Electric vehicles can now power your home for three days


ev

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Vehicle-to-Home (V2H) Power enables EVs to act as backup generators and home batteries, using bidirectional charging, inverters, and rooftop solar to cut energy costs, stabilize the grid, and provide resilient, outage-proof electricity.

 

Key Points

Vehicle-to-Home (V2H) Power lets EV batteries run household circuits via bidirectional charging and an inverter.

✅ Cuts energy bills using solar, time-of-use rates, and storage

✅ Provides resilient backup during outages, storms, and blackouts

✅ Enables grid services via V2G/V2H with smart chargers

 

When the power went out at Nate Graham’s New Mexico home last year, his family huddled around a fireplace in the cold and dark. Even the gas furnace was out, with no electricity for the fan. After failing to coax enough heat from the wood-burning fireplace, Graham’s wife and two children decamped for the comfort of a relative’s house until electricity returned two days later.

The next time the power failed, Graham was prepared. He had a power strip and a $150 inverter, a device that converts direct current from batteries into the alternating current needed to run appliances, hooked up to his new Chevy Bolt, an electric vehicle. The Bolt’s battery powered his refrigerator, lights and other crucial devices with ease. As the rest of his neighborhood outside Albuquerque languished in darkness, Graham’s family life continued virtually unchanged. “It was a complete game changer making power outages a nonissue,” says Graham, 35, a manager at a software company. “It lasted a day-and-a-half, but it could have gone much longer.”

Today, Graham primarily powers his home appliances with rooftop solar panels and, when the power goes out, his Chevy Bolt. He has cut his monthly energy bill from about $220 to $8 per month. “I’m not a rich person, but it was relatively easy,” says Graham “You wind up in a magical position with no [natural] gas, no oil and no gasoline bill.”

Graham is a preview of what some automakers are now promising anyone with an EV: An enormous home battery on wheels that can reverse the flow of electricity to power the entire home through the main electric panel.

Beyond serving as an emissions-free backup generator, the EV has the potential of revolutionizing the car’s role in American society, with California grid programs piloting vehicle-to-grid uses, transforming it from an enabler of a carbon-intensive existence into a key step in the nation’s transition into renewable energy.

Home solar panels had already been chipping away at the United States’ centralized power system, forcing utilities to make electricity transfer a two-way street. More recently, home batteries have allowed households with solar arrays to become energy traders, recharging when electricity prices are low, replacing grid power when prices are high, and then sell electricity back to the grid for a profit during peak hours.

But batteries are expensive. Using EVs makes this kind of home setup cheaper and a real possibility for more Americans as the American EV boom accelerates nationwide.

So there may be a time, perhaps soon, when your car not only gets you from point A to point B, but also serves as the hub of your personal power plant.

I looked into new vehicles and hardware to answer the most common questions about how to power your home (and the grid) with your car.


Why power your home with an EV battery

America’s grid is not in good shape. Prices are up and reliability is down, and many state power grids face new challenges from rising EV adoption. Since 2000, the number of major outages has risen from less than two dozen to more than 180 per year, based on federal data, the Wall Street Journal reports. The average utility customer in 2020 endured about eight hours of power interruptions, double the previous decade.

Utilities’ relationship with their customers is set to get even rockier. Residential electricity prices, which have risen 21 percent since 2008, are predicted to keep climbing as utilities spend more than $1 trillion upgrading infrastructure, erecting transmission lines for renewable energy and protecting against extreme weather, even though grids can handle EV loads with proper management and planning.

U.S. homeowners, increasingly, are opting out. About 8 percent of them have installed solar panels. An increasing number are adding home batteries from companies such as LG, Tesla and Panasonic. These are essentially banks of battery cells, similar to those in your laptop, capable of storing energy and discharging electricity.

EnergySage, a renewable energy marketplace, says two-thirds of its customers now request battery quotes when soliciting bids for home solar panels, and about 15 percent install them. This setup allows homeowners to declare (at least partial) independence from the grid by storing and consuming solar power overnight, as well as supplying electricity during outages.

But it doesn’t come cheap. The average home consumes about 20 kilowatt-hours per day, a measure of energy over time. That works out to about $15,000 for enough batteries on your wall to ensure a full day of backup power (although the net cost is lower after incentives and other potential savings).

 

How an EV battery can power your home

Ford changed how customers saw their trucks when it rolled out a hybrid version of the F-150, says Ryan O’Gorman of Ford’s energy services program. The truck doubles as a generator sporting as many as 11 outlets spread around the vehicle, including a 240-volt outlet typically used for appliances like clothes dryers. During disasters like the 2021 ice storm that left millions of Texans without electricity, Ford dealers lent out their hybrid F-150s as home generators, showing how mobile energy storage can bring new flexibility during outages.

