How France aims to discourage buying of Chinese EVs


ev charger

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

France EV Bonus Eligibility Rules prioritize lifecycle carbon footprint, manufacturing emissions, battery sourcing, and transport impacts, reshaping electric car incentives and excluding many China-made EVs while aiming for WTO-compliant, low-emission industrial policy.

 

Key Points

France's EV bonus rules score lifecycle emissions to favor low-carbon models and limit incentives for China-made EVs.

✅ Scores energy, assembly, transport, and battery criteria

✅ Likely excludes China-made EVs with coal-heavy production

✅ Aims to align incentives with WTO-compliant climate goals

 

France has published new eligibility rules for electric car incentives to exclude EVs made in China, even though carmakers in Europe do not have more affordable rival models on the French market.


WHY IS FRANCE REVISING ITS EV BONUS ELIGIBILITY RULES?
The French government currently offers buyers a cash incentive of between 5,000 and 7,000 euros in cash for eligible models to get more electric cars on the road, at a total cost of 1 billion euros ($1.07 billion) per year.

However, in the absence of cheap European-made EVs, a third of all incentives are going to consumers buying EVs made in China, a French finance ministry source said. The trend has helped spur a Chinese EV push into Europe and a growing competitive gap with domestic producers.

The scheme will be revamped from Dec. 15 to take into account the carbon emitted in a model's manufacturing process.

President Emmanuel Macron and government ministers have made little secret that they want to make sure French state cash is not benefiting Chinese carmakers.


WHAT DO THE NEW RULES DO?
Under the new rules, car models will be scored against government-set thresholds for the amount of energy used to make their materials, in their assembly and transport to market, as well as what type of battery the vehicle has.

Because Chinese industry generally relies heavily on coal-generated electricity, the criteria are likely to put the bonus out of Chinese carmakers' reach.

The government, which is to publish in December the names of models meeting the new standards, says that the criteria are compliant with WTO rules because exemptions are allowed for health and environmental reasons, and similar Canada EV sales regulations are advancing as well.


WILL IT DO ANYTHING?
With Chinese cars estimated to cost 20% less than European-made competitors, the bonus could make a difference for vehicles with a price tag of less than 25,000 euros, amid an accelerating global transition to EVs that is reshaping price expectations.

But French car buyers will have to wait because Stellantis' (STLAM.MI) Slovakia-made e-C3 city car and Renault's (RENA.PA) France-made R5 are not due to hit the market until 2024.

Nonetheless, many EVs made in China will remain competitive even without the cash incentive, reflecting projections that within a decade many drivers could be in EVs.

With a starting price of 30,000 euros, SAIC group's (600104.SS) MG4 will be less expensive than Renault's equivalent Megane compact car, which starts at 38,000 euros - or 33,000 euros with a 5,000-euro incentive.

Since its 46,000-euro starting price is just below the 47,000-euro price threshold for the bonus, Tesla's (TSLA.O) Y model - one of the best selling electric vehicles in France - could in theory also be impacted by the new rules for vehicles made in China.

S&P Global Mobility analyst Lorraine Morard said that even if most Chinese cars are ineligible for the bonus they would probably get 7-8% of France's electric car market next year, even as the EU's EV share continues to rise, instead of 10% otherwise.

Related News

California introduces new net metering regime

California NEM-3 Tariff ushers a successor Net Energy Metering framework, revising export compensation, TOU rates, and non-bypassable charges to balance ratepayer impacts, rooftop solar growth, and energy storage adoption across diverse communities.

 

Key Points

The CPUC's successor NEM policy redefining export credits and rates to sustain customer-sited solar and storage.

✅ Sets export compensation methodology beyond NEM 2.0

✅ Aligns TOU rates and non-bypassable charges with costs

✅ Encourages solar-plus-storage adoption and equity access

 

The California Public Utilities Commission (CPUC) has officially commenced its “NEM-3” proceeding, which will establish the successor Net Energy Metering (NEM) tariff to the “NEM 2.0” program in California. This is a highly anticipated, high-stakes proceeding that will effectively modify the rules for the NEM tariff in California, amid ongoing electricity pricing changes that affect residential rooftop solar – arguably the single most important policy mechanism for customer-sited solar over the last decade.

