stations on the Trans-Canada, would push adoption of non-emitting vehicles.

“In 2017 we had 11 chargers in the province, so we’ve come a long way from an infrastructure standpoint which I think is critical to promoting or having an electric vehicle network, or a number of electric vehicles operating in the province, and neighbouring N.L.’s fast-charging network shows similar progress,” said Deputy Minister of Natural Resources Tom Macfarlane at a meeting of the standing committee on climate change and environmental stewardship in January of 2020.

There are now 172 level two chargers and 83 fast chargers, while Labrador’s EV infrastructure still lags in neighbouring N.L. today. Level two chargers take between six and eight hours to charge a vehicle, while the fast chargers take about half an hour to get to 80 per cent charge.

The newly announced program will also cover 50 per cent of costs for a home charging station up to $750, similar to B.C. charger rebates that support home infrastructure, to further address infrastructure needs.

The New Brunswick Lung Association is applauding the rebate plan.

President and CEO Melanie Langille said about 15,000 Canadians, including 40 people from New Brunswick, die prematurely each year from air pollution. She said vehicle emissions account for about 30 per cent of the province’s air pollution.

“Electric vehicles are critical to reducing our greenhouse gas emissions,” said Langille. “New Brunswick has one of the highest per capita GHG emissions in Canada. But, because our electricity source in New Brunswick is primarily from non-emitting sources and regional initiatives like Nova Scotia’s vehicle-to-grid pilot are advancing grid integration, switching to an EV is an effective way for New Brunswickers to lower their GHG emissions.”

Langille said the lung association has been part of an electric vehicles advisory group in the province since 2014 and its research has shown this type of program is needed.

“The major barrier that is standing in the way of New Brunswickers adopting electric vehicles is the upfront costs,” Langille said. “So today’s announcement, and that it can be stacked on top of the existing federal rebates, is a huge step forward for us.”

 

Related News

View more

This Thin-Film Turns Heat Waste From Electronics Into Electricity

Pyroelectric Energy Harvesting captures low-grade heat via thin-film materials, converting temperature fluctuations into power for waste heat recovery in electronics, vehicles, and industrial machinery, offering a thermoelectric alternative for microelectronics and exascale systems.

 

Key Points

Thin-film pyroelectric harvesting turns temperature changes into electricity, enabling low-grade waste heat recovery.

✅ Converts low-grade heat fluctuations into usable power

✅ Thin-film design suits microelectronics and edge devices

✅ Alternative to thermoelectrics for waste heat recovery

 

The electronic device you are reading this on is currently producing a modest to significant amount of waste heat that emerging thermoelectric materials could help recover in principle. In fact, nearly 70% of the energy produced annually in the US is ultimately wasted as heat, much of it less than 100 degrees Celsius. The main culprits are computers and other electronic devices, vehicles, as well as industrial machinery. Heat waste is also a big problem for supercomputers, because as more circuitry is condensed into smaller and smaller areas, the hotter those microcircuits get.

It’s also been estimated that a single next-generation exascale supercomputer could feasibly use up to 10% of the energy output of just one coal-fired power station, and that nearly all of that energy would ultimately be wasted as heat.

What if it were possible to convert that heat energy into a useable energy source, and even to generate electricity at night from temperature differences as well?

#google#

It’s not a new idea, of course. In fact the possibility of thermoelectric energy generation, where thermal energy is turned into electricity was recognised as early as 1821, around the same time that Michael Faraday developed the electric motor.

Unfortunately, when the heat source is ‘low grade’, aka less than 100 degrees Celsius, a number of limitations arise, and related approaches for nighttime renewable generation face similar challenges as well. For it to work well, you need materials that have quite high electrical conductivity, but low thermal conductivity. It’s not an easy combination to come by.

Taking a different approach, researchers at the University of California, Berkeley, have developed thin-film that uses pyroelectric harvesting to capture heat-waste and convert heat to electricity in prototype demonstrations. The findings were published today in Nature Materials.

 

Related News

View more

Unprecedented Growth in Solar and Storage Anticipated with Record Installations and Investments

U.S. Clean Energy Transition accelerates with IRA and BIL, boosting renewable energy, solar PV, battery storage, EV adoption, manufacturing, grid resilience, and jobs while targeting carbon-free electricity by 2035 and net-zero emissions by 2050.

 

Key Points

U.S. shift to renewables under IRA and BIL scales solar, storage, and EVs toward carbon-free power by 2035.

✅ Renewables reached ~22% of U.S. electricity generation in 2022.

✅ Nearly $13b in PV manufacturing; 94 plants; 25k jobs announced.

✅ Battery storage grew from 3% in 2017 to 36% by H1 2023.

 

In recent years, the United States has made remarkable strides in embracing renewable energy, with notable solar and wind growth helping to position itself for a more sustainable future. This transition has been driven by a combination of factors, including environmental concerns, economic opportunities, and technological advancements.

With the introduction of the Inflation Reduction Act (IRA) and the Bipartisan Infrastructure Law (BIL), the United States is rapidly advancing its journey towards clean energy solutions.

To underscore the extent of this progress, consider the following vital statistics: In 2022, renewable energy sources (including hydroelectric power) accounted for approximately 22% of the nation's electricity generation, and renewables surpassed coal in the mix that year, while the share of renewables in total electricity generation capacity had risen to around 30% and the nation is moving toward 30% electricity from wind and solar as well.

Notably, in the transportation sector, consumers are increasingly embracing zero-emission fuels, such as electric vehicles. In 2022, battery electric vehicles (BEVs) represented 5.6% of new vehicle registrations, surging to 7.1% by the first half of 2023, according to estimates from EUPD Research.

The United States has set ambitious targets, including achieving 100% carbon pollution-free electricity by 2035 and aiming for economy-wide net-zero greenhouse gas emissions by no later than 2050, and policy proposals such as Biden's solar plan reinforce these goals for the power sector. These targets are poised to provide a significant boost to the clean energy sector in the country, reaffirming its commitment to a sustainable and environmentally responsible future.

 

IRA and BIL: Catalysts for Growth

The IRA and BIL represent a transformative shift in the landscape of clean energy policy, heralding a new era for the solar and energy storage sectors in the United States. The IRA allocates substantial resources to address the climate crisis, fortify domestic clean energy production, and solidify the U.S. as a global leader in clean energy manufacturing.

According to the U.S. Department of Energy (DOE), an impressive investment exceeding $120 billion has been announced for the U.S. battery manufacturing and supply chain sector since the introduction of IRA and BIL. Additionally, plans have been unveiled for over 200 new or expanded facilities dedicated to minerals, materials processing, and manufacturing. This move is expected to create more than 75,000 potential job opportunities, strengthening the nation's workforce.

Following the introduction of IRA and BIL, solar photovoltaic (PV) manufacturing in the U.S. has also witnessed a substantial surge in planned investments, totaling nearly $13 billion, as reported by the DOE. Furthermore, a total of 94 new and expanded PV manufacturing plants have been announced, potentially generating over 25,000 jobs in the country.

 

Booming Solar Sector

In recent years, the U.S. solar sector has outpaced other energy sources, including a surging wind sector and natural gas, in terms of capacity growth. EUPD Research estimates reveal a notable upward trend in the contribution of solar capacity to annual power capacity additions, as 82% of the 2023 pipeline consists of wind, solar, and batteries across utility-scale projects. This trajectory has risen from 37% in 2019 to 38% in 2020, further increasing to 44% in 2021 and an impressive 45% in 2022.

Although the country experienced a temporary setback in 2022 due to pandemic-related delays, trade law enforcement, supply chain disruptions, and rising costs, it is now on track to make a historic addition to its PV capacity in 2023. According to EUPD Research's 2023 forecast, the U.S. is poised to achieve its largest-ever expansion in PV capacity, estimated at 32 to 35 GWdc, assuming the installation of all planned utility-scale capacity, and solar generation rose 25% in 2022 as a supportive indicator. Additionally, from 2023 to 2028, the U.S. is projected to add approximately 233 GWdc of PV capacity.

In terms of cumulative installed PV capacity (including utility-scale, commercial and industrial, and residential) on a state-by-state basis, California holds the top position, followed by Texas, Florida, North Carolina, and Arizona. Remarkably, Texas is rapidly expanding its utility-scale PV capacity and may potentially surpass California in the next two years.

 

Rapid Growth in Battery Storage

Battery energy storage has emerged as the dominant and rapidly expanding source of energy storage in the U.S. in recent years. The proportion of battery storage in the country's energy storage capacity has surged dramatically, increasing from a mere 3% in 2017 to a substantial 36% in the first half of 2023.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.