Electric vehicles can now power your home for three days


ev

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Vehicle-to-Home (V2H) Power enables EVs to act as backup generators and home batteries, using bidirectional charging, inverters, and rooftop solar to cut energy costs, stabilize the grid, and provide resilient, outage-proof electricity.

 

Key Points

Vehicle-to-Home (V2H) Power lets EV batteries run household circuits via bidirectional charging and an inverter.

✅ Cuts energy bills using solar, time-of-use rates, and storage

✅ Provides resilient backup during outages, storms, and blackouts

✅ Enables grid services via V2G/V2H with smart chargers

 

When the power went out at Nate Graham’s New Mexico home last year, his family huddled around a fireplace in the cold and dark. Even the gas furnace was out, with no electricity for the fan. After failing to coax enough heat from the wood-burning fireplace, Graham’s wife and two children decamped for the comfort of a relative’s house until electricity returned two days later.

The next time the power failed, Graham was prepared. He had a power strip and a $150 inverter, a device that converts direct current from batteries into the alternating current needed to run appliances, hooked up to his new Chevy Bolt, an electric vehicle. The Bolt’s battery powered his refrigerator, lights and other crucial devices with ease. As the rest of his neighborhood outside Albuquerque languished in darkness, Graham’s family life continued virtually unchanged. “It was a complete game changer making power outages a nonissue,” says Graham, 35, a manager at a software company. “It lasted a day-and-a-half, but it could have gone much longer.”

Today, Graham primarily powers his home appliances with rooftop solar panels and, when the power goes out, his Chevy Bolt. He has cut his monthly energy bill from about $220 to $8 per month. “I’m not a rich person, but it was relatively easy,” says Graham “You wind up in a magical position with no [natural] gas, no oil and no gasoline bill.”

Graham is a preview of what some automakers are now promising anyone with an EV: An enormous home battery on wheels that can reverse the flow of electricity to power the entire home through the main electric panel.

Beyond serving as an emissions-free backup generator, the EV has the potential of revolutionizing the car’s role in American society, with California grid programs piloting vehicle-to-grid uses, transforming it from an enabler of a carbon-intensive existence into a key step in the nation’s transition into renewable energy.

Home solar panels had already been chipping away at the United States’ centralized power system, forcing utilities to make electricity transfer a two-way street. More recently, home batteries have allowed households with solar arrays to become energy traders, recharging when electricity prices are low, replacing grid power when prices are high, and then sell electricity back to the grid for a profit during peak hours.

But batteries are expensive. Using EVs makes this kind of home setup cheaper and a real possibility for more Americans as the American EV boom accelerates nationwide.

So there may be a time, perhaps soon, when your car not only gets you from point A to point B, but also serves as the hub of your personal power plant.

I looked into new vehicles and hardware to answer the most common questions about how to power your home (and the grid) with your car.


Why power your home with an EV battery

America’s grid is not in good shape. Prices are up and reliability is down, and many state power grids face new challenges from rising EV adoption. Since 2000, the number of major outages has risen from less than two dozen to more than 180 per year, based on federal data, the Wall Street Journal reports. The average utility customer in 2020 endured about eight hours of power interruptions, double the previous decade.

Utilities’ relationship with their customers is set to get even rockier. Residential electricity prices, which have risen 21 percent since 2008, are predicted to keep climbing as utilities spend more than $1 trillion upgrading infrastructure, erecting transmission lines for renewable energy and protecting against extreme weather, even though grids can handle EV loads with proper management and planning.

U.S. homeowners, increasingly, are opting out. About 8 percent of them have installed solar panels. An increasing number are adding home batteries from companies such as LG, Tesla and Panasonic. These are essentially banks of battery cells, similar to those in your laptop, capable of storing energy and discharging electricity.

EnergySage, a renewable energy marketplace, says two-thirds of its customers now request battery quotes when soliciting bids for home solar panels, and about 15 percent install them. This setup allows homeowners to declare (at least partial) independence from the grid by storing and consuming solar power overnight, as well as supplying electricity during outages.

But it doesn’t come cheap. The average home consumes about 20 kilowatt-hours per day, a measure of energy over time. That works out to about $15,000 for enough batteries on your wall to ensure a full day of backup power (although the net cost is lower after incentives and other potential savings).

