Electric vehicles can now power your home for three days


ev

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Vehicle-to-Home (V2H) Power enables EVs to act as backup generators and home batteries, using bidirectional charging, inverters, and rooftop solar to cut energy costs, stabilize the grid, and provide resilient, outage-proof electricity.

 

Key Points

Vehicle-to-Home (V2H) Power lets EV batteries run household circuits via bidirectional charging and an inverter.

✅ Cuts energy bills using solar, time-of-use rates, and storage

✅ Provides resilient backup during outages, storms, and blackouts

✅ Enables grid services via V2G/V2H with smart chargers

 

When the power went out at Nate Graham’s New Mexico home last year, his family huddled around a fireplace in the cold and dark. Even the gas furnace was out, with no electricity for the fan. After failing to coax enough heat from the wood-burning fireplace, Graham’s wife and two children decamped for the comfort of a relative’s house until electricity returned two days later.

The next time the power failed, Graham was prepared. He had a power strip and a $150 inverter, a device that converts direct current from batteries into the alternating current needed to run appliances, hooked up to his new Chevy Bolt, an electric vehicle. The Bolt’s battery powered his refrigerator, lights and other crucial devices with ease. As the rest of his neighborhood outside Albuquerque languished in darkness, Graham’s family life continued virtually unchanged. “It was a complete game changer making power outages a nonissue,” says Graham, 35, a manager at a software company. “It lasted a day-and-a-half, but it could have gone much longer.”

Today, Graham primarily powers his home appliances with rooftop solar panels and, when the power goes out, his Chevy Bolt. He has cut his monthly energy bill from about $220 to $8 per month. “I’m not a rich person, but it was relatively easy,” says Graham “You wind up in a magical position with no [natural] gas, no oil and no gasoline bill.”

Graham is a preview of what some automakers are now promising anyone with an EV: An enormous home battery on wheels that can reverse the flow of electricity to power the entire home through the main electric panel.

Beyond serving as an emissions-free backup generator, the EV has the potential of revolutionizing the car’s role in American society, with California grid programs piloting vehicle-to-grid uses, transforming it from an enabler of a carbon-intensive existence into a key step in the nation’s transition into renewable energy.

Home solar panels had already been chipping away at the United States’ centralized power system, forcing utilities to make electricity transfer a two-way street. More recently, home batteries have allowed households with solar arrays to become energy traders, recharging when electricity prices are low, replacing grid power when prices are high, and then sell electricity back to the grid for a profit during peak hours.

But batteries are expensive. Using EVs makes this kind of home setup cheaper and a real possibility for more Americans as the American EV boom accelerates nationwide.

So there may be a time, perhaps soon, when your car not only gets you from point A to point B, but also serves as the hub of your personal power plant.

I looked into new vehicles and hardware to answer the most common questions about how to power your home (and the grid) with your car.


Why power your home with an EV battery

America’s grid is not in good shape. Prices are up and reliability is down, and many state power grids face new challenges from rising EV adoption. Since 2000, the number of major outages has risen from less than two dozen to more than 180 per year, based on federal data, the Wall Street Journal reports. The average utility customer in 2020 endured about eight hours of power interruptions, double the previous decade.

Utilities’ relationship with their customers is set to get even rockier. Residential electricity prices, which have risen 21 percent since 2008, are predicted to keep climbing as utilities spend more than $1 trillion upgrading infrastructure, erecting transmission lines for renewable energy and protecting against extreme weather, even though grids can handle EV loads with proper management and planning.

U.S. homeowners, increasingly, are opting out. About 8 percent of them have installed solar panels. An increasing number are adding home batteries from companies such as LG, Tesla and Panasonic. These are essentially banks of battery cells, similar to those in your laptop, capable of storing energy and discharging electricity.

EnergySage, a renewable energy marketplace, says two-thirds of its customers now request battery quotes when soliciting bids for home solar panels, and about 15 percent install them. This setup allows homeowners to declare (at least partial) independence from the grid by storing and consuming solar power overnight, as well as supplying electricity during outages.

But it doesn’t come cheap. The average home consumes about 20 kilowatt-hours per day, a measure of energy over time. That works out to about $15,000 for enough batteries on your wall to ensure a full day of backup power (although the net cost is lower after incentives and other potential savings).

 

How an EV battery can power your home

Ford changed how customers saw their trucks when it rolled out a hybrid version of the F-150, says Ryan O’Gorman of Ford’s energy services program. The truck doubles as a generator sporting as many as 11 outlets spread around the vehicle, including a 240-volt outlet typically used for appliances like clothes dryers. During disasters like the 2021 ice storm that left millions of Texans without electricity, Ford dealers lent out their hybrid F-150s as home generators, showing how mobile energy storage can bring new flexibility during outages.

The Lightning, the fully electric version of the F-150, takes the next step by offering home backup power. Under each Lightning sits a massive 98 kWh to 131 kWh battery pack. That’s enough energy, Ford estimates, to power a home for three days (10 days if rationing). “The vehicle has an immense amount of power to move that much metal down the road at 80 mph,” says O’Gorman.

 

Related News

Related News

Canada, Germany to work together on clean energy

Clean Energy Transition spans hydrogen strategies, offshore wind and undersea cables, decarbonization pledges, and net-zero targets, including green vs blue hydrogen, carbon capture, sustainable aviation fuel, forest conservation, and wetland protection in Canadian policy.

 

Key Points

A shift to low-carbon systems via hydrogen, renewables, net-zero policies, carbon capture, and conservation.

✅ Hydrogen pathways: green vs blue with carbon capture

✅ Grid expansion: offshore wind and undersea cables in Japan

✅ Policy and corporate moves: net-zero, SAF, forests, wetlands

 

The Canadian federal government is set to sign a new agreement with Germany to strategize on a “clean-energy transition,” with clean hydrogen in Canada expected to be a key player the Globe and Mail reports.

“Germany is probably the world’s most interesting market for hydrogen right now, and Canada is potentially a very big power in its production,” Sabine Sparwasser, Germany’s ambassador to Canada, said in an interview.

However, some friction is expected as Natural Resources Minister Seamus O’Regan has been endorsing “blue” hydrogen, while Germany has been more interested in “green” hydrogen. The former hydrogen is produced from natural gas or other fossil fuels, while simultaneously “using carbon-capture technology to minimize emissions from the process.” In contrast, “green” hydrogen, is manufactured from non-fossil fuel sources, and cleaning up Canada's electricity is critical to meeting climate pledges.

“How the focus on blue hydrogen will be aligned with Canada’s goal of reaching climate neutrality by 2050 is not spelled out in detail,” says an executive summary of the report by the Berlin-based think tank and consultancy Adelphi. “As a result, the strategy seems to be more of a vision for the future of those provinces with large fossil fuel resources.”

According to an IEA report Canada will need more electricity to hit net-zero, underscoring the strategy questions.

 

Internationally

Japan is in talks to develop undersea cables that would bring offshore wind energy to Tokyo and the Kansai region, as the country hopes to more than quadrable its wind capacity from 10 gigawatts in 2030 to 45 gigawatts in 2040. The construction of the cables would cost about US$9.2 billion.

In Western Canada, bridging the electricity gap between Alberta and B.C. makes similar climate sense, proponents argue.

Approximately 80 per cent of that offshore power is expected to be built in Hokkaido, Tohoku, and Kyushu regions. The project is part of the country’s pledge to achieve decarbonization by 2050, according to BNN Bloomberg.

Meanwhile, Russia is falling behind in the world’s transition to clean energy.

“What’s the alternative? Russia can’t be an exporter of clean energy, that path isn’t open for us,” says Konstantin Simonov, director of the National Energy Security Fund, a Moscow consultancy whose clients include major oil and gas companies. “We can’t just swap fossil fuel production for clean energy production, because we don’t have any technology of our own.” Ultimately, natural gas will always be cheaper than renewable energy in Russia, Simonov added. This story also from BNN Bloomberg.

Finally, New Zealand’s Tilt Renewables Ltd., an electricity company, has announced it would be acquired by Powering Australian Renewables (PowAR) for NZ$2.94 billion (US$2.10 billion). PowAR is Australia’s largest owner of wind and solar energy, and the deal will give the energy giant access to Tilt’s 20 wind farms. Reuters has the story.

 

In Canada  

Air Canada has unveiled plans to fight climate change. Specifically, the airlines giant has committed to reducing greenhouse gases (GHG) by 20 per cent from flights by 2030, investing $50 million in sustainable aviation fuel (SAF), and ensuring net-zero emissions by 2050.

In other news, B.C. is facing mounting pressure to abstain from logging “old growth forests” while the government transitions to more sustainable forestry policies. A report titled A New Future for Old Forests called on the provincial government to act within six months to protect such forests in April 2020.

The province's Site C mega dam is billions over budget but will go ahead, the premier said, highlighting the energy sector's complexity.

Last September, the province announced, “it would temporarily defer old growth harvesting in close to 353,000 hectares in nine different areas.” The B.C. government will hold consultations with First Nations and other forestry stakeholders “to determine the next areas where harvesting may be deferred,” according to Forests Minister Katrine Conroy. The Canadian Press has more.

Separately, LNG powered with electricity could be a boon for B.C.'s independent power producers, analysts say.

Finally, Pickering Developments Inc. has come forward saying it will not “alter or remove the wetland” that was meant to house an Amazon facility, according to CBC News.

The announcement comes after CBC News’s previously reported that the Toronto and Region Conservation Authority (TRCA) was pressured to issue a construction permit to Pickering Developments Inc. by Doug Ford’s provincial government. However, on March 12, an official with Amazon Canada told CBC News that the company no longer wished to build a warehouse on the site.

“In light of a recent announcement that a new fulfilment centre will no longer be located on this property, this voluntary undertaking ensures that no work, legally authorized by that permit, will occur,” Pickering Development Inc. said in a statement provided to CBC Toronto.

 

Related News

View more

Battery energy storage system eyed near Woodstock

Oxford Battery Energy Storage Project will store surplus renewable power near South-West Oxford and Woodstock, improving grid stability, peak shaving, and reliability, pending IESO approval and Hydro One transmission interconnection in Ontario.

 

Key Points

A Boralex battery project in South-West Oxford storing surplus power for Woodstock at peak demand pending IESO approval.

✅ 2028 commercial operation target

✅ Connects to Hydro One transmission line

✅ Peak shaving to stabilize grid costs

 

A Quebec-based renewable energy company is proposing to build a battery energy storage system in Oxford County near Woodstock.

The Oxford battery energy storage project put forward by Boralex Inc., if granted approval, would be ready for commercial operation in 2028. The facility would be in the Township of South-West Oxford, but also would serve Woodstock businesses and residences, supported by provincial disconnect moratoriums for customers, due to the city’s proximity to the site.

Battery storage systems charge when energy sources produce more energy than customers need, and, complementing Ontario’s energy-efficiency programs across the province, discharge during peak demand to provide a reliable, steady supply of energy.

Darren Suarez, Boralex’s vice-president of public affairs and communications in North America, said, “The system we’re talking about is a very large battery that will help at times when the electric grid has too much energy on the system. We’ll be able to charge our batteries, and when there’s a need, we can discharge the batteries to match the needs of the electric grid.”

South-West Oxford is a region Boralex has pinpointed for a battery storage project. “We look at grid needs as a whole, and where there is a need for battery storage, and we’ve identified this location as being a real positive for the grid, to help with its stability, a priority underscored by the province’s nuclear alert investigation and public safety focus,” Suarez said.

Suarez could not provide an estimated cost for the proposed facility but said the project would add about 75 jobs during the construction phase, in a sector where the OPG credit rating remains stable. Once the site is operational, only one or two employees will be necessary to maintain the facility, he said.

Boralex requires approval from the Independent Electricity System Operator (IESO), the corporation that co-ordinates and integrates Ontario’s electricity system operations across the province, for the Oxford battery energy storage project.

Upon approval, the project will connect with an existing Hydro One transmission line located north of the proposed site. “[Hydro One] has a process to review the project and review the location and ensure we are following safety standards and protocols in terms of integrating the project into the grid, with broader policy considerations like Ottawa’s hydro heritage also in view, but they are not directly involved in the development of the project itself,” Suarez said.

The proposal has been presented to South-West Oxford council. South-West Oxford Mayor David Mayberry said, “(Council) is still waiting to see what permits are necessary to be addressed if the proposal moves forward.”

Mayberry said the Ministry of Natural Resources and Forestry also would be reviewing the proposed project.

Thornton Sand and Gravel, the location of the proposed facility, was viewed positively by Mayberry. “From a positive perspective, they’re not using farmland. There is a plus we’re not using farmland, but there is concern something could leak into the aquifer. These questions need to be answered before it can be to the satisfaction of the community,” Mayberry said.

An open house was held on Sept. 14 to provide information to residents. Suarez said about 50 people showed up and the response was positive. “Many people came out to see what we planned for the project and there was a lot of support for the location because of where it actually is, and how it integrates into the community. It’s considered good use of the land by many of the people that were able to join us on that day,” Suarez said.

The Quebec-based energy company has been operating in Ontario for nearly 15 years and has wind farms in the Niagara and Chatham-Kent regions.

Boralex also is involved in two other battery storage projects in Ontario. The Hagersville project is a 40-minute drive northwest of Hamilton, and the other is in Tilbury, a community in Chatham-Kent. Commercial operation for both sites is planned to begin in 2025.

South-West Oxford and Woodstock will see some financial benefits from the energy storage system, Suarez said.

“It will help to stabilize energy costs. It will contribute to really shaving the most expensive energy on the system off the system. They’re going to take electricity when it’s the least costly, taking advantage of Ontario’s ultra-low overnight pricing options and utilize that least costly energy and displace the most costly energy.”

 

Related News

View more

UK electric car inquiries soar during fuel supply crisis

UK Petrol Shortages Drive EV Adoption as fuel crisis spurs electric vehicles, plug-in car demand, home charging, lower running costs, zero-emission mobility, ULEZ compliance, accelerating the shift from diesel to battery EVs.

 

Key Points

Fuel shortages push drivers to EVs, boosting inquiries and sales while highlighting the convenience of home charging.

✅ Surge in EV dealer inquiries and test drives

✅ Home charging avoids queues and fuel shortages

✅ Policy signals: ULEZ expansion, 2030 ICE ban

 

Sellers of plug-in vehicles say petrol shortages are driving people to adopt the new technology as the age of electric cars accelerates worldwide.

As petrol stations in parts of the UK started running out of fuel on Friday, business at Martin Miller’s electric car dealership in Guildford, Surrey, started soaring.

After what ended up being his company EV Experts busiest day ever, interest does not appear to be dying down. This week the diary is booked up with test drives and the business is low on stock amid supply constraints.

“People buy electric cars for environmental reasons, for cost-saving reasons and because the technology’s great, even though higher upfront prices remain a concern,” he said. “But Friday was one of those moments where people said, ‘Do you know what, this is a sign that we need to go electric’.”

While scenes of chaos play out at petrol stations across the country amid shortages, for many electric vehicle (EV) dealers the fuel crisis has led to an unexpected surge in inquiries and sales, even as some question an electric-car revolution narrative today.

EVA England, a non-profit representing new and prospective EV drivers, reports a rise in electric car inquiries and in interest at EV dealers, particularly in the last week.

“Saturday was bonkers but Friday even surpassed that, it was very strange,” said Miller, who founded his company four years ago. “I’ve now got trade-in cars with no petrol to move them.”

Along with existing factors such as the expansion of London’s ultra-low emission zone, the fuel crisis has proved to be another trigger point, he said. “People were using it as ‘this is the moment where I’m not going to put this off any longer’.”

The EV market is no longer the preserve of innovators and early adopters, he said, with the most popular models the Nissan Leaf, Volkswagen ID 3 and Jaguar I-Pace.

Ben Strzalko, the owner of Electric Cars UK in Leyland, Lancashire, said that as a small business it would take a few months to feel the knock-on effect of the fuel crisis on sales.

But every time there are problems with petrol or diesel, he said they acted as “one more tick for people making that transition to electric cars”.

He said “a lot of electric car owners will be chuffed to bits this last week” being able to plug in their cars at home. And as an EV driver himself, he admitted feeling a little smug as he drove past queues of 20 cars outside petrol stations over the weekend in his Tesla.

Matt Cleevely, the owner of Cleevely Electric Vehicles in Cheltenham, Gloucestershire, which specialises in used EVs, had a surge of inquiries over the weekend and on Monday morning from customers citing the fuel crisis as a reason for switching to electric.

He expects enthusiasm to continue rising, with petrol shortages adding “fuel to the fire”.

Although he feels sorry for non-EV drivers who have been unable to get fuel, he said as an electric car owner it was “very nice” not to have to worry about where to get petrol at the weekend.

“It’s very convenient that we’ve been able to just fuel up on our driveway. It’s one of the biggest pros of having an electric vehicle.”

The National Franchised Dealers Association also said multiple dealers have reported a spike in EV enquiries since the start of the crisis.

The Society of Motor Manufacturers and Traders reported “bumper growth” in the sale of plug-in cars in July, reflecting broader global market growth in recent years, with battery electric vehicles comprising 9% of sales. Plug-in hybrids accounted for 8% of sales and hybrid electric vehicles nearly 12%. Also in July, more electric vehicles were registered than diesel for the second consecutive month.

The UK has pledged to ban the sale of new petrol and diesel cars by 2030 and of new hybrids by 2035, a timeline that aligns with expectations that within a decade most driving could be electric.

Warren Philips, the volunteer communities director at EVA England, said the tipping point for EVs had already been reached but the fuel crisis “underlines how electric cars could work for the majority of people”.

He added: “The interest is already there, this just adds to it. And going forward with things like Cop26, with the climate crisis, with the cost of fuel probably going to rise … people will start looking at electric cars where you just skip that entire step.”

 

Related News

View more

Fact check: Claim on electric car charging efficiency gets some math wrong

EV Charging Coal and Oil Claim: Fact-check of kWh, CO2 emissions, and electricity grid mix shows 70 lb coal or ~8 gallons oil per 66 kWh, with renewables and natural gas reducing lifecycle emissions.

 

Key Points

A viral claim on EV charging overstates oil use; accurate figures depend on grid mix: ~70 lb coal or ~8 gallons oil.

✅ About 70 lb coal or ~8 gal oil per 66 kWh, incl. conversion losses

✅ EVs average ~100 g CO2 per mile vs ~280 g for 30 mpg cars

✅ Grid mix includes renewables, nuclear, natural gas; oil use is low

 

The claim: Average electric car requires equivalent of 85 pounds of coal or six barrels of oil for a single charge

The Biden administration has pledged to work towards decarbonizing the U.S. electricity grid by 2035. And the recently passed $1.2 trillion infrastructure bill provides funding for more electric vehicle (EV) charging infrastructure, including EV charging networks across the country under current plans.

However, a claim that electric cars require an inordinate amount of oil or coal energy to charge has appeared on social media, even as U.S. plug-ins traveled 19 billion miles on electricity in 2021.

“An average electric car takes 66 KWH To charge. It takes 85 pounds of coal or six barrels of oil to make 66 KWH,” read a Dec 1 Facebook post that was shared nearly 500 times in a week. “Makes absolutely no sense.” 

The post included a stock image of an electric car charging, though actual charging costs depend on local rates and vehicle efficiency.

This claim is in the ballpark for the coal comparison, but the math on the oil usage is wildly inaccurate.

It would take roughly 70 pounds of coal to produce the energy required to charge a 66 kWh electric car battery, said Ian Miller, a research associate at the MIT Energy Initiative. That's about 15 pounds less than is claimed in the post.

The oil number is much farther off.

While the post claims that it takes six barrels of oil to charge a 66 kWh battery, Miller said the amount is closer to 8 gallons  — the equivalent of 20% of one barrel of oil.

He said both of his estimates account for energy lost when fossil fuels are converted into electricity. 

"I think the most important question is, 'How do EVs and gas cars compare on emissions per distance?'," said Miller. "In the US, using average electricity, EVs produce roughly 100 grams of CO2 per mile."

He said this is more than 60% less than a typical gasoline-powered car that gets 30 mpg, aligning with analyses that EVs are greener in all 50 states today according to recent studies. Such a vehicle produces roughly 280 grams of CO2 per mile.

Lifecycle analyses also show that the CO2 from making an EV battery is not equivalent to driving a gasoline car for years, which often counters common misconceptions.

"If you switch to an electric vehicle, even if you're using fossil fuels (to charge), it's just simply not true that you'll be using more fossil fuel," said Jessika Trancik, a professor at the Massachusetts Institute of Technology who studies the environmental impact of energy systems.  

However, she emphasized electric cars in the U.S. are not typically charged using only energy from coal or oil, and that electricity grids can handle EVs with proper management.

The U.S. electricity grid relies on a diversity of energy sources, of which oil and coal together make up about 20 percent, according to a DOE spokesperson. This amount is likely to continue to drop as renewable energy proliferates in the U.S., even as some warn that state power grids will be challenged by rapid EV adoption. 

"Switching to an electric vehicle means that you can use other sources, including less carbon-intensive natural gas, and even less carbon-intensive electricity sources like nuclear, solar and wind energy, which also carry with them health benefits in the form of reduced air pollutant emissions," said Trancik. 

Our rating: Partly false
Based on our research, we rate PARTLY FALSE the claim that the average electric car requires the equivalent of 85 pounds of coal or six barrels of oil for a single charge. The claim is in the ballpark on coal consumption, as an MIT researcher estimates that around 70 pounds. But the oil usage is only about 8 gallons, which is 20% of one barrel. And the actual sources of energy for an electric car vary depending on the energy mix in the local electric grid. 

 

Related News

View more

Wind Turbine Operations and Maintenance Industry Detailed Analysis and Forecast by 2025

Wind Turbine Operations and Maintenance Market is expanding as offshore and onshore renewables scale, driven by aging turbines, investment, UAV inspections, and predictive O&M services, despite skills shortages and rising logistics costs.

 

Key Points

Sector delivering inspection, repair, and predictive services to keep wind assets reliable onshore and offshore.

✅ Aging turbines and investor funding drive service demand

✅ UAV inspections and predictive analytics cut downtime

✅ Offshore growth offsets skills and logistics constraints

 

Wind turbines are capable of producing vast amounts of electricity at competitive prices, provided they are efficiently maintained and operated. Being a cleaner, greener source of energy, wind energy is also more reliable than other sources of power generation, with growth despite COVID-19 recorded across markets. Therefore, the demand for wind energy is slated to soar over the next few years, fuelling the growth of the global market for wind turbine operations and maintenance. By application, offshore and onshore wind turbine operations and maintenance are the two major segments of the market.

 

Global Wind Turbine Operations and Maintenance Market: Key Trends

The rising number of aging wind turbines emerges as a considerable potential for the growth of the market. The increasing downpour of funds from financial institutions and public and private investors has also been playing a significant role in the expansion of the market, with interest also flowing toward wave and tidal energy technologies that inform O&M practices. On the other hand, insufficient number of skilled personnel, coupled with increasing costs of logistics, remains a key concern restricting the growth of the market. However, the growing demand for offshore wind turbines across the globe is likely to materialize into fresh opportunities.

 

Global Wind Turbine Operations and Maintenance Market: Market Potential

A number of market players have been offering diverse services with a view to make a mark in the global market for wind turbine operations and maintenance. For instance, Scotland-based SgurrEnergy announced the provision of unmanned aerial vehicles (UAVs), commonly known as drones, as a part of its inspection services. Detailed and accurate assessments of wind turbines can be obtained through these drones, which are fitted with cameras, with four times quicker inspections than traditional methods, claims the company. This new approach has not only reduced downtime, but also has prevented the risks faced by inspection personnel.

The increasing number of approvals and new projects is preparing the ground for a rising demand for wind turbine operations and maintenance. In March 2017, for example, the Scottish government approved the installation of eight 6-megawatt wind turbines off the coast of Aberdeen, towards the northeast. The state of Maryland in the U.S. will witness the installation of a new offshore wind plant, encouraging greater adoption of wind energy in the country. The U.K., a leader in UK offshore wind deployment, has also been keeping pace with the developments, with the installation of a 400-MW offshore wind farm, off the Sussex coast throughout 2017. The Rampion project will be developed by E.on, who has partnered with Canada-based Enbridge Inc. and the UK Green Investment Bank plc.

 

Global Wind Turbine Operations and Maintenance Market: Regional Outlook

Based on geography, the global market for wind turbine operations and maintenance has been segmented into Asia Pacific, Europe, North America, and Rest of the World (RoW). Countries such as India, China, Spain, France, Germany, Scotland, and Brazil are some of the prominent users of wind energy and are therefore likely to account for a considerable share in the market. In the U.S., favorable government policies are backing the growth of the market, though analyses note that a prolonged solar ITC extension could pressure wind competitiveness. For instance, in 2013, a legislation that permits energy companies to transfer the costs of offshore wind credits to ratepayers was approved. Asia Pacific is a market with vast potential, with India and China being major contributors aiding the expansion of the market.

 

Global Wind Turbine Operations and Maintenance Market: Competitive Analysis

Some of the major companies operating in the global market for wind turbine operations and maintenance are Gamesa Corporacion Tecnologica, Xinjiang Goldwind Science & Technologies, Vestas Wind Systems A/S, Upwind Solutions, Inc, GE Wind Turbine, Guodian United Power Technology Company Ltd., Nordex SE, Enercon GmbH, Siemens Wind Power GmbH, and Suzlon Group. A number of firms have been focusing on mergers and acquisitions to extend their presence across new regions.

 

Related News

View more

New legislation will make it easier for strata owners to install EV charging stations

BC Strata EV Charging Reforms streamline approvals under the Strata Property Act, lowering the voting threshold and requiring an electrical planning report to expand EV charging stations in multi-unit strata buildings across British Columbia.

 

Key Points

BC reforms ease EV charger installs in stratas by lowering votes, requiring plans, and fast-tracking compliant requests.

✅ Vote threshold drops to 50% for EV infrastructure

✅ Electrical planning report required for stratas

✅ Stratas must approve compliant owner charging requests

 

Owning an electric vehicle (EV) will be a little easier for strata property owners, the province says, after announcing changes to legislation to facilitate the installation of charging stations in strata buildings.

On Thursday, the province said it would be making amendments to the Strata Property Act, the legal framework all strata corporations are required to follow, and align with practical steps for retrofitting condos with chargers in older buildings.

Three areas will improve access to EV charging stations in strata complexes, the province says, including lowering the voting threshold from 75 per cent to 50 per cent for approval of the costs, supported by EV charger rebates that can offset expenses, and changes to the property that are needed to install them, as well as requiring strata corporations to have an electrical planning report to make installation of these stations easier.

The amendments would mean stratas would have to approve owners' requests for such charging stations, even amid high-rise EV charging challenges reported across Canada, as long as "reasonable criteria are met."

Minister of Energy, Mines and Low Carbon Innovation Josie Osborne said people are more likely to buy an electric vehicle if they have the ability to charge it — something that's lacking for many British Columbians living in multi-unit residences, where Vancouver's EV-ready policy is setting a local example for multi-family buildings. 

"B.C. has one of the largest public electric vehicle charging networks in Canada, and leads the country in going electric, but we need to make it easier for more people to charge their EVs at home," Osborne said in a statement.

Tony Gioventu, the executive director of the Condominium Home Owners Association of B.C., said the new legislation strikes a balance between allowing people access to EV charging stations, as examples from Calgary apartments and condos demonstrate, while also ensuring stratas still have control over their properties. 

This is just the latest step in the B.C. government's move to get more EVs on the road: alongside rebates for home and workplace charging, the province passed the Zero-Emission Vehicles Act, which aims for 10 per cent of all new light-duty cars and trucks sold in B.C. to be zero emission by 2025. By 2040, they'll all need to be emission-free.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified