Nevada to Power Clean Vehicles with Clean Electricity


electric evs

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Nevada EV Charging Plan will invest $100 million in highway, urban, and public charging, bus depots, and Lake Tahoe sites, advancing NV Energy's SB 448 goals for clean energy, air quality, equity, and tourism recovery.

 

Key Points

Program invests $100M in EV infrastructure under SB 448, led by NV Energy, expanding clean charging across Nevada.

✅ $100M for statewide charging over 3 years

✅ 50% invested in overburdened communities

✅ Supports SB 448, climate and air quality goals

 

The Public Utilities Commission of Nevada approved a $100 million program that will deploy charging stations for electric vehicles (EVs) along highways, in urban areas, at public buildings, in school and transit bus depots, and at Red Rocks and Lake Tahoe, as charging networks compete to expand access. Combined with the state's clean vehicle standards and its aggressive renewable energy requirements, this means cars, trucks, buses, and boats in Nevada will be powered by increasingly clean electricity, reflecting how electricity is changing across the country.

The “Economic Recovery Transportation Electrification Plan” proposed by NV Energy, aligning with utilities' bullish plans for EV charging, was required by Senate Bill (SB) 448 (Brooks). Nevada’s tourism-centric economy was hit hard by the pandemic, and, as an American EV boom accelerates nationwide, the $100 million investment in charging infrastructure for light, medium, and heavy-duty EVs over the next three years was designed to provide much needed economic stimulus without straining the state’s budget.

Half of those investments will be made in communities that have borne a disproportionate share of transportation pollution and have suffered most from COVID-19—a disease that is made more deadly by exposure to local air pollution—and, amid evolving state grid challenges that planners are addressing, ensuring equitable deployment will help protect reliability and health.

SB 448 also requires NV Energy to propose subsequent “Transportation Electrification Plans” to keep the state on track to meet its climate, air quality, and equity goals, recognizing that a much bigger grid may be needed as adoption grows. A  report from MJ Bradley & Associates commissioned by NRDC, Southwest Energy Efficiency Project, and Western Resource Advocates demonstrates Nevada could realize $21 billion in avoided expenditures on gasoline and maintenance, reduced utility bills, and environmental benefits, with parallels to New Mexico's projected benefits highlighted in recent analyses, by 2050 if more drivers make the switch to EVs.

 

Related News

Related News

California looks to electric vehicles for grid stability

California EV V2G explores bi-directional charging, smart charging, and demand response to enhance grid reliability. CPUC, PG&E, and automakers test incentives aligning charging with solar and wind, helping prevent blackouts and curtailment.

 

Key Points

California EV V2G uses two-way charging and smart incentives to support grid reliability during peak demand.

✅ CPUC studies feasibility, timelines, and cost barriers to V2G

✅ Incentives shift charging to align with solar, wind, off-peak hours

✅ High-cost bidirectional chargers and warranties remain hurdles

 

California energy regulators are eyeing the power stored in electric vehicles as they hunt for ways to avoid blackouts caused by extreme weather.

While few EV and their charging ports are equipped to deliver electricity back into the grid during emergencies, the California Public Utilities Commission wants more data on it as the agency rules on steps utilities must take to ensure they have enough power for this summer and next year. A draft CPUC decision due to be discussed this week asks about the feasibility of reversing the charge when needed (Energywire, March 8).

“Very few [EVs], maybe a couple of thousand at the most, can give power to the grid, and even fewer are connected into a charger that can do it,” said Gil Tal, director of the Plug-in Hybrid & Electric Vehicle Research Center at the University of California, Davis. EVs that feature the ability “have it at a more experimental level.”

The issue arises as California, where about half of all U.S. EVs are purchased, examines what role the vehicles can play in keeping lights on and refrigerators running and how a much bigger grid will support them in the long term. Even if grid operators can’t pull from EV batteries en masse, experts say cash and other incentives can prompt drivers to shift charging times, boosting grid stability.

“What we can do is not charge the electric cars at times of high demand” such as during heat waves, Tal said.

The EV focus comes after California’s grid manager last summer imposed rolling blackouts when power supplies ran short during a record-shattering heat wave. State energy regulators across the U.S., as EVs challenge state grids, are also looking at their disaster preparedness as Texas recovers from a winter storm last month that cut off electricity for more than 4 million homes and businesses there.

California’s EV efforts can help other states as they add more renewable power to their grids, said Adam Langton, energy services manager at BMW of North America.

That automaker ran a pilot program with San Francisco-based utility Pacific Gas & Electric Co. (PG&E) looking at whether money and other incentives could prompt EV drivers to charge their cars at different times. The payments successfully shifted charging to the middle of the night, when wind power often is plentiful. It also moved some repowering to mornings and early afternoons, when there’s abundant solar energy.

“That can be a tool that the utilities can use to deal with supply issues,” Langton said. “What our research has shown is that vehicles can contribute to [conservation] needs and emergency supply by shifting their charging time.”

Such measures can also help states avoid having to curtail solar production on days when there’s more generation than needed. On many bright days, California has more solar power than it can use.

“As more states add more renewable energy, we think that they’re going to find that EVs complement that really well with smart charging, because grid coordination can get that charging to align with the renewable energy,” Langton said. “It allows to add more and more renewable energy.”

High-cost equipment a hurdle
The CPUC at a future workshop plans to collect information on leveraging EVs to head off power shortages at key times.

But Tal said it will probably take a decade to get enough EVs capable of exporting electricity back to utilities “in high numbers that can make an impact on the grid.”

Barriers to reaching such “vehicle to grid” integration are technical and economic, he said. EVs export direct current and need a device on the other side that can convert it to alternating current, similar to a solar power inverter for rooftop panels.

However, the equipment known as a V2G capable charger is costly. It ranges from $4,500 to $5,500, according to a 2017 National Renewable Energy Laboratory report.

PG&E and Los Angeles-based Southern California Edison already have “expressed doubt that short-term measures could be developed in time to expand EV participation by summer 2021” in V2G programs, the draft CPUC proposal said. The utilities suggested instead that the agency encourage EV owners to participate in initiatives where they’d get paid for reducing power consumption or sell electricity back to the grid when needed, known as demand response programs.

Still, almost all major EV automakers are looking at two-directional charging, Tal said.

“The incentive is you can get more value for the car,” he said. “The disincentive is you add more miles in a way on the car,” because an owner would be discharging to the grid and re-charging, and “the battery has limited life.”

And right now, discharging a vehicle to the grid would violate many warranties, he said. Car manufacturers would need to agree to change that and could call for compensation in return.

Meanwhile, San Diego Gas & Electric Co., a Sempra Energy subsidy, plans to launch a pilot looking at delivering power to the grid from electric school buses. The six buses in the pilot transport students in El Cajon, Calif., east of San Diego.

“The buses are perfect because of their big batteries and predictable schedule,” Jessica Packard, SDG&E spokesperson, said in an email. “Ultimately, we hope to scale up and deploy these kinds of innovations throughout our grid in the future.”

She declined to say how much power the buses could deliver because the project isn’t yet operating. It’s set to start later this year.

Mobility needs
While BMW and PG&E did not review vehicle-to-grid power transfers in their own 2017 research ending last year, one study in Delaware did. But it was in a university setting about eight years ago and didn’t look at actual drivers, said Langton with BMW.

In their own findings from the San Francisco Bay Area pilot program, BMW and PG&E found that incentives could quickly change driver behavior in terms of charging.

Technology helps: Most new EVs have timers that allow the driver to control when to charge and when to stop charging. Langton said the pilot program got drivers to have their cars charge from roughly 2 to 6 a.m., when electricity rates typically are lowest.

There can be a lot of solar energy during the day, but in summer, optimum charging times get more complicated in California, he said. People want to run their air conditioners during peak heat hours, so it’s important to be able to get EV drivers to shift to less congested times, he said.

With the right incentives or messaging, Langton said, the pilot persuaded drivers to move charging from 10 a.m. to 2 p.m. or noon to 4 p.m. BMW technology allowed for detailed information on battery charge level, ideal charging times and other EV data to be transmitted electronically after plugging in.

The findings are a good first step toward future vehicle-to-grid integration, Langton added.

“One of the things we really pay attention to when we do smart charging is, ‘How does the driver’s mobility needs figure into shifting their charging?'” he said. “We want to make sure that our customers can always do the driving that they need to do.”

The pilot included safeguards such as an opt-out button if the driver wanted to charge immediately. It also made sure the vehicle had a certain level of minimum charge — 15% to 20% — before the delayed smart charging kicked in.

Vehicle-to-grid technology would need to wrestle with the same concepts in a different way. If a car is getting discharged, the driver would want assurances its battery wouldn’t dip below a level that meets their mobility needs, Langton said.

“If that happened even once to a customer, they would probably not want to participate in these programs in the future,” he said.

One group adding charging stations across the country said it isn’t tweaking pricing based on when drivers charge. That’s to help grow EV purchases, said Robert Barrosa, senior director of sales and marketing at Volkswagen AG subsidiary Electrify America, which operates about 450 charging stations in 45 states.

The company has installed battery storage at more than 100 sites to make sure they can provide power at consistent prices even if California or another state calls for energy conservation.

“It’s very important for vehicle adoption that the customer have that,” Barrosa said.

The company could sell that battery storage back to the grid if there are shortfalls, but some market changes are needed first, particularly in California, he said. That’s because the company buys electricity on the retail side but would be sending it back into the wholesale market.

With that cost differential, Barrosa said, “it doesn’t make sense.”

 

Related News

View more

This Thin-Film Turns Heat Waste From Electronics Into Electricity

Pyroelectric Energy Harvesting captures low-grade heat via thin-film materials, converting temperature fluctuations into power for waste heat recovery in electronics, vehicles, and industrial machinery, offering a thermoelectric alternative for microelectronics and exascale systems.

 

Key Points

Thin-film pyroelectric harvesting turns temperature changes into electricity, enabling low-grade waste heat recovery.

✅ Converts low-grade heat fluctuations into usable power

✅ Thin-film design suits microelectronics and edge devices

✅ Alternative to thermoelectrics for waste heat recovery

 

The electronic device you are reading this on is currently producing a modest to significant amount of waste heat that emerging thermoelectric materials could help recover in principle. In fact, nearly 70% of the energy produced annually in the US is ultimately wasted as heat, much of it less than 100 degrees Celsius. The main culprits are computers and other electronic devices, vehicles, as well as industrial machinery. Heat waste is also a big problem for supercomputers, because as more circuitry is condensed into smaller and smaller areas, the hotter those microcircuits get.

It’s also been estimated that a single next-generation exascale supercomputer could feasibly use up to 10% of the energy output of just one coal-fired power station, and that nearly all of that energy would ultimately be wasted as heat.

What if it were possible to convert that heat energy into a useable energy source, and even to generate electricity at night from temperature differences as well?

#google#

It’s not a new idea, of course. In fact the possibility of thermoelectric energy generation, where thermal energy is turned into electricity was recognised as early as 1821, around the same time that Michael Faraday developed the electric motor.

Unfortunately, when the heat source is ‘low grade’, aka less than 100 degrees Celsius, a number of limitations arise, and related approaches for nighttime renewable generation face similar challenges as well. For it to work well, you need materials that have quite high electrical conductivity, but low thermal conductivity. It’s not an easy combination to come by.

Taking a different approach, researchers at the University of California, Berkeley, have developed thin-film that uses pyroelectric harvesting to capture heat-waste and convert heat to electricity in prototype demonstrations. The findings were published today in Nature Materials.

 

Related News

View more

Clean Energy Accounts for 50% of Germany's Electricity

Germany Renewable Energy Milestone marks renewables supplying 53% of power, with record onshore wind and peak solar; hydrogen-ready gas plants and grid upgrades are planned to balance variability amid Germany's coal phase-out.

 

Key Points

It marks renewables supplying 53% of Germany's power, driven by wind and solar records in the energy transition.

✅ 53% of generation and 52% of consumption in 2024

✅ Onshore wind hit record; June solar peaked

✅ 24 GW hydrogen-ready gas plants planned for grid balancing

 

For the first time, renewable energy sources have surpassed half of Germany's electricity production this year, as indicated by data from sustainable energy organizations.

Preliminary figures from the Center for Solar Energy and Hydrogen Research alongside the German Association of Energy and Water Industries (BDEW) show that the contribution of green energy has risen to 53%, echoing how renewable power surpassed fossil fuels in Europe recently, a significant increase from 44% in the previous year.

The year saw a record output from onshore wind energy, as investments in European wind power climbed, and an unprecedented peak in solar energy production in June, as reported by the organizations. Additionally, renewable sources constituted 52% of Germany's total power consumption, marking an increase of approximately five percentage points.

Germany, Europe's leading economy, heavily impacted by Russia's reduced natural gas supplies last year, as Europeans push back from Russian oil and gas across the region, has been leaning on renewable sources to bridge the energy gap. This shift comes even as the country temporarily ramped up coal usage last winter. Having phased out its nuclear power plants earlier this year, Germany aims for an 80% clean energy production by 2030.

In absolute numbers, Germany produced a record level of renewable energy this year, supported by a solar power boost during the energy crisis, approximately 267 billion kilowatt-hours, according to the associations. A decrease of 11% in overall energy production facilitated a reduced reliance on fossil fuels.

However, Europe's transition to more sustainable energy sources, particularly offshore wind, has encountered hurdles such as increased financing and component costs, even as neighbors like Ireland pursue an ambitious green electricity goal within four years. Germany continues to face challenges in expanding its renewable energy capacity, as noted by BDEW’s executive board chairwoman, Kerstin Andreae.

Andreae emphasizes that while energy companies are eager to invest in the transition, they often encounter delays due to protracted approval processes, bureaucratic complexities, and scarcity of land despite legislative improvements.

German government officials are close to finalizing a strategy this week for constructing multiple new gas-fired power plants, despite findings that solar plus battery storage can be cheaper than conventional power in Germany, a plan estimated to cost around 40 billion euros ($44 billion). This initiative is a critical part of Germany's strategy to mitigate potential power shortages that might result from the discontinuation of coal power, particularly given the variability in renewable energy sources.

A crucial meeting involving representatives from the Economy and Finance Ministries, along with the Chancellor's Office, is expected to occur late Tuesday. The purpose is to finalize this agreement, according to sources who requested anonymity due to restrictions on public disclosure.

The Economy Ministry, spearheading this project, confirmed that intensive discussions are ongoing, although no further details were disclosed.

Germany's plan involves utilizing approximately 24 gigawatts (GW) of energy from hydrogen, including emerging offshore green hydrogen options, and gas-fired power plants to compensate for the fluctuations in wind and solar power generation. However, the proposal has faced challenges, particularly regarding the allocation of public funds for these projects, with disagreements arising with the European Union's executive in Brussels.

Environmental groups have also expressed criticism of the strategy. They advocate for an expedited end to fossil fuel usage and remain skeptical about the energy sector's arguments favoring natural gas as a transitional fuel. Despite natural gas emitting less carbon dioxide than coal, environmentalists question its role in Germany's energy future.

 

 

Related News

View more

More than half of new U.S. electric-generating capacity in 2023 will be solar

U.S. 2023 Utility-Scale Capacity Additions highlight surging solar power, expanding battery storage, wind projects, natural gas plants, and new nuclear reactors, boosting grid reliability in Texas and California with record planned installations.

 

Key Points

Planned grid expansions led by solar and battery storage, with wind, natural gas, and nuclear increasing U.S. capacity.

✅ 29.1 GW solar planned; Texas and California lead installations.

✅ 9.4 GW battery storage to more than double current capacity.

✅ Natural gas, wind, and 2.2 GW nuclear round out additions.

 

Developers plan to add 54.5 gigawatts (GW) of new utility-scale electric-generating capacity to the U.S. power grid in 2023, according to our Preliminary Monthly Electric Generator Inventory. More than half of this capacity will be solar power (54%), even as coal generation increase has been reported, followed by battery storage (17%).

 

Solar

U.S. utility-scale solar capacity has been rising rapidly EIA summer outlook since 2010. Despite its upward trend over the past decade 2018 milestone, additions of utility-scale solar capacity declined by 23% in 2022 compared with 2021. This drop in solar capacity additions was the result of supply chain disruptions and other pandemic-related challenges. We expect that some of those delayed 2022 projects will begin operating in 2023, when developers plan to install 29.1 GW of solar power in the United States. If all of this capacity comes online as planned, 2023 will have the most new utility-scale solar capacity added in a single year, more than doubling the current record (13.4 GW in 2021).

In 2023, the most new solar capacity, by far, will be in Texas (7.7 GW) and California (4.2 GW), together accounting for 41% of planned new solar capacity.

 

Battery storage

U.S. battery storage capacity has grown rapidly January generation jump over the past couple of years. In 2023, U.S. battery capacity will likely more than double. Developers have reported plans to add 9.4 GW of battery storage to the existing 8.8 GW of battery storage capacity.

Battery storage systems are increasingly installed with wind and solar power projects. Wind and solar are intermittent sources of generation; they only produce electricity when the wind is blowing or the sun is shining. Batteries can store excess electricity from wind and solar generators for later use. In 2023, we expect 71% of the new battery storage capacity will be in California and Texas, states with significant solar and wind capacity.

 

Natural gas

Developers plan to build 7.5 GW of new natural-gas fired capacity record natural gas output in 2023, 83% of which is from combined-cycle plants. The two largest natural gas plants expected to come online in 2023 are the 1,836 megawatt (MW) Guernsey Power Station in Ohio and the 1,214 MW CPV Three Rivers Energy Center in Illinois.

 

Wind

In 2023, developers plan to add 6.0 GW of utility-scale wind capacity, as renewables poised to eclipse coal in global power generation. Annual U.S. wind capacity additions have begun to slow, following record additions of more than 14 GW in both 2020 and 2021.

The most wind capacity will be added in Texas in 2023, at 2.0 GW. The only offshore wind capacity expected to come online this year is a 130.0 MW offshore windfarm in New York called South Fork Wind.

 

Nuclear

Two new nuclear reactors at the Vogtle nuclear power plant in Georgia nuclear and net-zero are scheduled to come online in 2023, several years later than originally planned. The reactors, with a combined 2.2 GW of capacity, are the first new nuclear units built in the United States in more than 30 years.

Developers and power plant owners report planned additions to us in our annual and monthly electric generator surveys. In the annual survey, we ask respondents to provide planned online dates for generators coming online in the next five years. The monthly survey tracks the status of generators coming online based on reported in-service dates.

 

 

Related News

View more

Offshore chargepoint will power vessels with wind turbine electricity

Offshore Wind Vessel Charging System enables renewable energy offshore charging from wind turbines, delivering clean power to electric vessels and crew transfer ships, boosting range, safety, and net zero maritime operations with reliable, efficient infrastructure.

 

Key Points

A turbine-mounted offshore charger delivering renewable power to electric vessels, extending range and improving safety.

✅ Turbine-mounted, field-proven offshore charging interface

✅ Delivers 100% renewable electricity to electric vessels

✅ Accelerates net zero, cuts maritime fossil fuel use

 

An offshore charging system will power vessels with 100% renewably generated electricity from wind turbines, aligning with projects like battery-electric high-speed ferries now advancing in the United States.

The system, developed by Teesside marine electrical engineering firm MJR Power and Automation, will be presented at the Global Offshore Wind event in Manchester (21-22 June), alongside interest in EV energy storage for buildings that could complement offshore charging solutions.

Known as the Offshore Wind On-Turbine Electrical Vessel Charging System, MJR says the chargepoints will provide efficient, safe and reliable transfer of clean power for crew vehicles and other offshore support vessels, while emerging vehicle-to-grid capacity on wheels concepts highlight the wider role of electric fleets.

“This innovation will break down the existing range barriers and increase the uptake by vessel owners and operators, as demonstrated by electric ships on the B.C. coast moving to fully electric and green propulsion systems for retrofit and new-build vessels,” an announcement said.

“In combination with other field-proven technologies, the charging system will be an important part for government and offshore wind owners and operators to achieve their net zero maritime operations targets, and switch away from fossil fuels, complemented by port initiatives such as all-electric berth at London Gateway now under development. The ability to charge when in the field will significantly accelerate adoption of current emission-free propulsion systems, which will be a major asset for the decarbonisation of the global maritime sector.”

The firm recently announced that construction and in-house testing of the system had been completed. The development project was part of the Clean Maritime Demonstration Competition, funded by the Department for Transport and delivered in partnership with Innovate UK, reflecting wider interest in reversing the charge to the grid for resilient energy systems.

MJR electrical engineer Mohammed Latif said: “Our system will be absolutely crucial in helping governments to deliver on their net zero carbon targets, supported by plans like new UK-Europe interconnectors that strengthen clean energy supply, and I am looking forward to demonstrating how it works and the benefits it offers.”

As part of the project, MJR Power and Automation led a consortium of partners – Ore Catapult, Xceco, Artemis Technologies and Tidal Transit – that all provided expertise.

 

Related News

View more

Alberta renewable energy surge could power 4,500 jobs

Alberta Renewable Energy Boom highlights corporate investments, power purchase agreements, wind and solar capacity gains, grid decarbonization, and job growth, adding 2 GW and $3.7B construction since 2019 in an open electricity market.

 

Key Points

Alberta's PPA-driven wind and solar surge adds 2 GW, cuts grid emissions, creates jobs, and accelerates private builds.

✅ 2 GW added since 2019 via corporate PPAs

✅ Open electricity market enables direct deals

✅ Strong wind and solar resources boost output

 

Alberta has seen a massive increase in corporate investment in renewable energy since 2019, and capacity from those deals is set to increase output by two gigawatts —  enough to power roughly 1.5 million homes. 

“Our analysis shows $3.7 billion worth of renewables construction by 2023 and 4,500 jobs,” Nagwan Al-Guneid, the director of Business Renewables Centre Canada, says. 

The centre is an initiative of the environmental think tank Pembina Institute and provides education and guidance for companies looking to invest in renewable energy or energy offsets across Canada. Its membership is made up of renewable energy companies.

The addition of two gigawatts is over two times the amount of renewable energy added to the grid between 2010 and 2017, according to the Canadian Energy Regulator. 

We’re tripling our Prairies coverage
The Narwhal’s newly minted Prairies bureau is here to bring you stories on energy and the environment you won’t find anywhere else. Stay tapped in by signing up for a weekly dose of our ad‑free, independent journalism.

“This is driven directly by what we call power purchase agreements,” Al-Guneid says. “We have companies from across the country coming to Alberta.”

So far this year, 191 megawatts of renewable energy will be added through purchase agreements, according to the Business Renewables Centre, as diversified energy sources can make better projects overall.

Alberta’s electricity system is unique in Canada — an open market where companies can ink deals directly with private power producers to sell renewable energy and buy a set amount of electricity produced each year, either for use or for offset credits. The financial security provided by those contracts helps producers build out more renewable projects without market risks. Purchasers get cheap renewable energy or credits to meet internal or external emissions goals. 

It differs from other provinces, many of which rely on large hydro capacity and where there is a monopoly, often government-owned, on power supply. 

In those provinces, investment in renewables largely depends on whether the company with the monopoly is in a buying mood, says Blake Shaffer, an economics professor at the University of Calgary who studies electricity markets. 

That’s not the case in Alberta, where the only real regulatory hurdle is applying to connect a project to the grid.

“Once that’s approved, you can just go ahead and build it, and you can sell it,” Shaffer says.

That sort of flexibility has attracted some big investments, including two deals with Amazon in 2021 to purchase 455 megawatts worth of solar power from Calgary-based Greengate Power. There are also big investments from oil companies looking to offset emissions.

The investments are allowing Alberta to decarbonize its grid, largely with the backing of the private sector. 

Shaffer says Alberta is the “renewables capital in Canada,” a powerhouse in both green and fossil energy by many measures.

“That just shocks people because of course their association with Alberta is nothing about renewables, but oil and gas,” Shaffer says. “But it really is the investment centre for renewables in the entire country right now.”

Alberta has ‘embarrassing’ riches in wind energy and solar power
It’s not just the market that is driving Alberta’s renewables boom. According to Shaffer there are three other key factors: an embarrassment of wind and solar riches, the need to transition away from a traditionally dirty, coal-reliant grid and the current high costs of energy. 

Shaffer says the strong and seemingly non-stop winds coming off the foothills of the Rockies in the southwest of the province mean wind power is increasingly competitive and each turbine produces more energy compared to other areas. The same is true for solar, with an abundance of sunny days.

“Southern Alberta and southern Saskatchewan have the best solar insolation,” he says. “You put a panel in Vancouver, or you put a panel in Medicine Hat, and you’re gonna get about 50 per cent more energy out of that panel in Medicine Hat, and they’re gonna cost you the same.”

The spark that set off the surge in investments wasn’t strictly an open-market mechanism. Under the previous NDP government, the province brought in a program that allowed private producers to compete for government contracts, with some solar facilities contracted below natural gas demonstrating cost advantages.

The government agreed to a certain price and the producers were then allowed to sell their electricity on the open market. If the price dropped below what was guaranteed, the province would pay the difference. If, however, the price was higher, the developers would pay the difference to the government. 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.