 

How an EV battery can power your home

Ford changed how customers saw their trucks when it rolled out a hybrid version of the F-150, says Ryan O’Gorman of Ford’s energy services program. The truck doubles as a generator sporting as many as 11 outlets spread around the vehicle, including a 240-volt outlet typically used for appliances like clothes dryers. During disasters like the 2021 ice storm that left millions of Texans without electricity, Ford dealers lent out their hybrid F-150s as home generators, showing how mobile energy storage can bring new flexibility during outages.

The Lightning, the fully electric version of the F-150, takes the next step by offering home backup power. Under each Lightning sits a massive 98 kWh to 131 kWh battery pack. That’s enough energy, Ford estimates, to power a home for three days (10 days if rationing). “The vehicle has an immense amount of power to move that much metal down the road at 80 mph,” says O’Gorman.

 

Related News

Related News

Winds of Change: Vineyard Wind Ushers in a New Era for Clean Energy

Vineyard Wind Offshore Wind Farm delivers clean power to Massachusetts near Martha's Vineyard, with 62 turbines and 800 MW capacity, advancing renewable energy, cutting carbon, lowering costs, and driving net-zero emissions and green jobs.

 

Key Points

An 800 MW Massachusetts offshore project of 62 turbines supplying clean power to 400,000+ homes and cutting emissions.

✅ 800 MW powering 400,000+ MA homes and businesses

✅ 62 turbines, 13 MW each, 15 miles from Martha's Vineyard

✅ Cuts 1.6M tons CO2 annually; boosts jobs and port infrastructure

 

The crisp Atlantic air off the coast of Martha's Vineyard carried a new melody on February 2nd, 2024. Five colossal turbines, each taller than the Statue of Liberty, began their graceful rotations, marking the historic moment power began flowing from Vineyard Wind, the first large-scale offshore wind farm in the United States, enabled by Interior Department approval earlier in the project timeline. This momentous occasion signifies a seismic shift in Massachusetts' energy landscape, one that promises cleaner air, lower energy costs, and a more sustainable future for generations to come.

Nestled 15 miles southeast of Martha's Vineyard and Nantucket, Vineyard Wind is a colossal undertaking. The project, a joint venture between Avangrid Renewables and Copenhagen Infrastructure Partners, will ultimately encompass 62 turbines, each capable of generating a staggering 13 megawatts. Upon full completion later this year, Vineyard Wind will power over 400,000 homes and businesses across Massachusetts, contributing a remarkable 800 megawatts to the state's energy grid.

But the impact of Vineyard Wind extends far beyond mere numbers. This trailblazing project holds immense environmental significance. By harnessing the clean and inexhaustible power of the wind, Vineyard Wind is projected to annually reduce carbon emissions by a staggering 1.6 million metric tons – equivalent to taking 325,000 cars off the road. This translates to cleaner air, improved public health, and a crucial step towards mitigating the climate crisis.

Governor Maura Healey hailed the project as a "turning point" in Massachusetts' clean energy journey. "Across the Commonwealth, homes and businesses will now be powered by clean, affordable energy, contributing to cleaner air, lower energy costs, and pushing us closer to achieving net-zero emissions," she declared.

Vineyard Wind's impact isn't limited to the environment; it's also creating a wave of economic opportunity. Since its inception in 2017, the project has generated nearly 2,000 jobs, with close to 1,000 positions filled by union workers thanks to a dedicated Project Labor Agreement. Construction has also breathed new life into the New Bedford Marine Commerce Terminal, with South Coast construction activity accelerating around the port, transforming it into the nation's first port facility specifically designed for offshore wind, showcasing the project's commitment to local infrastructure development.

"Every milestone on Vineyard Wind 1 is special, but powering up these first turbines stands apart," emphasized Pedro Azagra, CEO of Avangrid Renewables. "This accomplishment reflects the years of dedication and collaboration that have defined this pioneering project. Each blade rotation and megawatt flowing to Massachusetts homes is a testament to the collective effort that brought offshore wind power to the United States."