The Lightning, the fully electric version of the F-150, takes the next step by offering home backup power. Under each Lightning sits a massive 98 kWh to 131 kWh battery pack. That’s enough energy, Ford estimates, to power a home for three days (10 days if rationing). “The vehicle has an immense amount of power to move that much metal down the road at 80 mph,” says O’Gorman.

 

Related News

Related News

Should California accelerate its 100% carbon-free electricity mandate?

California 100% Clean Energy by 2030 proposes accelerating SB 100 with solar, wind, offshore wind, and battery storage to decarbonize the grid, enhance reliability, and reduce blackouts, leveraging transmission upgrades and long-duration storage solutions.

 

Key Points

Proposal to accelerate SB 100 to 2030, delivering a carbon-free grid via renewables, storage, and new transmission.

✅ Accelerates SB 100 to a 2030 carbon-free electricity target

✅ Scales solar, wind, offshore wind, and battery storage capacity

✅ Requires transmission build-out and demand response for reliability

 

Amid a spate of wildfires that have covered large portions of California with unhealthy air, an environmental group that frequently lobbies the Legislature in Sacramento is calling on the state to accelerate by 15 years California's commitment to derive 100 percent of its electricity from carbon-free sources.

But skeptics point to last month's pair of rolling blackouts and say moving up the mandate would be too risky.

"Once again, California is experiencing some of the worst that climate change has to offer, whether it's horrendous air quality, whether it's wildfires, whether it's scorching heat," said Dan Jacobson, state director of Environment California. "This should not be the new normal and we shouldn't allow this to become normal."

Signed by then-Gov. Jerry Brown in 2018, Senate Bill 100 commits California by 2045 to use only sources of energy that produce no greenhouse gas emissions to power the electric grid, a target that echoes Minnesota's 2050 carbon-free plan now under consideration.

Implemented through the state's Renewable Portfolio Standard, SB 100 mandates 60 percent of the state's power will come from renewable sources such as solar and wind within the next 10 years. By 2045, the remaining 40 percent can come from other zero-carbon sources, such as large hydroelectric dams, a strategy aligned with Canada's electricity decarbonization efforts toward climate pledges.

SB 100 also requires three state agencies _ the California Energy Commission, the California Public Utilities Commission and the California Air Resources Board _ to send a report to the Legislature reviewing various aspects of the legislation.

The topics include scenarios in which SB 100's requirements can be accelerated. Following an Energy Commission workshop earlier this month, Environment California sent a six-page note to all three agencies urging a 100 percent clean energy standard by 2030.

The group pointed to comments by Gov. Gavin Newsom after he toured the devastation in Butte County caused by the North Complex fire.

"Across the entire spectrum, our (state) goals are inadequate to the reality we are experiencing," Newsom said Sept. 11 at the Oroville State Recreation Area.

Newsom "wants to look at his climate policies and see what he can accelerate," Jacobson said. "And we want to encourage him to take a look at going to 100 percent by 2030."

Jacobson said Newsom cam change the policy by issuing an executive order but "it would probably take some legislative action" to codify it.

However, Assemblyman Jim Cooper, a Democrat from the Sacramento suburb of Elk Grove, is not on board.

"I think someday we're going to be there but we can't move to all renewable sources right now," Cooper said. "It doesn't work. We've got all these burned-out areas that depend upon electricity. How is that working out? They don't have it."

In mid-August, California experienced statewide rolling blackouts for the first time since 2001.

The California Independent System Operator _ which manages the electric grid for about 80 percent of the state _ ordered utilities to ratchet back power, fearing the grid did not have enough supply to match a surge in demand as people cranked up their air conditioners during a stubborn heat wave that lingered over the West.

The outages affected about 400,000 California homes and businesses for more than an hour on Aug. 14 and 200,000 customers for about 20 minutes on Aug. 15.

The grid operator, known as the CAISO for short, avoided two additional days of blackouts in August and two more in September thanks to household utility customers and large energy users scaling back demand.

CAISO Chief Executive Officer Steve Berberich said the outages were not due to renewable energy sources in California's power mix. "This was a matter of running out of capacity to serve load" across all hours, Berberich told the Los Angeles Times.

California has plenty of renewable resources _ especially solar power _ during the day. The challenge comes when solar production rapidly declines as the sun goes down, especially between 7 p.m. and 8 p.m. in what grid operators call the "net load peak."

The loss of those megawatts of generation has to be replaced by other sources. And in an electric grid, system operators have to balance supply and demand instantaneously, generating every kilowatt that is demanded by customers who expect their lighting/heating/air conditioning to come on the moment they flip a switch.

Two weeks after the rotating outages, the State Water Resources Control Board voted to extend the lives of four natural gas plants in the Los Angeles area. Natural gas accounts for the largest single source of California's power mix _ 34.23 percent. But natural gas is a fossil fuel, not a carbon-free resource.

Jacobson said moving the mandate to 2030 can be achieved by more rapid deployment of renewable sources across the state.

The Public Utilities Commission has already directed power companies to ramp up capacity for energy storage, such as lithium-ion batteries that can be used when solar production falls off.

Long-term storage is another option. That includes pumped hydro projects in which hydroelectric facilities pump water from one reservoir up to another and then release it. The ensuing rush of water generates electricity when the grid needs it.

Environment California also pointed to offshore wind projects along the coast of Central and Northern California that it estimates could generate as much as 3 gigawatts of power by 2030 and 10 gigawatts by 2040. Offshore wind supporters say its potential is much greater than land-based wind farms because ocean breezes are stronger and steadier.

Gary Ackerman, a utilities and energy consultant with more than four decades of experience in power issues affecting states in the West, said the 2045 mandate was "an unwise policy to begin with" and to accommodate a "swift transition (to 2030), you're going to put the entire grid and everybody in it at risk."

But Ackerman's larger concern is whether enough transmission lines can be constructed in California to bring the electricity where it needs to go.

"I believe Californians consider transmission lines in their backyard about the same way they think about low-income housing _ it's great to have, but not in my backyard," Ackerman said. "The state is not prepared to build the infrastructure that will allow this grandiose build-out."

Cooper said he worries about how much it will cost the average utility customer, especially low and middle-income households. The average retail price for electricity in California is 16.58 cents per kilowatt-hour, compared to 10.53 nationally, according to the U.S. Energy Information Administration.

"What's sad is, we've had 110-degree days and there are people up here in the Central Valley that never turned their air conditioners on because they can't afford that bill," Cooper said.

Jacobson said the utilities commission can intervene if costs get too high. He also pointed to a recent study from the Goldman School of Public Policy at UC Berkeley that predicted the U.S. can deliver 90 percent clean, carbon-free electric grid by 2035 that is reliable and at no extra cost in consumers' bills.

"Every time we wait and say, 'Oh, what about the cost? Is it going to be too expensive?' we're just making the cost unbearable for our kids and grandkids," Jacobson said. "They're the ones who are going to pay the billions of dollars for all the remediation that has to happen ... What's it going to cost if we do nothing, or don't go fast enough?"

The joint agency report on SB 100 from the Energy Commission, the Public Utilities Commission and the Air Resources Board is due at the beginning of next year.

 

Related News

View more

Shanghai Electric Signs Agreement to Launch PEM Hydrogen Production Technology R&D Center, Empowering Green Hydrogen Development in China

Shanghai Electric PEM Hydrogen R&D Center advances green hydrogen via PEM electrolysis, modular megawatt electrolyzers, zero carbon production, and full-chain industrial applications, accelerating decarbonization, clean energy integration, and hydrogen economy scale-up across China.

 

Key Points

A joint R&D hub advancing PEM electrolysis, modular megawatt systems, and green hydrogen industrialization.

✅ Megawatt modular PEM electrolyzer design and system integration

✅ Zero-carbon hydrogen targeting mobility, chemicals, and power

✅ Full-chain collaboration from R&D to EPC and demonstration projects

 

Shanghai Electric has reached an agreement with the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences (the "Dalian Institute") to inaugurate the Proton Exchange Membrane (PEM) Hydrogen Production Technology R&D Center on March 4. The two parties signed a project cooperation agreement on Megawatt Modular and High-Efficiency PEM Hydrogen Production Equipment and System Development, marking an important step forward for Shanghai Electric in the field of hydrogen energy.

As one of China's largest energy equipment manufacturers, Shanghai Electric is at the forefront in the development of green hydrogen as part of China's clean energy drive. During this year's Two Sessions, the 14th Five-Year Plan was actively discussed, in which green hydrogen features prominently, and Shell's 2060 electricity forecast underscores the scale of electrification. With strong government support and widespread industry interest, 2021 is emerging as Year Zero for the hydrogen energy industry.

Currently, Shanghai Electric and the Dalian Institute have reached a preliminary agreement on the industrial development path for new energy power generation and electrolyzed water hydrogen production. As part of the cooperation, both will also continue to enhance the transformational potential of PEM electrolyzed water hydrogen production, accelerate the development of competitive PEM electrolyzed hydrogen products, and promote industrial applications and scenarios, drawing on projects like Japan's large H2 energy system to inform deployment. Moreover, they will continue to carry out in-depth cooperation across the entire hydrogen energy industry chain to accelerate overall industrialization.

Hydrogen energy boasts the biggest potential of all the current forms of clean energy, and the key to its development lies in its production. At present, hydrogen production primarily stems from fossil fuels, industrial by-product hydrogen recovery and purification, and production by water electrolysis. These processes result in significant carbon emissions. The rapid development of PEM water electrolysis equipment worldwide in recent years has enabled current technologies to achieve zero carbon emissions, effectively realizing green, clean hydrogen. This breakthrough will be instrumental in helping China achieve its carbon peak and carbon-neutrality goals.

The market potential for hydrogen production from electrolyzed water is therefore massive. Forecasts indicate that, by 2050, hydrogen energy will account for approximately 10% of China's energy market, with demand reaching 60 million tons and annual output value exceeding RMB 10 trillion. The Hydrogen: Tracking Energy Integration report released by the International Energy Agency in June 2020 notes that the number of global electrolysis hydrogen production projects and installed capacity have both increased significantly, with output skyrocketing from 1 MW in 2010 to more than 25 MW in 2019. Much of the excitement comes from hydrogen's potential to join the ranks of natural gas as an energy resource that plays a pivotal role in international trade, as seen in Germany's call for hydrogen-ready power plants shaping future power systems, with the possibility of even replacing it one day. In PwC's 2020 The Dawn of Green Hydrogen report, the advisory predicts that experimental hydrogen will reach 530 million tons by mid-century.

Shanghai Electric set its focus on hydrogen energy years ago, given its major potential for growth as one of the new energy technologies of the future and, in particular, its ability to power new energy vehicles. In 2016, the Central Research Institute of Shanghai Electric began to invest in R&D for key fuel cell systems and stack technologies. In 2020, Shanghai Electric's independently-developed fuel cell engine, which boasts a power capacity of 66 kW and can start in cold temperature environments of as low as -30°C, passed the inspection test of the National Motor Vehicle Product Quality Inspection Center. It adopts Shanghai Electric's proprietary hydrogen circulation system, which delivers strong power and impressive endurance, with the potential to replace gasoline and diesel engines in commercial vehicles.

As the technology matures, hydrogen has entered a stage of accelerated industrialization, with international moves such as Egypt's hydrogen MoU with Eni signaling broader momentum. Shanghai Electric is leveraging the opportunities to propel its development and the green energy transformation. As part of these efforts, Shanghai Electric established a Hydrogen Energy Division in 2020 to further accelerate the development and bring about a new era of green, clean energy.

As one of the largest energy equipment manufacturing companies in China, Shanghai Electric, with its capability for project development, marketing, investment and financing and engineering, procurement and construction (EPC), continues to accelerate the development and innovation of new energy. The Company has a synergistic foundation and resource advantages across the industrial chain from upstream power generation, including China's nuclear energy development efforts, to downstream chemical metallurgy. The combined elements will accelerate the pace of Shanghai Electric's entry into the field of hydrogen production.

Currently, Shanghai Electric has deployed a number of leading green hydrogen integrated energy industry demonstration projects in Ningdong Base, one of China's four modern coal chemical industry demonstration zones. Among them, the Ningdong Energy Base "source-grid-load-storage-hydrogen" project integrates renewable energy generation, energy storage, hydrogen production from electrolysis, and the entire industrial chain of green chemical/metallurgy, where applications like green steel production in Germany illustrate heavy-industry decarbonization.

In December 2020, Shanghai Electric inked a cooperation agreement to develop a "source-grid-load-storage-hydrogen" energy project in Otog Front Banner, Inner Mongolia. Equipped with large-scale electrochemical energy storage and technologies such as compressed air energy storage options, the project will build a massive new energy power generation base and help the region to achieve efficient cold, heat, electricity, steam and hydrogen energy supply.

 

Related News

View more

Factory Set to Elevate the United States in the Clean Energy Race

Maxeon IBC Solar Factory USA will scale clean energy with high-efficiency interdigitated back contact panels, DOE-backed manufacturing in Albuquerque, utility-scale supply, domestic production, 3 GW capacity, reduced imports, carbon-free electricity leadership.

 

Key Points

DOE-backed Albuquerque plant making high-efficiency IBC panels, 3 GW yearly, for utility-scale, domestic solar supply.

✅ 3 GW annual capacity; up to 8 million panels produced

✅ IBC cell efficiency up to 24.7% for utility-scale projects

✅ Reduces U.S. reliance on imported panels via domestic manufacturing

 

Solar energy stands as a formidable source of carbon-free electricity, with the No. 3 renewable source in the U.S. offering a clean alternative to traditional power generation methods reliant on polluting fuels. Advancements in solar technology continue to emerge, with a U.S.-based company poised to spearhead progress from a cutting-edge factory in New Mexico.

Maxeon, initially hailing from Silicon Valley in the 1980s, recently ventured into independence after separating from its parent company, SunPower, in 2020. Over the past few years, Maxeon has been manufacturing solar panels in Mexico, Malaysia, and the Philippines, as record U.S. panel shipments underscored rising demand.

Now, with backing from the U.S. Department of Energy's Loans Programs Office, Maxeon is preparing to commence construction on a new facility in Albuquerque in 2024, amid unprecedented growth in solar and storage nationwide. This state-of-the-art factory aims to produce up to 8 million panels annually, featuring the company's interdigitated back contact (IBC) technology, which has the capacity to generate three gigawatts of power each year. Notably, the entire U.S. solar industry completed five gigawatts of panels in 2022, making Maxeon's endeavor particularly ambitious and aligned with Biden's proposed tenfold increase in solar power goals.

Maxeon's presence in the United States holds the potential to reduce the country's reliance on imported panels, particularly from China. The primary focus will be on providing this advanced technology for utility departments, where pairing with increasingly affordable batteries can enhance grid reliability while shifting away from residential and commercial rooftops.

Maxeon has achieved a remarkable milestone in solar efficiency, with its latest IBC technology boasting an efficiency rating of 24.7%, as reported by PV Magazine.

This strategic move to the United States could be a game-changer, not only for Maxeon's success but also for clean power generation in a nation that has traditionally depended on external sources for its supply of solar panels, as energy-hungry Europe turns to U.S. solar equipment makers for solutions. Matt Dawson, Maxeon's Chief Technology Officer, emphasized the importance of achieving the lowest levelized cost of electricity with the lowest overall capital, a feat that China has accomplished in recent years due to the strength of its supply chain. As energy independence becomes a global concern, solar manufacturing is poised to expand beyond China, with Southeast Asia already showing signs of growth, and now the United States and possibly Europe, including Germany's solar boost during the energy crisis, following suit.

 

Related News

View more

China's electric carmakers make their move on Europe

Chinese EV Makers in Europe target the EU market with electric SUVs, battery swapping, competitive pricing, and subsidies, led by NIO, Xpeng, MG, and BYD, starting in Norway amid Europe's zero-emissions push.

 

Key Points

Chinese EV makers expanding into EU markets with tech, pricing, and lean retail to gain share.

✅ Early launches in Norway leverage EV incentives

✅ Compete via battery swapping, OTA tech, and price

✅ Mix of importers, online sales, and lean dealerships

 

China's electric carmakers are darting into Europe, hoping to catch traditional auto giants cold and seize a slice of a market supercharged by the continent's EV transition towards zero emissions.

Nio Inc (NIO.N), among a small group of challengers, launches its ES8 electric SUV in Oslo on Thursday - the first foray outside China for a company that is virtually unheard of in Europe even though it's valued at about $57 billion.

Other brands unfamiliar to many Europeans that have started selling or plan to sell cars on the continent include Aiways, BYD's (002594.SZ) Tang, SAIC's (600104.SS) MG, Dongfeng's VOYAH, and Great Wall's (601633.SS) ORA.

Yet Europe, a crowded, competitive car market dominated by famous brands, has proved elusive for Chinese carmakers in the past. They made strategic slips and also contended with a perception that China, long associated with cheap mass-production, could not compete on quality.

Indeed, Nio Chief Executive William Li told Reuters he foresees a long road to success in a mature market where it is "very difficult to be successful".

Chinese carmakers may need up to a decade to "gain a firm foothold" in Europe, the billionaire entrepreneur said - a forecast echoed by He Xiaopeng, CEO of electric vehicle (EV) maker Xpeng (9868.HK) who told Reuters his company needs 10 years "to lay a good foundation" on the continent.

These new players, many of which have only ever made electric vehicles, believe they have a window of opportunity to finally crack the lucrative market.

While electric car sales in the European Union more than doubled last year and jumped 130% in the first half of this year, even as threats to the EV boom persist, traditional manufacturers are still gradually shifting their large vehicle ranges over to electric and have yet to flood the thirsty market with models.

"The market is not that busy yet, if you compare it with combustion-engine models where each of the major carmakers has a whole range of vehicles," said Alexander Klose, who heads the foreign operations of Chinese electric vehicle maker Aiways.

"That is where we think we have an opportunity," he added on a drive around Munich in a U5, a crossover SUV on sale in Germany, the Netherlands, Belgium and France, where new EV rules are aimed at discouraging purchases of Chinese models.

The U5 starts at 30,000 euros ($35,000) in Germany - below the average new car price and most local EV prices - before factoring in 9,000 euros in EV subsidies, though France's EV incentives have tightened for Chinese models - and comes in just four colours and two trim levels to minimize costs.

'GERMAN PEOPLE BUY GERMAN CARS'
As Chinese carmakers gear up to enter Europe, they are trying out different business models, from relying on importers, low-cost retail options or building up more traditional dealerships.

The new reality that top Western carmakers like BMW (BMWG.DE) and Tesla Inc (TSLA.O) now produce cars in technological powerhouse China, where the EV market is intensely competitive, has likely undermined past perceptions of low quality workmanship - though they can be hard to shake.

Antje Levers, a teacher who lives in western Germany near the Dutch border, and her husband owned a diesel Chevrolet Orlando but wanted a greener option. They bought an Aiways U5 last year after plenty of research to fend off criticism for not buying local, and loves its handling and low running costs.

She said people had told her: "You can't buy a Chinese car, they're plastic and cheap and do not support German jobs." But she feels that is no longer true in a global car industry where you find German auto parts in Chinese cars and vice versa.

"German people buy German cars, so to buy a Chinese car you need to have a little courage," the 47-year-old added. "Sometimes you just have to be open for new things."

NIO LANDS IN NORWAY WITH NOMI
Nio launches its ES8 electric SUV alongside a NIO House - part-showroom, part-cafe and workspace for customers in the capital of Norway, a country that's also the initial base for Xpeng.

Norwegian state support for EVs has put the country at the forefront of the shift to electric. It makes sense as a European entry point because customers are used to electric vehicles so only have to be sold on an unknown Chinese brand, said Christina Bu, secretary general of the Norwegian EV Association.

"If you go to another European country you may struggle to sell both," said Bu, adding that her organisation has talked extensively with a number of Chinese EV makers keen to learn market specifics and consumer culture before launching there.

She is uncertain, though, how consumers will react to Nio's approach of swapping out batteries for customers rather than stopping to charge them, a contrast to other EV battery strategies in the industry, or the carmaker's strategy of leasing rather than selling batteries to customers.

"But where the Chinese are really at the forefront is the technology," she added, referring in particular to Nomi, the digital assistant in the dashboard of Nio's cars.

NEWCOMERS' STRATEGIES DIVERGE
One size does not fit all. While Nio and Xpeng have been hiring staff building up their organizations in Norway, SAIC's MG works through a car importer to sell cars in a handful of European markets.

Aiways is trying an lower-cost approach to selling cars in Europe, though Klose says it varies by market.

In Germany, for instance, the company sells its cars through Euronics, an association of independent electronics retailers, rather than building traditional dealerships.

It aims to sell across the EU by next year and to enter the U.S. market by 2023, said Klose, a former Volvo and Ford executive.

Past failed attempts by Chinese carmakers to conquer Europe are unlikely to hurt Chinese EV makers today, as consumers have grown accustomed to electronics coming from China, he added.

Such failures included Brilliance in 2007, whose vehicle received one out of five stars in a German car crash test, damaging the brand.

"The fact there are more Chinese carmakers entering the market will also help us, as it will make Chinese brands more accepted by consumers," Klose said.

Selling cars to Europeans is a "tough business, especially if your product isn't well known," said Arnie Richters, chairman of Brussels-based industry group Platform for Electromobility.

"But if they bring a lot of innovation they have a lot of opportunity."

 

Related News

View more

Electricity or hydrogen - What is the future of vehicles?

Hydrogen vs Battery-Electric Vehicles compare FCEV and BEV tech for range, charging and refueling, zero-emissions, infrastructure in Canada, highlighting urban commuting, heavy-duty use, fast 5-minute fills, 30-minute fast charging, and renewable hydrogen from surplus wind.

 

Key Points

Hydrogen FCEVs suit long range and heavy-duty use; BEVs excel in urban commutes with overnight charging.

✅ FCEVs refuel in about 5 minutes; ideal for long range and heavy duty.

✅ BEVs fit urban commuting with home or night charging; fewer stops.

✅ Hydrogen enables energy storage from surplus wind and hydro power.

 

We’re constantly hearing that battery-electric cars are the future, as automakers pursue Canada-U.S. collaboration on EVs across the industry, so I was surprised to see that companies like Toyota, Honda and Hyundai are making hydrogen fuel-cell cars. Which technology is better? Could hydrogen still win? – Pete, Kingston

They’re both in their electric youth, relatively speaking, but the ultimate winner in the race between hydrogen and battery electric will likely be both.

“It’s not really a competition – they’ll both co-exist and there will also be plug-in hydrogen hybrids,” said Walter Merida, director of the Clean Energy Research Centre at the University of British Columbia. “Battery-electric vehicles [BEVs] are better for an urban environment where you have time to recharge and fuel-cell electric vehicles [FCEVs] are better-suited for long range and heavy duty.”

Last year, there were 9,840 BEVs sold in Canada, up from 5,130 the year before. If you include plug-in hybrids, the number sold in 2017 grows to 18,560, though many buyers now face EV shortages and wait times amid high gasoline prices.

And how many hydrogen vehicles were sold in Canada last year?

#google#

None – although Hyundai leased out about a half-dozen hydrogen Tucsons in British Columbia for $599 a month, which included fuel from Powertech labs in Surrey.

In January, Toyota announced it will be selling the Mirai in Quebec later this year. And Hyundai said it will offer about 25 Nexos for sale.

“It’s chicken or egg,” said Michael Fowler, a professor of chemical engineering at the University of Waterloo. “Car manufacturers won’t release cars into the market unless there’s a refuelling station and companies won’t build a refuelling station unless there are cars to fuel.”

Right now, there are no retail hydrogen refuelling stations in Canada. While there are plans under way to add stations in B.C., Ontario and Quebec, we’re still behind Japan, Europe and California, though experts outline how Canada can capitalize on the U.S. EV pivot to accelerate progress.

“In 2007, Ontario had a hydrogen strategy and they were starting to develop hydrogen vehicles and they dropped that in favour of the Green Energy Act and it was a complete disaster,” Fowler said. “The reality is the government of the day listened to the wrong people.”

It’s tough to pinpoint a single reason why governments focused on building charging stations instead of hydrogen stations, Merida said.

“It’s ironic, you know – the fuel cell was invented in Vancouver. Geoffrey Ballard was one of the pioneers of this technology,” Merida said. “And for a while, Canada was a global leader, but eventually government programs were discontinued and that was very disruptive to the sector.”

 

HYDROGEN FOR THE MASSES?

While we tend to think of BEVs when we think of electric cars, fuel-cell vehicles are electric, too; the hydrogen passes through a fuel cell stack, where it mixes with oxygen from the atmosphere to produce an electric current.

That current powers electric motors to drive the wheels and extra energy goes to a battery pack that’s used to boost acceleration (it’s also charged by regenerative braking).

Except for water that drips out of the hydrogen car, they’re both zero-emission on the road.

But a big advantage for hydrogen is that, if you can find a station, you can pull up to a pump and fill up in five minutes or less – the same way we do now at nearly 12,000 gas stations.

Compare that with fast-charging stations that can charge a battery to 80 per cent in 30 minutes – each station only handles one car at a time. What if you get there and it’s busy – or broken? And right now, there are only 139 of them in Canada.

And at slower, Level 2 stations, cars have to be plugged in for hours to recharge.

In a 2018 KPMG survey of auto executives, 55 per cent said that moves to switch entirely to pure battery-electric vehicles will fail because there won’t be enough charging stations, and some critics argue the 2035 EV mandate is delusional given infrastructure constraints.

“Ontario just invested $20-million in public charging stations and that’s going to service 100 or 200 cars a day,” Fowler said. “If you were to invest that in hydrogen stations, you’d be able to service thousands of cars a day.”

And when you do charge at a station, you might not be using clean power, as 18% of Canada’s 2019 electricity came from fossil fuels according to national data, Fowler said.

“At least in Ontario, in order to charge at a public station during the day, you have to rev up a natural-gas plant somewhere,” Fowler said. “So the only way you’re getting zero emissions is when you can charge at night using excess nuclear, hydro or wind that’s not being used.”

But hydrogen can be made when surplus green energy is stored, Fowler said.

“In Ontario, we have lots of wind in the spring and the fall, when we don’t need the electricity,” he said.

And eventually, you’ll be able to connect your fuel-cell vehicle to the grid and sell the power it produces, Merida said.

“The amount of power generation you have in these moving platforms is quite significant,” Merida said.

There are other strikes against battery-electric, including reduced range by 30 per cent or more in the winter and the need to upgrade infrastructure such as electrical transformers so they can handle more than just a handful of cars on each street charging at night, Fowler said.

In that KPMG survey, executives predicted a nearly equal split between BEVs, FCEVs, hybrids and gasoline engines by 2040.

“Battery-electric vehicles will serve a certain niche – they’ll be small commuter vehicles in certain cities,” Fowler said. “But for the way we use cars today – the family car, the suburban car, buses and probably trucks – it will be the fuel cell.”

 

Related News

View more

Canada's largest electricity battery storage project coming to southwestern Ontario

Oneida Energy Storage Project, a 250 MW lithium-ion battery in Haldimand County, enhances Ontario's clean energy capacity, grid reliability, and peak demand management, developed with Six Nations partners and private-public collaboration.

 

Key Points

A 250 MW lithium-ion battery in Ontario storing power to stabilize the grid and deliver clean electricity.

✅ 250 MW lithium-ion grid-scale battery in Haldimand County

✅ Developed with Six Nations, Northland Power, NRStor, Aecon

✅ Enhances grid reliability, peak shaving, emissions reduction

 

The Ontario government announced it is working to build Canada's largest electricity battery storage project in Haldimand County, part of Ontario's push into energy storage amid a looming supply crunch. Ontario Premier Doug Ford and Deputy Prime Minister Chrystia Freeland made the announcement in Ohsweken, Ont.

The 250-megawatt Oneida Energy storage project is being developed in partnership with the Six Nations of the Grand River Development Corporation, Northland Power, NRStor and Aecon Group.

The Ontario government announced on Friday it is working to build Canada's largest electricity battery storage project in Haldimand County.

On Friday, Ontario Premier Doug Ford and Deputy Prime Minister Chrystia Freeland made the announcement in Ohsweken, Ont.

The 250-megawatt Oneida Energy storage project is being developed in partnership with the Six Nations of the Grand River Development Corporation, Northland Power, NRStor and Aecon Group.

“It will more than double the province's energy storage resources and provide enough electricity to power a city approximately the size of Oshawa,” said Ford, noting Ontario's growing battery storage expansion across the grid.

“We need to continue to find ways to keep our energy clean and green,” said Ford, including initiatives like the Hydrogen Innovation Fund to spur innovation.

The federal government said they are providing a further $50 million in funding, coinciding with national investments such as the B.C. battery plant to scale capacity.

The premier said the project will begin operating in 2025 and will more than double the amount of clean energy storage.

Officials with the Six Nations said they have invested in the project that will provide economic returns and 97 per cent of the construction workforce to build it.

"This project is an example of what is possible when private and public companies, multiple levels of government, and their agencies work alongside a progressive Indigenous partner in pursuit of innovative solutions,” said Matt Jamieson, President and CEO of Six nations of the Grand River Development Corporation. “As with all our development efforts, we have studied the project to ensure it aligns with our community values, we are confident the outcome will create ratepayer savings, and move us closer to a Net Zero future for our coming generations."

According to the province, it has directed the independent electricity system operator to enter into a 20-year contract for this project with a goal to grow the province's clean energy supply, alongside transmission efforts like the Lake Erie Connector to enhance reliability.

The province said the Oneida Energy storage project is expected to reduce emissions by between 2.2 to 4.1 million tonnes, the equivalent to taking up to 40,000 cars off the road.

The project will use large scale lithium batteries, with regional supply bolstered by the Niagara battery plant, to store surplus energy from the power grid then feed it back into the system when it’s needed.

“Power that is generated and it can’t be utilized, this system will help harness that, store it for a period of time, and it will maximize value for the rate payer,” said Jamieson.

Jamieson said he is proud that the Six Nations is a founding developer in the project.

The facility will not actually be in Six Nations. It will be near the community of Jarvis in Haldimand County.
For Six Nationals elected Chief Mark Hill, it’s a major win as Ontario's EV sector grows with the Oakville EV deal and related projects.

“We want to continue to be a driver. We want to show Canada that we can also be a part of green solution,” Hill said.

But Hill admitted the Six Nations Community remains deeply divided over a number of longstanding issues.

“We still have a lot of internal affairs within our own community that we have to deal with. I think it’s really time once and for all to come together and figure this out,” said Hill.

The traditional leadership said they were left out of the decision making.

“No voice of ours was even heard today in that building,” said Deyohowe:to, the chief of the Cayuga Snipe Clan.

According to the Cayuga Snipe Clan, consultation with the Haudenasauene council is required for this type of development but they said it didn't happen.

“We’ve never heard of this before. No one came to the community and said this was going to happen and for the community we are not going to let that happen,” said Deyohowe:to.

The Six Nations Development Corporation said it did reach out to the Haudenosaunee chiefs and sent multiple letters in 2021 inviting them to participate.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.