The CPUC’s recent order instituting rule-making (OIR) filing stated that “the major focus of this proceeding will be on the development of a successor to existing NEM 2.0 tariffs. This successor will be a mechanism for providing customer-generators with credit or compensation for electricity generated by their renewable facilities that a) balances the costs and benefits of the renewable electrical generation facility and b) allows customer-sited renewable generation to grow sustainably among different types of customers and throughout California’s diverse communities.”

This successor tariff proceeding was initiated by Assembly Bill 327, which was signed into law in October of 2013. AB 327 is best known as the legislation that directed the CPUC to create the “NEM 2.0” successor tariff, which was adopted by the CPUC in January of 2016.

The original Net Energy Metering program in California (“NEM 1.0”) effectively enabled full-retail value net metering “allowing NEM customers to be compensated for the electricity generated by an eligible customer-sited renewable resource and fed back to the utility over an entire billing period.” Under the NEM 2.0 tariff, customers were required to pay charges that aligned them more closely with non-NEM customer costs than under the original structure. The main changes adopted when the NEM 2.0 was implemented were that NEM 2.0 customer-generators must: (i) pay a one-time interconnection fee; (ii) pay non-bypassable charges on each kilowatt-hour of electricity they consume from the grid; and (iii) customers were required to transfer to a time-of-use (TOU) rate, with potential changes to electric bills for many customers.

NEM 2.0

The commencement of the NEM-3 OIR was preceded by the publishing of a 318-page Net Energy Metering 2.0 Lookback Study, which was published by Itron, Verdant Associates, and Energy and Environmental Economics. The CPUC-commissioned study had been widely anticipated and was expected to act as the starting reference point for the successor tariff proceeding. Verdant also hosted a webinar, which summarized the study’s inputs, assumptions, draft findings and results.

The study utilized several different tests to study the impact of NEM 2.0. The cost effectiveness analysis tests, which estimate costs and benefits attributed to NEM 2.0 include: (i) total resource cost test, (ii) participant cost test, (iii) ratepayer impact measure test, and (iv) program administrator test. The evaluation also included a cost of service analysis, which estimates the marginal cost borne by the utility to serve a NEM 2.0 customer.

The opening paragraph of the report’s executive summary stated that “overall, we found that NEM 2.0 participants benefit from the structure, while ratepayers see increased rates.” In every test that the author’s conducted the results generally supported this conclusion for residential customers. There were some exceptions in their findings. For example, in the cost of service analysis the report stated that “residential customers that install customer-sited renewable resources on average pay lower bills than the utility’s cost to serve them. On the other hand, nonresidential customers pay bills that are slightly higher than their cost of service after installing customer-sited renewable resources. This is largely due to nonresidential customer rates having demand charges (and other fixed fees), and the lower ratio of PV system size to customer load when compared to residential customers.”

Similar debates over solar rate design, including Massachusetts solar demand charges, highlight how demand charges and TOU decisions can affect customer economics.

NEM-3 timeline

Popular content
The preliminary schedule that the CPUC laid out in its OIR estimates that the proceeding will take roughly 15 months in total, starting with a November 2020 pre-hearing conference.

The real meat of the proceeding, where parties will present their proposals for what they believe the successor tariff should be, as the state considers revamping electricity rates to clean the grid, and really show their hand will not begin until the Spring of 2021. So we’re still a little ways away from seeing the proposals that the key parties to this proceeding, like the Investor Owned Utilities (PG&E, SCE, SDG&E), solar and storage advocates such as SEIA, CALSSA, Vote Solar, and ratepayer advocates like TURN) will submit.

While the outcome for the new successor NEM tariff is anyone’s guess at this point, some industry policy folks are starting to speculate. We think it is safe to assume that the value of exported energy will get reduced, with debates over income-based utility charges also influencing rate design. How much and the mechanism for how exports get valued remains to be seen. Based on the findings from the lookback study, it seems like the reduction in export value will be more severe than what happened when NEM 2.0 got implemented. In NEM 2.0, non-bypassable charges, which are volumetric charges that must be paid on all imported energy and cannot be netted-out by exports, only equated to roughly $0.02 to $0.03/kWh.

Given that the value of exports will almost certainly get reduced, we expect that to be bullish for energy storage as America goes electric and load shapes evolve. Energy storage attachment rates with solar are already steadily rising in California. By the time NEM-3 starts getting implemented, likely in 2022, we think storage attachment rates will likely escalate further.

We would not be surprised to see future storage attachment rates in California look like the Hawaiian market today, which are upwards of 80% for certain types of customers and applications. Two big questions on our mind are: (i) will the NEM 3.0 rules be different for different customer class: residential, CARE (e.g., low-income or disadvantaged communities), and commercial & industrial; (ii) will the CPUC introduce some sort of glidepath or phased in implementation approach?

The outcome of this proceeding will have far reaching implications on the future of customer-sited solar and energy storage in California. The NEM-3 outcome in California may likely serve as precedent for other states, as California exports its energy policies across the West, and utility territories that are expected to redesign their Net Energy Metering tariffs in the coming years.

 

Related News

View more

Intersolar Europe restart 2021: solar power is becoming increasingly popular in Poland

Poland Solar PV Boom drives record installations, rooftop and utility-scale growth, EU-aligned incentives, net metering, PPAs, and auctions, pushing capacity toward 8.3 GW by 2024 while prosumers, grid upgrades, and energy management expand.

 

Key Points

A rapid expansion of Poland's PV market, driven by incentives, PPAs, and prosumers across rooftop and utility-scale.

✅ 2.2 GW added in 2020, triple 2019, led by small-scale prosumers

✅ Incentives: My Current, Clean Air, Agroenergia, net metering

✅ Growth toward 8.3 GW by 2024; PPAs and auctions scale utility

 

Photovoltaics (PV) is booming in Poland. According to SolarPower Europe, 2.2 gigawatts (GW) of solar power was installed in the country in 2020 - nearly three times as much as the 823 megawatts (MW) installed in 2019. This places Poland fourth across Europe, behind Germany, where a solar power boost has been underway (4.8 GW added in 2020), the Netherlands (2.8 GW) and Spain (2.6 GW). So all eyes in the industry are on the up-and-coming Polish market. The solar industry will come together at Intersolar Europe Restart 2021, taking place from October 6 to 8 at Messe München. As part of The smarter E Europe Restart 2021, manufacturers, suppliers, distributors and service providers will all present their products and innovations at the world's leading exhibition for the solar industry.

All signs point to continued strong growth, with renewables on course to set records across markets. An intermediate, more conservative EU Market Outlook forecast from SolarPower Europe expects the Polish solar market to grow by 35 percent annually, meaning that it will have achieved a PV capacity of 8.3 GW by 2024 as solar reshapes Northern Europe's power prices over the medium term. "PV in Poland is booming at every level - from private and commercial PV rooftop systems to large free-standing installations," says Dr. Stanislaw Pietruszko, President of the Polish Society for Photovoltaics (PV Poland). According to the PV Poland, the number of registered small-scale systems - those under 50 kilowatts (kW) - with an average capacity of 6.5 kilowatts (kW) grew from 155,000 (992 MW) at the end of 2019 to 457,400 (3 GW) by the end of 2020. These small-scale systems account for 75 percent of all PV capacity installed in Poland. Larger PV projects with a capacity of 4 GW have already been approved for grid connection, further attesting to the forecast growth.

8,000 people employed in the PV industry
Andrzej Kazmierski, Deputy Director of the Department for Low-emission Economy within the Polish Ministry of Economic Development, Labour and Technology, explained in the Intersolar Europe webinar "A Rising Star: PV Market Poland" at the end of March 2021 that the PV market volume in Poland currently amounts to 2.2 billion euros, with 8,000 people employed in the industry. According to Kazmierski, the implementation of the Renewable Energy Directive (RED II) in the EU, intended to promote energy communities and collective prosumers as well as long-term power purchase agreements (PPAs), will be a critical challenge, and ongoing Berlin PV barriers debates highlight the importance of regulatory coordination. Renewable energy must be integrated with greater focus into the energy system, and energy management and the grids themselves must be significantly expanded as researchers work to improve solar and wind integration. The government seeks to create a framework for stable market growth as well as to strengthen local value creation.


Government incentive programs in Poland
In addition to drastically reduced PV costs, reinforced by China's rapid PV expansion, and growing environmental consciousness, the Polish PV market is being advanced by an array of government-funded incentive programs such as My Current (230 million euros) and Clean Air as well as thermo-modernization. The incentive program Agroenergia (50 million euros) is specifically geared toward farmers and offers low-interest loans or direct subsidies for the construction of solar installations with capacities between 50 kW and 1 MW. Incentive programs for net metering have been extended to small and medium enterprises to provide stronger support for prosumers. Solar installations producing less than 50 kW benefit from a lower value-added tax of just eight percent (compared to the typical 23 percent). The acquisition and installation costs can be offset against income, in turn reducing income tax.
Government-funded auctions are also used to finance large-scale facilities, where the government selects operators of systems running on renewable energy who offer the lowest electricity price and funds the construction of their facilities. The winner of an auction back in December was an investment project for the construction of a 200 MW solar park in the Pomeranian Voivodeship.


Companies turn to solar power for self-consumption
Furthermore, Poland is now playing host to larger solar projects that do not rely on subsidies, as Europe's demand lifts US equipment makers amid supply shifts, such as a 64 MW solar farm in Witnica being built on the border to Germany whose electricity will be sold to a cement factory via a multi-year power purchase agreement. A new factory in Konin (Wielkopolska Voivodeship) for battery cathode materials to be used in electric cars will be powered with 100-percent renewable electricity. Plus, large companies are increasingly turning to solar power for self-consumption. For example, a leading manufacturer of metal furniture in Suwalki (Podlaskie Voivodeship) in northeastern Poland has recently started meeting its demand using a 2 MW roof-mounted and free-standing installation on the company premises.

 

Related News

View more

BC's Kootenay Region makes electric cars a priority

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

View more

U.S. Electric Vehicle Sales Soar Into 2024

U.S. EV Sales Growth reflects rising consumer demand, expanding market share, new tax credits, and robust charging infrastructure, as automakers boost output and quarterly sales under the Inflation Reduction Act drive adoption across states.

 

Key Points

It is the rise in U.S. EV sales and market share, driven by incentives, charging growth, and automaker investment.

✅ Quarterly EV sales and share have risen since Q3 2021.

✅ Share topped 10% in Q3 2023, with states far above.

✅ IRA credits and chargers lower costs and boost adoption.

 

Contrary to any skepticism, the demand for electric vehicles (EVs) in the United States is not dwindling. Data from the Alliance for Automotive Innovation highlights a significant and ongoing increase in EV sales from 2021 through the third quarter of 2023. An upward trend in quarterly sales (depicted as bars on the left axis) and EV sales shares (illustrated by the red line on the right axis) is evident. Sales surged from about 125,000 in Q1 2021 to 185,000 in Q4 2021, and from around 300,000 in Q1 2023 to 375,000 by Q3 2023. Notably, by Q3 2023, annual U.S. EV sales exceeded 1 million for the first time, a milestone often cited as the tipping point for mass adoption in the U.S., marking a 58% increase over the same period in 2022.

EV sales have shown consistent quarterly growth since Q3 2021, and the proportion of EVs in total light-duty vehicle sales is also on the rise. EVs’ share of new sales increased from roughly 3% in Q1 2021 to about 7% in 2022, and further to over 10% in Q3 2023, though they are still behind gas cars in overall market share, for now. For context, according to the U.S. Environmental Protection Agency’s Automotive Trends Report, EVs have reached a 10% market share more quickly than conventional hybrids without a plug, which took about 25 years.

State-level data also indicates that several states exceed national averages in EV sales. California, for example, saw EVs comprising nearly 27% of sales through September 2023, even as a brief Q1 2024 market share dip has been noted nationally. Additionally, 12 states plus the District of Columbia had EV sales shares between 10% and 20% through Q3 2023.

EV sales data by automaker reveal that most companies sold more EVs in Q2 or Q3 2023 than in any previous quarter, mirroring global growth that went from zero to 2 million in five years. Except for Ford, each automaker sold more EVs in the first three quarters of 2023 than in all of 2022. EV sales in Q3 2023 notably increased compared to Q3 2022 for companies like BMW, Tesla, and Volkswagen.

Despite some production scalebacks by Ford and General Motors, these companies, along with others, remain dedicated to an electric future and expect to sell more EVs than ever. The growing consumer interest in EVs is also reflected in recent surveys by McKinsey, J.D. Power, and Consumer Reports, and echoed in Europe where the share of electric cars grew during lockdown months, showing an increasing intent to purchase EVs and a declining interest in gasoline vehicles.

Furthermore, the Inflation Reduction Act of 2022 introduces new tax credits, potentially making EVs more affordable than gasoline counterparts. Investments in charging infrastructure are also expected to increase, especially as EV adoption could drive a 38% rise in U.S. electricity demand, with over $21 billion allocated to boost public chargers from around 160,000 in 2023 to nearly 1 million by 2030.

The shift to EVs is crucial for reducing climate pollution, enhancing public health, and generating economic benefits and jobs, and by 2021 plug-in vehicles had already traveled 19 billion miles on electricity, underscoring real-world progress toward these goals. The current data and trends indicate a robust and positive future for EVs in the U.S., reinforcing the need for strong standards to further encourage investment and consumer confidence in electric vehicles.

 

Related News

View more

Ontario Launches Hydrogen Innovation Fund

Ontario Hydrogen Innovation Fund accelerates clean electricity integration, hydrogen storage, grid balancing, and electrolyzer pilot projects, supporting EV production, green steelmaking, and clean manufacturing under Ontario's Low-Carbon Hydrogen Strategy via IESO-administered funding.

 

Key Points

A $15M program funding hydrogen storage, grid pilots to integrate low-carbon hydrogen into Ontario's power system.

✅ Administered by IESO; applications opened April 2023.

✅ Supports existing, new, and research hydrogen projects.

✅ Backs grid storage, capacity, demand management pilots.

 

The Ontario government is establishing a Hydrogen Innovation Fund that will invest $15 million over the next three years to kickstart and develop opportunities for hydrogen to be integrated into Ontario’s clean electricity system, including hydrogen electricity storage. This launch marks another milestone in the implementation of the province’s Low-Carbon Hydrogen Strategy, supporting a growing hydrogen economy across the province, positioning Ontario as a clean manufacturing hub.

“When energy is reliable, affordable and clean our whole province wins,” said Todd Smith, Minister of Energy. “The Hydrogen Innovation Fund will help to lay the groundwork for hydrogen to contribute to our diverse energy supply, supporting game-changing investments in electric vehicle production and charging infrastructure across the province, green steelmaking and clean manufacturing that will create good paying jobs, grow our economy and reduce emissions.”

Hydrogen Innovation Fund projects would support electricity supply, capacity, battery storage and demand management, and support growth in Ontario’s hydrogen economy. The Fund will support projects across three streams:

Existing facilities already built or operational and ready to evaluate how hydrogen can support Ontario’s clean grid amid an energy storage crunch in Ontario.
New hydrogen facilities not yet constructed but could be in-service by a specified date to demonstrate how hydrogen can support Ontario’s clean grid.
Research studies investigating the feasibility of novel applications of hydrogen or support future hydrogen project decision making.

The Hydrogen Innovation Fund will be administered by the Independent Electricity System Operator, which is opening applications for the fund in April 2023. Natural Resources Canada modelling shows that hydrogen could make up about 30 per cent of the country's fuels and feedstock by 2050, as provinces advance initiatives like a British Columbia hydrogen project demonstrating scale and ambition, and create 100,000 jobs in Ontario. By making investments early to explore applications for hydrogen in our clean electricity sector we are paving the way for the growth of our own hydrogen economy.

“As a fuel that can be produced and used with little to no greenhouse gas emissions, hydrogen has tremendous potential to help us meet our long-term economic and environmental goals,” said David Piccini, Minister of the Environment, Conservation and Parks. “Our government will continue to support innovation and investment in clean technologies that will position Ontario as the clean manufacturing and transportation hub of the future while leading Canada in greenhouse gas emission reductions.”

The province is also advancing work to develop the Niagara Hydrogen Centre, led by Atura Power, which would increase the amount of low-carbon hydrogen produced in Ontario by eight-fold. This innovative project would help balance the electricity grid while using previously unutilized water at the Sir Adam Beck generating station to produce electricity for a hydrogen electrolyzer, reflecting broader electrolyzer investment trends in Canada. To support the implementation of the project, the IESO entered into a contract for grid regulation services at the Sir Adam Beck station starting in 2024, which will support low-carbon hydrogen production at the Niagara Hydrogen Centre.

These investments build on Ontario’s clean energy advantage, which also includes the largest battery storage project planned in southwestern Ontario, as our government makes progress on the Low-Carbon Hydrogen Strategy that laid out eight concrete actions to make Ontario a leader in the latest frontier of energy innovation – the hydrogen economy.

 

Related News

View more

Can food waste be turned into green hydrogen to produce electricity?

Food Waste to Green Hydrogen uses biological production to create clean energy, enabling waste-to-energy, decarbonization, and renewable hydrogen for electricity, industrial processes, and transport fuels, developed at Purdue University Northwest with Purdue Research Foundation licensing.

 

Key Points

A biological process converting food waste into renewable hydrogen for clean energy, electricity, industry, and transport.

✅ Enables rapid, scalable waste-to-hydrogen deployment

✅ Supports grid power, industrial heat, and mobility fuels

✅ Backed by patents, DOE grants, and licensing deals

 

West Lafayette, Indiana-based Purdue Research Foundation recently completed a licensing agreement with an international energy company – the name of which was not disclosed – for the commercialization of a new process discovered at Purdue University Northwest (PNW) for the biological production of green hydrogen from food waste. A second licensing agreement with a company in Indiana is under negotiation.


Food waste into green hydrogen
Researchers say that this new process, which uses food waste to biologically produce hydrogen, can be used as a clean energy source for producing electricity, as well as for chemical and industrial processes like green steel production or as a transportation fuel.

Robert Kramer, professor of physics at PNW and principal investigator for the research, says that more than 30% of all food, amounting to $48 billion, is wasted in the United States each year. That waste could be used to create hydrogen, a sustainable energy source alongside municipal solid waste power options. When hydrogen is combusted, the only byproduct is water vapor.

The developed process has a high production rate and can be implemented quickly to support large H2 energy systems in practice. The process is robust, reliable, and economically viable for local energy production and processes.

The research team has received five grants from the US Department of Energy and the Purdue Research Foundation totaling around $800,000 over the last eight years to develop the science and technology that led to this process, much like advances in advanced nuclear reactors drive clean energy innovation.

Two patents have been issued, and a third patent is currently in the final stages of approval. Over the next nine months, a scale-up test will be conducted, reflecting how power-to-gas storage can integrate with existing infrastructure. Based upon test results, it is anticipated that construction could start on the first commercial prototype within a year.

Last week, a facility designed to turn non-recyclable plastics into green hydrogen was approved in the UK, as other innovations like the seawater power concept progress globally. It is the second facility of its kind there.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.