Vineyard Wind isn't just a project; it's a catalyst for change. It perfectly aligns with Massachusetts' ambitious clean energy goals, which include achieving net-zero emissions by 2050 and procuring 3,200 megawatts of offshore wind by 2028, while BOEM lease requests in the Northeast continue to expand the development pipeline across the region. As Energy and Environmental Affairs Secretary Rebecca Tepper stated, "Standing up a new industry is no easy feat, but we're committed to forging ahead and growing this sector to lower energy costs, create good jobs, and build a cleaner, healthier Commonwealth."

The launch of Vineyard Wind transcends Massachusetts, serving as a beacon for the entire U.S. offshore wind industry, as New York's biggest offshore wind farm moves forward to amplify regional momentum. This demonstration of large-scale development paves the way for further investment and growth in this critical clean energy source. However, the journey isn't without its challenges, and questions persist about reaching 1 GW on the grid nationwide as stakeholders navigate timelines. Concerns regarding potential impacts on marine life and visual aesthetics remain, requiring careful consideration and ongoing community engagement.

Despite these challenges, Vineyard Wind stands as a powerful symbol of hope and progress. It represents a significant step towards a cleaner, more sustainable future, powered by renewable energy sources at a time when U.S. offshore wind is about to soar according to industry outlooks. It's a testament to the collaborative effort of policymakers, businesses, and communities working together to tackle the climate crisis. As the turbines continue their majestic rotations, they carry a message of hope, reminding us that a brighter, more sustainable future is within reach, powered by the wind of change.

Additional Considerations:

  • The project boasts a dedicated Fisheries Innovation Fund, fostering collaboration between the fishing and offshore wind industries to ensure sustainable coexistence.
  • Vineyard Wind has invested in education and training programs, preparing local residents for careers in the burgeoning wind energy sector.
  • The project's success opens doors for further offshore wind development in the U.S., such as Long Island proposals gaining attention, paving the way for a clean energy revolution.

 

Related News

View more

Prairie Provinces to lead Canada in renewable energy growth

Canada Renewable Power sees Prairie Provinces surge as Canada Energy Regulator projects rising wind, solar, and hydro capacity in Alberta, Saskatchewan, and Manitoba, replacing coal, expanding the grid, and lowering emissions through 2023.

 

Key Points

A CER outlook on Canada's grid: Prairie wind, solar, and hydro growth replacing coal and cutting emissions by 2023.

✅ Prairie wind, solar capacity surge by 2023

✅ Alberta, Saskatchewan shift from coal to renewables, gas

✅ Manitoba strengthens hydro leadership, low-carbon grid

 

Canada's Prairie Provinces will lead the country's growth in renewable energy capacity over the next three years, says a new report by the Canada Energy Regulator (CER).

The online report, titled Canada's Renewable Power, says decreased reliance on coal and substantial increases in wind and solar capacity will increase the amount of renewable energy added to the grid in Alberta and Saskatchewan. Meanwhile, Manitoba will strengthen its position as a prominent hydro producer in Canada. The pace of overall renewable energy growth is expected to slow at the national level between 2021 and 2023, in part due to lagging solar demand in some markets, but with strong growth in provinces with a large reliance on fossil fuel generation.

The report explores electricity generation in Canada and provides a short-term outlook for renewable electricity capacity in each province and territory to 2023. It also features a series of interactive visuals that allow for comparison between regions and highlights the diversity of electricity sources across Canada.

Electricity generation from renewable sources is expected to continue increasing as demand for electricity grows and the country continues its transition to a lower-carbon economy. Canada will see gradual declines in overall carbon emissions from electricity generation largely due to Saskatchewan, Alberta, Nova Scotia and New Brunswick replacing coal with renewables and natural gas. The pace of growth beyond 2023 in renewable power will depend on technological developments; consumer preferences; and government policies and programs.

Canada is a world leader in renewable power, generating almost two-thirds of its electricity from renewables with hydro as the dominant source, and the country ranks in the top 10 for hydropower jobs worldwide. Canada also has one of the world's lowest carbon intensities for electricity.

The CER produces neutral and fact-based energy analysis to inform the energy conversation in Canada. This report is part of a portfolio of publications on energy supply, demand and infrastructure that the CER publishes regularly as part of its ongoing market monitoring.

Report highlights

  • Wind capacity in Saskatchewan is projected to triple and nearly double in Alberta between 2020 and 2023 as wind power becomes more competitive in the market. Significant solar capacity growth is also projected, with Alberta adding 1,200 MW by 2023, as Canada approaches a 5 GW solar milestone by that time.
  • In Alberta, the share of renewables in the capacity mix is expected to increase from 16% in 2017 to 26% by 2023, with a renewable energy surge supporting thousands of jobs. Similarly, Saskatchewan's renewable share of capacity is expected to increase from 25% in 2018 to 33% in 2023.
  • Renewable capacity growth slows most notably in Ontario, where policy changes have scaled back growth projections. Between 2010 and 2017, renewable capacity grew 6.8% per year. Between 2018 and 2023, growth in Ontario slows to 0.4% per year as capacity grows by 466 MW over this period.
  • New large-scale hydro, wind, and solar projects will push the share of renewables in Canada's electricity mix from 67% of installed capacity in 2017 to 71% in 2023.
  • Hydro is the dominant source of electricity in Canada accounting for 55% of total installed capacity and 59% of generation, though Alberta's limited hydro stands as a notable exception, with B.C., Manitoba, Quebec, Newfoundland and Labrador, and Yukon deriving more than 90% of their power from hydro.
  • The jurisdictions with the highest percentage of non-hydro renewable electricity generation are PEI (100%), Nova Scotia (15.8%), and Ontario (10.5%).
  • In 2010, 62.8% of Canada's total electricity generation (364 681 GW‧h) was from renewable sources. By 2018, 66.2% (425 722 GW‧h) was from renewable sources and projected to be 71.0% by 2023.

 

Related News

View more

0 to 180 km in 10 minutes: B.C. Hydro rolls out faster electric vehicle charging

B.C. Hydro fast EV charging stations roll out 180 kW DC fast chargers, power sharing, and rural network expansion in Surrey, Manning Park, Mackenzie, and Tumbler Ridge to ease range anxiety across northern B.C.

 

Key Points

180 kW DC chargers with power sharing, expanding B.C.'s rural EV network to cut range anxiety and speed up recharging.

✅ 180 kW DC fast charging: ~180 km added in about 10 minutes

✅ Power sharing enables two vehicles to use one unit simultaneously

✅ Expands rural charging coverage to cut range anxiety for northern B.C.

 

B.C. Hydro has unveiled plans to install new charging stations it says can add as much as 180 kilometres worth of range to the average electric vehicle in 10 minutes.

The utility says the new 180-kilowatt units will be added to its network, expanding stations in southern B.C. as soon as this fall, with even more scheduled to arrive in 2024.

The first communities to get the new faster-charge stations are Surrey, Manning Park and, north of Prince George, Mackenzie and Tumbler Ridge, while the Lillooet fast-charging site is already operational.

B.C. Hydro president Chris O'Riley says both current and prospective electric vehicle owners have said they want improved coverage in more rural parts of the province in order to address range anxiety, as the utility has warned of a potential EV charging bottleneck if demand outpaces infrastructure.

"We are listening to feedback from our customers," he said.

The new stations will also be the first from B.C. Hydro to offer power sharing, which lets two different vehicles use the same unit to charge at the same time.

The adoption of electric vehicles in B.C. is much higher in southern urban areas than rural, northern ones, according to statistics from the provincial government made available in 2022, as the province leads the country in going electric according to recent reports.

The figures showed about one in every 45 people owns a zero-emission vehicle in the southwest regions of the province, but that number drops to one in 232 in the Kootenays, where the region makes electric cars a priority through local initiatives, and one in 414 in northern B.C.

The number of public charging stations closely corresponds to the number of zero-emission vehicles in various regions.

The Vancouver area has more than 500 fast-charging ports, according to ChargeHub, a website that tracks charging stations in North America. 

In contrast, the route from Prince George to Fort Nelson via Dawson Creek along Highway 97, part of the B.C. Electric Highway network connecting the region — a distance of more than 800 kilometres — has just three locations where a vehicle can be charged to 80 per cent power in an hour or less, creating challenges for people hoping to travel the route.

The disparity is also clear in a just-published analysis from the non-profit Community Energy Association, which acts as an advisory group to government associations. 

It found that while there is roughly one charging port every three square kilometres in Metro Vancouver, the number drops to one every 250 square kilometres in the Regional District of East Kootenay and one every 3,500 square kilometres in the Peace River Regional District, in the province's northeast.

"The more infrastructure we can get across the region ... the more the adoption of electric vehicles will increase," said the association's director of transportation initiatives, Danielle Weiss.

"We are excited to hear that B.C. Hydro is also viewing rural areas as a key focus for their new, enhanced charging technology."

B.C. Hydro says it currently has 153 charging units at 84 locations across the province with plans to add an additional 3,000 ports over the next 10 years, with provincial EV charger rebates supporting home and workplace installations as well.

 

Related News

View more

Alberta renewable energy surge could power 4,500 jobs

Alberta Renewable Energy Boom highlights corporate investments, power purchase agreements, wind and solar capacity gains, grid decarbonization, and job growth, adding 2 GW and $3.7B construction since 2019 in an open electricity market.

 

Key Points

Alberta's PPA-driven wind and solar surge adds 2 GW, cuts grid emissions, creates jobs, and accelerates private builds.

✅ 2 GW added since 2019 via corporate PPAs

✅ Open electricity market enables direct deals

✅ Strong wind and solar resources boost output

 

Alberta has seen a massive increase in corporate investment in renewable energy since 2019, and capacity from those deals is set to increase output by two gigawatts —  enough to power roughly 1.5 million homes. 

“Our analysis shows $3.7 billion worth of renewables construction by 2023 and 4,500 jobs,” Nagwan Al-Guneid, the director of Business Renewables Centre Canada, says. 

The centre is an initiative of the environmental think tank Pembina Institute and provides education and guidance for companies looking to invest in renewable energy or energy offsets across Canada. Its membership is made up of renewable energy companies.

The addition of two gigawatts is over two times the amount of renewable energy added to the grid between 2010 and 2017, according to the Canadian Energy Regulator. 

We’re tripling our Prairies coverage
The Narwhal’s newly minted Prairies bureau is here to bring you stories on energy and the environment you won’t find anywhere else. Stay tapped in by signing up for a weekly dose of our ad‑free, independent journalism.

“This is driven directly by what we call power purchase agreements,” Al-Guneid says. “We have companies from across the country coming to Alberta.”

So far this year, 191 megawatts of renewable energy will be added through purchase agreements, according to the Business Renewables Centre, as diversified energy sources can make better projects overall.

Alberta’s electricity system is unique in Canada — an open market where companies can ink deals directly with private power producers to sell renewable energy and buy a set amount of electricity produced each year, either for use or for offset credits. The financial security provided by those contracts helps producers build out more renewable projects without market risks. Purchasers get cheap renewable energy or credits to meet internal or external emissions goals. 

It differs from other provinces, many of which rely on large hydro capacity and where there is a monopoly, often government-owned, on power supply. 

In those provinces, investment in renewables largely depends on whether the company with the monopoly is in a buying mood, says Blake Shaffer, an economics professor at the University of Calgary who studies electricity markets. 

That’s not the case in Alberta, where the only real regulatory hurdle is applying to connect a project to the grid.

“Once that’s approved, you can just go ahead and build it, and you can sell it,” Shaffer says.

That sort of flexibility has attracted some big investments, including two deals with Amazon in 2021 to purchase 455 megawatts worth of solar power from Calgary-based Greengate Power. There are also big investments from oil companies looking to offset emissions.

The investments are allowing Alberta to decarbonize its grid, largely with the backing of the private sector. 

Shaffer says Alberta is the “renewables capital in Canada,” a powerhouse in both green and fossil energy by many measures.

“That just shocks people because of course their association with Alberta is nothing about renewables, but oil and gas,” Shaffer says. “But it really is the investment centre for renewables in the entire country right now.”

Alberta has ‘embarrassing’ riches in wind energy and solar power
It’s not just the market that is driving Alberta’s renewables boom. According to Shaffer there are three other key factors: an embarrassment of wind and solar riches, the need to transition away from a traditionally dirty, coal-reliant grid and the current high costs of energy. 

Shaffer says the strong and seemingly non-stop winds coming off the foothills of the Rockies in the southwest of the province mean wind power is increasingly competitive and each turbine produces more energy compared to other areas. The same is true for solar, with an abundance of sunny days.

“Southern Alberta and southern Saskatchewan have the best solar insolation,” he says. “You put a panel in Vancouver, or you put a panel in Medicine Hat, and you’re gonna get about 50 per cent more energy out of that panel in Medicine Hat, and they’re gonna cost you the same.”

The spark that set off the surge in investments wasn’t strictly an open-market mechanism. Under the previous NDP government, the province brought in a program that allowed private producers to compete for government contracts, with some solar facilities contracted below natural gas demonstrating cost advantages.

The government agreed to a certain price and the producers were then allowed to sell their electricity on the open market. If the price dropped below what was guaranteed, the province would pay the difference. If, however, the price was higher, the developers would pay the difference to the government. 

 

Related News

View more

EV owners can access more rebates for home, workplace charging

CleanBC Go Electric EV Charger Rebate empowers British Columbia condos, apartments, and workplaces with Level 2 charging infrastructure, ZEV adoption support, and stackable rebates aligned with the CleanBC Roadmap 2030 and municipal top-up incentives.

 

Key Points

A provincial program funding up to 50% of EV charger costs for condos, apartments, and workplaces across B.C.

✅ Up to 50% back, max $2,000 per eligible Level 2 charger

✅ EV Ready plans fund building upgrades for future charging

✅ Free advisor support: up to 5 hours for condos and workplaces

 

British Columbians wanting to charge their electric vehicles (EVs) at their condominium building or their place of work can access further funding through EV charger rebates to help buy and install EV chargers through CleanBC’s Go Electric EV Charger Rebate program.

“To better support British Columbians living in condominiums and apartments, we’re offering rebates to make more buildings EV ready,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “With the highest uptake rates of EV adoption in North America, we want to make sure that more people supporting our transition to a low-carbon economy have easy access to charging infrastructure.”

The Province’s CleanBC Go Electric EV Charger Rebate program is receiving $10 million as part of Budget 2021 to help with the upfront costs that come with EVs. Condominiums, apartments and workplaces that purchase and install eligible EV chargers can receive a rebate up to 50% of costs to a maximum of $2,000 per charger. Customers who take advantage of the EV Charger Rebate may have access to top up rebates through participating municipalities and local governments.

“People in British Columbia are switching to electric vehicles in record numbers as part of the transition to a cleaner, better transportation system,” said George Heyman, Minister of Environment and Climate Change Strategy. “We are building on that progress and accelerating positive change through the CleanBC Roadmap. We’re making it more affordable to own an electric vehicle and charging station, with incentives for zero-emission vehicles, so people can improve their driving experience with no air and climate pollution, and lower fuel and maintenance costs overall.”

The strata council for a condo building in Vancouver’s Olympic Village neighbourhood made use of the EV Ready program, as well as new legislation easing strata EV installs and federal support to upgrade their building’s electrical infrastructure. The strata council worked together to first determine, through a load review, if there was enough incoming power to support a level 2 charger for every owner. Once this was determined, the strata’s chosen electrical contractor went to work with the base installation, as well as individual chargers for owners who ordered them. The strata council also ensured a charger was installed in the guest parking.

“The majority of owners in our building came together and gave our strata council approval to make the necessary updates to the building’s infrastructure to support electric vehicle charging where we live,” said Jim Bayles, vice-president of strata council. “While upgrading the electrical and installing the EV chargers was something we were going ahead with anyway, we were pleased to receive quick support from the Province through their CleanBC program as well as from the federal government.”

CleanBC’s EV Ready option supports the adoption of EV infrastructure at apartment and condominium buildings. EV Ready provides rebates for the development of EV Ready plans, a strategy for buildings supported by professionals to retrofit a condo with chargers and make at least one parking space per unit EV ready, and the installation of electrical modifications and upgrades needed to support widespread future access to EV charging for residents.

Up to five hours of free support services from an EV charging station adviser are available through the EV Charger Rebate program for condominiums, apartments and workplaces that need help moving from idea to installation.

Single-family homes, including duplexes and townhouses, can get a rebate of up to 50% of purchase and installation costs of an eligible EV charger to a maximum of $350 through the EV Charger Rebate program.

The Province is providing a range of rebates through its CleanBC Go Electric programs and building out the fast-charging network to ensure the increasing demand for EVs is supported. B.C. has one of the largest public-charging networks in Canada, including the BC's Electric Highway initiative, with more than 2,500 public charging stations throughout the province.

The CleanBC Go Electric EV Charger Rebate program aligns with the recently released CleanBC Roadmap to 2030. Announced on Oct. 25, 2021, the CleanBC Roadmap to 2030 details a range of expanded actions to expand EV charging and accelerate the transition to a net-zero future and achieve B.C.’s legislated greenhouse gas emissions targets.

CleanBC is a pathway to a more prosperous, balanced and sustainable future. It supports government’s commitment to climate action to meet B.C.’s emission targets and build a cleaner, stronger economy for everyone.

Quick Facts:

  • The CleanBC Go Electric EV Charger Rebate program provides a convenient single point of service for provincial and any local government rebates.
  • EV adviser services for multi-unit residential buildings and workplaces are available through Plug In BC.
  • British Columbia is leading the country in transitioning to EVs, even as a B.C. Hydro 'bottleneck' forecast highlights infrastructure needs, with more than 60,000 light-duty EVs on the road.
  • British Columbia was the first place in the world to have a 100% ZEV law and is leading North America in uptake rates of EVs at nearly 10% of new sales in 2020 – five years ahead of the original target.
  • The CleanBC Roadmap to 2030 commits B.C. to adjusting its ZEV Act to require automakers to meet an escalating annual percentage of new light-duty ZEV sales and leases, reaching 26% of light-duty vehicle sales by 2026, 90% by 2030 and 100% by 2035.

 

Learn More:

To learn more about home and workplace EV charging station rebates, eligibility and application processes, including the EV Ready program, visit: https://goelectricbc.gov.bc.ca/

To learn more about EV advisor services, visit: https://pluginbc.ca/ev-advisor-service/

To learn more about the suite of CleanBC Go Electric programming, visit: www.gov.bc.ca/zeroemissionvehicles

To learn more about the CleanBC Roadmap to 2030, visit: https://cleanbc.gov.bc.ca/

 

Related News

View more

Renewables Are Ready to Deliver a Renewable World - Time for Action for 100% Renewable Energy Globally

100% Renewable Energy Transition unites solar, wind, hydropower, geothermal, and bioenergy with storage, smart grids, and sector coupling, delivering decarbonization, energy security, and lower LCOE amid post-Fukushima policy shifts and climate resilience goals.

 

Key Points

It is a pathway using all renewables plus storage and grids to fully decarbonize power, heat, transport, and industry.

✅ Integrates solar, wind, hydro, geothermal, and bioenergy

✅ Uses storage, smart grids, and sector coupling for reliability

✅ Requires enabling policies, finance, and rapid deployment

 

Renewable energy organizations representing different spheres of the renewable energy community have gathered on the occasion of the tenth anniversary of the Great East Japan Earthquake and Fukushima nuclear accident to emphasize that renewable energies are not only available in abundance, with global renewable power on course to shatter more records, but ready to deliver a renewable world.

The combination of all renewable technologies, be it bioenergy, geothermal energy, hydropower, ocean energy, solar energy or wind power, in particular in combination with storage options, can satisfy all energy needs of mankind, be it for power, heating/cooling, transportation, or industrial processes.

Renewables have seen tremendous growth rates and cost reduction over the past two decades, but there are still many barriers that need to be addressed for a faster renewable energy deployment to eventually achieve global 100% renewable energy, as outlined in an on the road to 100% renewables initiative that charts the path. It is up to political decision-makers to create the legislative and regulatory conditions so that the renewable energy community can act as fast as needed.

Such rapid switch towards renewables is not only a must in light of nuclear risks and the growing threats of climate change, but also the necessary response to the current pandemic situation. And it will allow those hundreds of millions of humans in unserved areas to get for the first time ever access to modern energy services, as noted by a new IRENA report that details how renewables can decarbonise the energy sector and improve lives.

Speakers from the renewable energy community presented today in a joint webinar that a renewable future is a realistic vision, representing:

Energy Watch Group, Global100RE Platform, Global100RE Strategy Group, International Geothermal Association, ISEP Japan, REN Alliance, World Bioenergy Association, World Wind Energy Association.

Dr. Tetsunari Iida, Director of the Institute for Sustainable Energy Policies ISEP Japan:

Ten years ago, on 11 March 2021, the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant accident occurred. It is a "coincidence of global history" that it now coincides with the starting point of the 100% renewable energy initiative that is accelerating around the world.

The world has changed dramatically since 311. Germany, Italy, Switzerland, Taiwan, South Korea, China and many other countries were all shocked by 311 and shifted their focus from nuclear power to renewable energy, and in the U.S. clean energy industries are setting sights on market majority to accelerate this trend. The next ten years will be the decade in which this perception will rapidly become the "new reality". 311 was the "starting point" for a structural energy shift in world history.

Hans-Josef Fell, former MP, President of the Energy Watch Group and co-initiator of the Global100RE Strategy Group:

The disasters of Fukushima and Chernobyl are urging the entire world to quickly end the use of atomic energy, and many call for a fossil fuel lockdown to catalyze a climate revolution alongside the transition. Contrary to what is often claimed, nuclear energy cannot make a contribution to climate protection, but only creates immense problems with toxic radioactivity emissions, nuclear waste, atomic bomb material and the dangers of a nuclear catastrophe. In contrast, 100% renewable energies until 2030 can help achieve climate protection and a simultaneous nuclear phase-out, according to a recently published statement by a world-leading group of energy researchers from the USA, EU and Australia.

Their research suggests that a 100% renewable energy supply, including storage systems, can provide full energy security for all of mankind by 2030 and will even be cheaper than the existing nuclear and fossil energy supply, and with over 30% of global electricity already from renewables, momentum is strong. The only requirement for implementation is the right decisions taken by decision makers both in governments and industry. All technical and economic prerequisites for a disruptive conversion of the global energy supply to 100% renewable energies are already in place.

Hon. Peter Rae AO, President of WWEA and Honorary Chairman of the REN Alliance:

40 years ago, the idea of developing nuclear power appealed to me as a non-polluting method of generating electricity. So I studied it. How to deal with waste and how to ensure it would not create a danger to life. Along came Chernobyl and other accidents. Storage of waste was leaving dangerous hiding places while some waste was alleged to be dumped at sea. I became more and more concerned. There were demonstrations that the existing methods were dangerous and required very strict construction and operational tolerances - up went the cost. Long delays and huge cost increases. I had visited nuclear power stations and talked to expert proponents in UK, France, US, Taiwan and Australia, and debates such as New Zealand's electricity future reflect similar concerns. The more I did the more certain I became that it was not the way to go. Then Fukushima put the dangers and cost beyond doubt.

Let's get on with the rollover to renewables.

Dr. Marit Brommer, Executive Director of the International Geothermal Association IGA:

The IGA is proud to work with all renewable energy associations to continuously provide a unified voice to a cleaner energy future. The Geothermal sector is proven to be a partner of choice for many locations in the world serving baseload power and clean heat to customers. We are particularly interested in the increased attention system integration gets, which underpins the importance of all renewables coming together at events such as the webinar organised by the WWEA.

Christian Rakos, President of the World Bioenergy Association:

The IPCC has emphasized the important role of sustainable bioenergy for climate protection. Recent advances in technology allow us to use feedstock from forestry, wood processing and agricultural production in an efficient and clean way. Today, bioenergy already contributes 12 - 13% to global final energy demand. Importantly, contribution from bioenergy is more than 5 times as much as nuclear energy worldwide. Together with other renewable energy technologies such as solar, wind, geothermal and hydropower, bioenergy can increase the contribution in a substantial way to meet the energy demands of all end use sectors and meet the international energy and climate goals.

Stefan Gsanger, Secretary General of the World Wind Energy Association and Co-chair of the Global100RE Platform:

The switch to a renewable energy future requires new political and economic thinking: from centralised structures with few large actors towards decentralised, participatory models with millions of communities and citizens playing an active role, not only as consumers but also as producers of energy. To make this new paradigm the predominant energy paradigm is the true challenge of the energy transformation which we as the world community are facing. If we manage this shift well and on time, billions of people across the globe, in industrialised and developing countries alike, will benefit and will face a bright future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.