US Crosses the Electric-Car Tipping Point for Mass Adoption


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

EV Tipping Point signals the S-curve shift to mainstream adoption as new car sales pass 5%, with the US joining Europe and China; charging infrastructure, costs, and supply align to accelerate electric car market penetration.

 

Key Points

The EV tipping point is when fully electric cars reach about 5% of new sales, triggering rapid S-curve adoption.

✅ 5% of new car sales marks start of mass adoption

✅ Follows S-curve seen in phones, LEDs, internet

✅ Barriers ease: charging, cost declines, model availability

 

Many people of a certain age can recall the first time they held a smartphone. The devices were weird and expensive and novel enough to draw a crowd at parties. Then, less than a decade later, it became unusual not to own one.

That same society-altering shift is happening now with electric vehicles, according to a Bloomberg analysis of adoption rates around the world. The US is the latest country to pass what’s become a critical EV tipping point: an EV inflection point when 5% of new car sales are powered only by electricity. This threshold signals the start of mass EV adoption, the period when technological preferences rapidly flip, according to the analysis.

For the past six months, the US joined Europe and China — collectively the three largest car markets — in moving beyond the 5% tipping point, as recent U.S. EV sales indicate. If the US follows the trend established by 18 countries that came before it, a quarter of new car sales could be electric by the end of 2025. That would be a year or two ahead of most major forecasts.

How Fast Is the Switch to Electric Cars?
19 countries have reached the 5% tipping point, and an earlier-than-expected shift is underway—then everything changes

Why is 5% so important? 
Most successful new technologies — electricity, televisions, mobile phones, the internet, even LED lightbulbs — follow an S-shaped adoption curve, with EVs going from zero to 2 million in five years according to market data. Sales move at a crawl in the early-adopter phase, then surprisingly quickly once things go mainstream. (The top of the S curve represents the last holdouts who refuse to give up their old flip phones.)

Electric cars inline tout
In the case of electric vehicles, 5% seems to be the point when early adopters are overtaken by mainstream demand. Before then, sales tend to be slow and unpredictable, and still behind gas cars in most markets. Afterward, rapidly accelerating demand ensues.

It makes sense that countries around the world would follow similar patterns of EV adoption. Most impediments are universal: there aren’t enough public chargers, grid capacity concerns linger, the cars are expensive and in limited supply, buyers don’t know much about them. Once the road has been paved for the first 5%, the masses soon follow.

Thus the adoption curve followed by South Korea starting in 2021 ends up looking a lot like the one taken by China in 2018, which is similar to Norway after its first 5% quarter in 2013. The next major car markets approaching the tipping point this year include Canada, Australia, and Spain, suggesting that within a decade many drivers could be in EVs worldwide. 

 

Related News

Related News

Electric Cars Have Hit an Inflection Point

U.S. EV Manufacturing Expansion accelerates decarbonization as Ford and SK Innovation invest in lithium-ion batteries and truck assembly in Tennessee and Kentucky, building new factories, jobs, and supply chain infrastructure in right-to-work states.

 

Key Points

A rapid scale-up of U.S. electric vehicle production, battery plants, and assembly lines fueled by major investments.

✅ Ford and SK build battery and truck plants by 2025

✅ $11.4B investment, 11,000 jobs in TN and KY

✅ Right-to-work context reshapes union dynamics

 

One theme of this newsletter is that the world’s physical infrastructure will have to massively change if we want to decarbonize the economy by 2050, which the United Nations has said is necessary to avoid the worst effects of the climate crisis. This won’t be as simple as passing a carbon tax or a clean-electricity mandate: Wires will have to be strung as the power grid expands; solar farms will have to be erected; industries will have to be remade. And although that kind of change can be orchestrated only by the government (hence the importance of the infrastructure bills in Congress), consumers and companies will ultimately do most of the work to make it happen.

Take electric cars, for instance. An electric car is an expensive, highly specialized piece of technology, but building one takes even more expensive, specialized technology—tools that tend to be custom-made, large and heavy, and spread across a factory or the world. And if you want those tools to produce a car in a few years, you have to start planning now, as the EV timeline accelerates ahead.

That’s exactly what Ford is doing: Last night, the automaker and SK Innovation, a South Korean battery manufacturer, announced that they were spending $11.4 billion to build two new multi-factory centers in Tennessee and Kentucky that are scheduled to begin production in 2025. The facilities, which will hire a combined 11,000 employees, will manufacture EV batteries and assemble electric F-series pickup trucks. While Ford already has several factories in Kentucky, this will be its first plant in Tennessee in six decades. The 3,600-acre Tennessee facility, located an hour outside Memphis, will be Ford’s largest campus ever—and its first new American vehicle-assembly plant in decades.

The politics of this announcement are worth dwelling on. Ford and SK Innovation were lured to Tennessee with $500 million in incentives; Kentucky gave them $300 million and more than 1,500 acres of free land. Ford’s workers in Detroit have historically been unionized—and, indeed, a source of power in the national labor movement. But with these new factories, Ford is edging into a more anti-union environment: Both Tennessee and Kentucky are right-to-work states, meaning that local laws prevent unions from requiring that only unionized employees work in a certain facility. In an interview, Jim Farley, Ford’s CEO, played coy about whether either factory will be unionized. (Last week, the company announced that it was investing $250 million, a comparative pittance, to expand EV production at its unionized Michigan facilities.)

That news might depress those on the left who hope that old-school unions, such as the United Auto Workers, can enjoy the benefits of electrification. But you can see the outline of a potential political bargain here. Climate-concerned Democrats get to see EV production expand in the U.S., creating opportunities for Canada to capitalize as supply chains shift, while climate-wary Republicans get to add jobs in their home states. (And unions get shafted.) Whether that bargain can successfully grow support for more federal climate policy, further accelerating the financial-political-technological feedback loop that I’ve dubbed “the green vortex,” remains to be seen.

Read: How the U.S. made progress on climate change without ever passing a bill

More important than the announcement is what it portends. In the past, environmentalists have complained that even when the law has required that automakers make climate-friendly cars, they haven’t treated them as a major product. It’s easy to tune out climate-friendly announcements as so much corporate greenwashing, amid recurring EV hype, but Ford’s two new factories represent real money: The automaker’s share of the investment exceeds its 2019 annual earnings. This investment is sufficiently large that Ford will treat EVs as a serious business line.

And if you look around globally, you’ll see that Ford isn’t alone. EVs are no longer the neglected stepchild of the global car industry. Here are some recent headlines:

Nine percent of new cars sold globally this year will be EVs or plug-in hybrids, according to S&P Global. That’s up from 3 percent two years ago, a staggering, iPhone-like rise.

GM, Ford, Volkswagen, Toyota, BMW, and the parent company of Fiat-Chrysler have all pledged that by 2030, at least 40 percent of their new cars worldwide will run on a non-gasoline source, and there is scope for Canada-U.S. collaboration as companies turn to electric cars. A few years ago, the standard forecast was that half of new cars sold in the U.S. would be electric by 2050. That timeline has moved up significantly not only in America, but around the world. (In fact, counter to its high-tech self-image, America is the laggard in this global transition. The two largest markets for EVs worldwide are China and the European Union.)

More remarkably (and importantly), automakers are spending like they actually believe that goal: The auto industry as a whole will pump more than $500 billion into EV investment by 2030, and new assembly deals are putting Canada in the race. Ford’s investment in these two plants represents less than a third of its planned total $30 billion investment in EV production by 2025, and that’s relatively small compared with its peers’. Volkswagen has announced more than $60 billion in investment. Honda has committed $46 billion.

Norway could phase out gas cars ahead of schedule. The country has one of the world’s most robust pro-EV policies, and it is still outperforming its own mandates. In the most recent accounting period, eight out of 10 cars had some sort of electric drivetrain. If the current trend holds, Norway would sell its last gas car in April of next year—and while I doubt the demise will be that steep, consumer preferences are running well ahead of its schedule to ban new gas-car sales by 2025.

 

Related News

View more

GM, Ford Need Electric-Car Batteries, but Take Different Paths to Get Them

EV battery supply strategies weigh in-house cell manufacturing against supplier contracts, optimizing costs, scale, and supply-chain resilience for electric vehicles. Automakers like Tesla, GM-LG Chem, VW-Northvolt, and Ford balance gigafactories, joint ventures, and procurement risks.

 

Key Points

How automakers secure EV battery cells by balancing cost, scale, tech risk, and supply-chain control to meet demand.

✅ In-source cells via gigafactories, JVs, and proprietary chemistries

✅ Contract with LG Chem, Panasonic, CATL, SKI to diversify supply

✅ Manage costs, logistics, IP, and technology obsolescence risks

 

Auto makers, pumping billions of dollars into developing electric cars, are now facing a critical inflection point as they decide whether to get more involved with manufacturing the core batteries or buy them from others.

Batteries are one of an electric vehicle’s most expensive components, accounting for between a quarter and a third of the car’s value. Driving down their cost is key to profitability, executives say.

But whereas the internal combustion engine traditionally has been engineered and built by auto makers themselves, battery production for electric cars is dominated by Asian electronics and chemical firms, such as LG Chem Ltd. and Panasonic Corp. , and newcomers like China’s Contemporary Amperex Technology Co.

California, the U.S.’s largest car market, said last month it would end the sale of new gasoline- and diesel-powered passenger cars by 2035, putting pressure on the auto industry to accelerate its shift to electric vehicles in the coming years.

The race to lock in supplies for electric cars has auto makers taking varied paths, with growing Canada-U.S. collaboration across supply chains.

While most make the battery pack, a large metal enclosure often lining the bottom of the car, they also need the cells that are bundled together to form the core electricity storage.

Tesla several years ago opened its Gigafactory in Nevada to make batteries with Panasonic, which in the shared space would produce cells for the packs. The electric-car maker wanted to secure production specifically for its own models and lower manufacturing and logistics costs.

Now it is looking to in-source more of that production.

While Tesla will continue to buy cells from Panasonic and other suppliers, it is also working on its own cell technology and production capabilities, aiming for cheaper, more powerful batteries to ensure it can keep up with demand for its cars, said Chief Executive Elon Musk last month.

Following Tesla’s lead, General Motors Co. and South Korea’s LG Chem are putting $2.3 billion into a nearly 3-million-square-foot factory in Lordstown, Ohio, highlighting opportunities for Canada to capitalize on the U.S. EV pivot as supply chains evolve, which GM says will eventually produce enough battery cells to outfit hundreds of thousands of cars each year.

In Europe, Volkswagen AG is taking a similar path, investing about $1 billion in Swedish battery startup Northvolt AB, including some funding to build a cell-manufacturing plant in Salzgitter, Germany, as part of a joint venture, and in North America, EV assembly deals in Canada are putting it in the race as well.

Others like Ford Motor Co. and Daimler AG are steering clear of manufacturing their own cells, with executives saying they prefer contracting with specialized battery makers.

Supply-chain disruptions, including lithium shortages, have already challenged some new model launches and put projects at risk, auto makers say.

For instance, Ford and VW have agreements in place with SK Innovation to supply battery cells for future electric-vehicle models. The South Korean company is building a factory in Georgia to help meet this demand, but a fight over trade secrets has put the plant’s future in jeopardy and could disrupt new model launches, both auto makers have said in legal filings.

GM executives say the risk of relying on suppliers has pushed them to produce their own battery cells, albeit with LG Chem.

“We’ve got to be able to control our own destiny,” said Ken Morris, GM’s vice president of electric vehicles.

Bringing the manufacturing in house will give the company more control over the raw materials it purchases and the battery-cell chemistry, Mr. Morris said.

But establishing production, even in a joint venture, is a costly proposition, and it won’t necessarily ensure a timely supply of cells. There are also risks with making big investments on one battery technology because a breakthrough could make it obsolete.

Ford cites those factors in deciding against a similar investment for now.

The company sees the industry’s conventional model of contracting with independent suppliers to build parts as better suited to its battery-cell needs, Ford executive Hau Thai-Tang told analysts in August.

“We have the competitive tension with dealing with multiple suppliers, which allows us to drive the cost down,” Mr. Thai-Tang said, adding that the company expects to pay prices for cells in line with GM and Tesla.


Meanwhile, Ford can leave the capital-intensive task of conducting the research and setting up manufacturing facilities to the battery companies, Mr. Thai-Tang said.

Germany’s Daimler has tried both strategies.

The car company made its own lithium-ion cells through a subsidiary until 2015. But the capital required to scale up was better spent elsewhere, said Ola Källenius, Daimler’s chief executive officer.

The auto maker instead signed long-term supply agreements with Asian companies like Chinese battery-maker CATL and Farasis Energy (Ganzhou) Co., which Daimler invested in last year.

The company has said it is spending roughly $23.6 billion on purchase agreements but keeping its battery research in-house.

“Let’s rather put that capital into what we do best, cars,” Mr. Källenius said.

 

Related News

View more

Renewables Poised to Eclipse Coal in Global Power Generation by 2025

IEA Electricity 2024 Renewables Outlook projects renewable energy surpassing coal in global electricity generation by early 2025, with nuclear power rebounding, clean energy expansion, electrification, and grid upgrades cutting emissions and decarbonizing power systems.

 

Key Points

IEA forecast: renewables beat coal by 2025, nuclear rebounds, speeding cleaner power and deeper emissions cuts by 2026.

✅ Renewables surpass coal by 2025; nuclear output hits records by 2025-2026.

✅ Power demand grows 3.4% avg to 2026 via EVs, data centers, electrification.

✅ Gas displaces coal; grids need investment; drought and supply chains pose risks.

 

The International Energy Agency's latest Electricity 2024 report predicts that renewable energy sources will surpass coal in global electricity generation by early 2025, reaching over one-third of the world's total power output. Additionally, nuclear power is expected to achieve record production levels by 2025, recovering from recent downturns and reflecting low-carbon electricity lessons from the COVID-19 period.

By 2026, the report estimates that renewables and nuclear will jointly contribute to nearly half of the global power generation, up from less than 40 percent in 2023. This shift is crucial as the United Nations emphasizes the transition to clean energy, with Asia to use half of electricity by 2025 highlighting the scale of the challenge, as a key factor in limiting global warming to 1.5 degrees Celsius above preindustrial levels.

IEA Executive Director Fatih Birol highlighted the promising trends of renewables, led by affordable solar power and the resurgence of nuclear power, as key factors covering almost all demand growth over the next three years.

At the COP28 climate summit in Dubai, participants agreed on a plan for phasing out fossil fuels and committed to tripling renewable capacity by 2030. This shift in the electricity mix is expected to reduce emissions from the power sector, which is currently the largest source of carbon dioxide emissions worldwide.

Despite a modest 2.2 percent growth in global electricity demand in 2023, an acceleration to an average annual increase of 3.4 percent is projected from 2024 to 2026. This surge in electricity demand is driven by factors like home and business electrification, the proliferation of electric vehicles, and industrial expansion.

Significant growth in electricity usage from data centers worldwide is anticipated, potentially doubling between 2022 and 2026, as global power demand has surged above pre-pandemic levels. Regulatory updates and technological advancements are essential to manage this energy consumption increase effectively.

Emissions from the electricity sector are expected to decrease following a 1 percent rise in 2023, with a more than 2 percent reduction projected in 2024 and continued declines in subsequent years. This reduced carbon intensity in electricity generation will enhance the emissions savings from electrifying cars and appliances.

Natural gas-fired power is predicted to see a modest increase over the next three years, primarily replacing coal power. While Europe has witnessed sharp declines in gas power, EU wind and solar beat gas last year, growth in the United States, Asia, Africa, and the Middle East is expected due to available liquefied natural gas supplies.

By 2026, fossil fuels are forecasted to account for 54 percent of global generation, dropping below 60 percent for the first time in over five decades. The U.S. is anticipated to boost renewable generation by approximately 10 percent annually between 2024 and 2026, surpassing coal generation in 2024.

The report warns of potential risks to clean energy trends, including droughts impacting hydropower, extreme weather affecting electricity reliability, and supply chain interruptions threatening new renewable and nuclear projects, and a generation mix sensitive to policies and gas prices that could shift trajectories.

Keisuke Sadamori, IEA’s director of energy markets and security, underscores the need for continued investment in grid infrastructure to integrate incoming renewable energy and sustain the power sector's trajectory towards emissions reduction goals.

 

 

Related News

View more

"Remarkable" New Contract Award Adds 10 GW of Renewables to UK Grid

UK Renewable Energy Auction secures 10 GW for the grid at record-low costs, led by offshore wind, floating wind, solar, and onshore wind, with inflation-indexed CfDs delivering £37/MWh strike prices and enhanced energy security.

 

Key Points

Government CfDs add 10 GW of low-cost renewables to the UK grid via offshore wind, floating wind, and solar.

✅ 10 GW capacity: 7 GW offshore wind, 2.2 GW solar, 0.9 GW onshore wind

✅ Record-low £37/MWh offshore; floating wind at £87/MWh CfD strikes

✅ 15-year indexed contracts cut exposure to volatile gas prices

 

The United Kingdom will add 10 gigawatts (GW) of renewable energy capacity to its power grid at one-quarter the cost of fossil gas after concluding its biggest-ever renewable energy auction for new renewable supplies.

The “remarkable new UK renewable auction” will meet one-eighth of the country’s current electricity demand at record low prices of just £37 per megawatt-hour for offshore wind and £87 for floating offshore systems (a dynamic echoed as wind power gains in Canada across other markets), tweeted Carbon Brief Deputy Editor Simon Evans.

“The government is increasing its reliance on a local supply of renewables amid soaring UK power prices driven by a surge in the cost of natural gas following Russia’s invasion of Ukraine,” Bloomberg Green reports. Offshore wind energy “will add about seven gigawatts of clean power capacity to the nation’s fleet from 2026, bringing Britain closer to its target of installing 50 gigawatts by the end of the decade.”

The awards also include 2.2 gigawatts (that’s 2.2 billion watts) of solar and 900 megawatts of onshore wind, even as the UK faces a renewables backlog on some projects, Bloomberg says.

“Eye-watering gas prices are hitting consumers across Europe,” said UK Business and Energy Secretary Kwasi Kwarteng. “The more cheap, clean power we generate within our own borders, the better protected we will be from volatile gas prices that are pushing up bills.”

Citing government figures, Bloomberg says wind generation costs came in 5.8% lower than the previous auction in 2019, reflecting momentum in a sector set to become a trillion-dollar business this decade. Some of the winning bidders included Ørsted, Iberdrola’s Scottish Power unit, Vattenfall, and a consortium of AB Ignitis Grupe, EDP Renovaveis, and Engie.

Offshore wind power costs have fallen dramatically in recent years as the UK supported the industry to scale up and industrialize production of larger, more efficient turbines,” the news story states. Now, “the decline in price developers are willing to accept comes even after the cost of wind turbines rose in recent months as prices increased for key metals like steel and supply chain disruptions created expensive delays.”

The 15-year, fixed-price contracts will be adjusted for inflation when the turbines are ready to start delivering electricity, offering lessons for the U.S. wind sector on contract design.

 

Related News

View more

Toronto to start trial run of 'driverless' electric vehicle shuttles

Toronto Olli 2.0 Self-Driving Shuttle connects West Rouge to Rouge Hill GO with autonomous micro-transit. Electric shuttle pilot by Local Motors and Pacific Western Transportation, funded by Transport Canada, features accessibility, TTC and Metrolinx support.

 

Key Points

An autonomous micro-transit pilot linking West Rouge to Rouge Hill GO, with accessibility and onboard staff.

✅ Last-mile link: West Rouge to Rouge Hill GO

✅ Accessible: ramp, wheelchair securement, A/V announcements

✅ Operated with attendants; funded by Transport Canada

 

The city of Toronto, which recently opened an EV education centre to support adoption, has approved the use of a small, self-driving electric shuttle vehicle that will connect its West Rouge neighbourhood to the Rouge Hill GO station, a short span of a few kilometres.

It’s called the Olli 2.0, and it’s a micro-shuttle with service provided by Local Motors, in partnership with Pacific Western Transportation, as the province makes it easier to build EV charging stations to support growing demand.

The vehicle is designed to hold only eight people, and has an accessibility ramp, a wheelchair securement system, audio and visual announcements, and other features for providing rider information, aligning with transit safety policies such as the TTC’s winter lithium-ion device restrictions across the system.

“We are continuing to move our city forward on many fronts including micro-transit as we manage the effects of COVID-19,” said Mayor John Tory. “This innovative project will provide valuable insight, while embracing innovation that could help us build a better, more sustainable and equitable transportation network.”

At the provincial level, the public EV charging network has faced delays, underscoring infrastructure challenges.


Although the vehicle is “self-driving,” it will still require two people onboard for every trip during the six- to 12-month trial; those people will be a certified operator from Pacific Western Transportation, and either a TTC ambassador from an agency introducing battery electric buses across its fleet, or a Metrolinx customer service ambassador.

Funding for the program comes from Transport Canada, as part of a ten-year pilot program to test automated vehicles on Ontario’s roads that was approved in 2016, and it complements lessons from the TTC’s largest battery-electric bus fleet as well as emerging vehicle-to-grid programs that engage EV owners.

 

Related News

View more

Is it finally time to buy an electric car?

Electric Vehicles deliver longer range, faster charging, and broader price options, with incentives and lease deals reducing costs; evaluate performance, home charging, road trip needs, and vehicle types like SUVs, pickups, and vans.

 

Key Points

Electric vehicles are battery-powered cars that cut costs, boost performance, and charge at home or at fast stations.

✅ Longer range and faster charging reduce range anxiety

✅ Lower operating costs vs gas: fuel, maintenance, incentives

✅ Home Level 2 charging recommended; plan for road trips

 

Electric cars now drive farther, charge faster and come in nearly every price range. But when GMC began promoting its Hummer EV pickup truck to be released this year, it became even clearer that electric cars are primed to go mainstream for many buyers.

Once the domain of environmentalists, then early adopters, electric vehicles may soon have even truck bros kicking the gasoline habit, though sales are still behind gas cars in many markets.

With many models now available or coming soon — and arriving ahead of schedule for several automakers — including a knockoff of the lovable Volkswagen Microbus — you may be wondering if it’s finally time to buy or lease one.

Here are the essential questions to answer before you do.

(Full disclosure: I’m a convert myself after six years and 70,000 gas-free miles.)


1. Can you afford an electric car?
Electric vehicles tend to be pricy to buy but can be more affordable to lease. Finding federal, state and local government incentives can also reduce sticker shock. And, even if the monthly payment is higher than a comparable gas car, operating costs are lower.

Gas vehicles cost an average of $3,356 per year to fuel, tax and insure, while electric cost just $2,722, according to a study by Self Financial, and Consumer Reports finds EVs save money in the long run too. Find out how much you can save with the Department of Energy calculator.

 

2. How far do you need to drive on a single charge?
Although almost 60 percent of all car trips in America were less than 6 miles in 2017, according to the Department of Energy, the phrase “range anxiety” scared many would-be early adopters.

Teslas became popular in part because they offered 250 miles of range. But the range of many electric vehicles between charges is now over 200 miles; even the modestly priced Chevrolet Bolt can travel 259 miles on a single charge.

Still, electric vehicles have a “road trip problem,” according to Josh Sadlier, director of content strategy for car site Edmunds.com. “If you like road trips, you almost have to have two cars — one for around town and one for longer trips,” he says.

 

3. Where will you charge it?
If you live in an apartment without a charging station, this could be a deal breaker.

The number of public chargers increased by 60 percent worldwide in 2019, according to the International Energy Agency. While these stations — some of which are free — are more available, most electric vehicle owners install a home station for faster charging.

Electric vehicles can be charged by plugging into a common 120-volt household outlet, but it’s slow, and understanding charging costs can help you plan home use. To speed up charging, many electric vehicle owners wind up buying a 240-volt charging station and having an electrician install it for a total cost of $1,200, according to the home remodeling website Fixr.

4. What will you use the car for?
While there are a few luxury electric SUVs on the market, most electric vehicles are smaller sedans or hatchbacks with limited cargo capacity. However, the coming wave of electric cars are more versatile, and many experts expect that within a decade these options will be commonplace, including vans, such as the Microbus, and trucks, such as an electric version of the popular Ford F-150 pickup.

5. Do you enjoy performance?
This is where electric vehicles really shine. According to automotive experts, electric cars beat their gas counterparts in these ways:

Immediate response with great low-end acceleration, particularly in the 0-30 mph range.
Sure-footed handling due to the heavy battery mounted under the car, giving it a low center of gravity.
No “shift shock” from changing gears in a conventional gas car’s transmission.
Little noise except from the wind and tires.

 

Other factors
Once you consider the big questions, here are other reasons to make an electric car your next choice:

Reduced environmental guilt. There is a persistent myth that electric vehicles simply move the emissions from the tailpipe to the power generating station. Yes, producing electricity produces emissions, but many electric vehicle owners charge at night when much of the electricity would otherwise be unused. According to research published by the BBC and evidence that they are better for the planet in many scenarios electric cars reduce emissions by an average of 70 percent, depending on where people live.

Less time refueling. It takes only seconds to plug in at home, and the electric vehicle will recharge while you’re doing other things. No more searching for gas stations and standing by as your tank gulps down gasoline.

No oil changes. Dealers like a constant stream of drivers coming in for oil changes so they can upsell other services. Electric vehicles have fewer moving parts and require fewer trips to the dealership for maintenance.

Carpool lanes and other perks. Check your state regulations to see if an electric vehicle gets you access to the carpool lane, free parking or other special advantages.

Enjoy the technology. Yes, electric vehicles are more expensive, but they also tend to offer top-of-the-line comfort, safety features and technology compared with their gas counterparts.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified