How France aims to discourage buying of Chinese EVs


ev charger

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

France EV Bonus Eligibility Rules prioritize lifecycle carbon footprint, manufacturing emissions, battery sourcing, and transport impacts, reshaping electric car incentives and excluding many China-made EVs while aiming for WTO-compliant, low-emission industrial policy.

 

Key Points

France's EV bonus rules score lifecycle emissions to favor low-carbon models and limit incentives for China-made EVs.

✅ Scores energy, assembly, transport, and battery criteria

✅ Likely excludes China-made EVs with coal-heavy production

✅ Aims to align incentives with WTO-compliant climate goals

 

France has published new eligibility rules for electric car incentives to exclude EVs made in China, even though carmakers in Europe do not have more affordable rival models on the French market.


WHY IS FRANCE REVISING ITS EV BONUS ELIGIBILITY RULES?
The French government currently offers buyers a cash incentive of between 5,000 and 7,000 euros in cash for eligible models to get more electric cars on the road, at a total cost of 1 billion euros ($1.07 billion) per year.

However, in the absence of cheap European-made EVs, a third of all incentives are going to consumers buying EVs made in China, a French finance ministry source said. The trend has helped spur a Chinese EV push into Europe and a growing competitive gap with domestic producers.

The scheme will be revamped from Dec. 15 to take into account the carbon emitted in a model's manufacturing process.

President Emmanuel Macron and government ministers have made little secret that they want to make sure French state cash is not benefiting Chinese carmakers.


WHAT DO THE NEW RULES DO?
Under the new rules, car models will be scored against government-set thresholds for the amount of energy used to make their materials, in their assembly and transport to market, as well as what type of battery the vehicle has.

Because Chinese industry generally relies heavily on coal-generated electricity, the criteria are likely to put the bonus out of Chinese carmakers' reach.

The government, which is to publish in December the names of models meeting the new standards, says that the criteria are compliant with WTO rules because exemptions are allowed for health and environmental reasons, and similar Canada EV sales regulations are advancing as well.


WILL IT DO ANYTHING?
With Chinese cars estimated to cost 20% less than European-made competitors, the bonus could make a difference for vehicles with a price tag of less than 25,000 euros, amid an accelerating global transition to EVs that is reshaping price expectations.

But French car buyers will have to wait because Stellantis' (STLAM.MI) Slovakia-made e-C3 city car and Renault's (RENA.PA) France-made R5 are not due to hit the market until 2024.

Nonetheless, many EVs made in China will remain competitive even without the cash incentive, reflecting projections that within a decade many drivers could be in EVs.

With a starting price of 30,000 euros, SAIC group's (600104.SS) MG4 will be less expensive than Renault's equivalent Megane compact car, which starts at 38,000 euros - or 33,000 euros with a 5,000-euro incentive.

Since its 46,000-euro starting price is just below the 47,000-euro price threshold for the bonus, Tesla's (TSLA.O) Y model - one of the best selling electric vehicles in France - could in theory also be impacted by the new rules for vehicles made in China.

S&P Global Mobility analyst Lorraine Morard said that even if most Chinese cars are ineligible for the bonus they would probably get 7-8% of France's electric car market next year, even as the EU's EV share continues to rise, instead of 10% otherwise.

Related News

Low-emissions sources are set to cover almost all the growth in global electricity demand in the next three years

IEA Electricity Market Outlook 2023-2025 projects faster demand growth as renewables and nuclear dominate supply, stabilizing power-sector carbon emissions, with Asia leading expansion despite energy crisis shocks and weather-driven volatility.

 

Key Points

IEA forecast for 2023-2025 electricity demand: renewables and nuclear meet growth as power-sector emissions hold steady.

✅ Asia drives >70% of demand growth

✅ Renewables and nuclear meet most new supply

✅ CO2 intensity declines; grid flexibility vital

 

The world’s electricity demand growth slowed only slightly in 2022, despite headwinds from the energy crisis, and is expected to accelerate in the years ahead

Renewables are set to dominate the growth of the world’s electricity supply over the next three years as, renewables eclipse coal in global generation, together with nuclear power they meet the vast majority of the increase in global demand through to 2025, making significant rises in the power sector’s carbon emissions unlikely, according to a new IEA report.

After slowing slightly last year to 2% amid the turmoil of the global energy crisis and exceptional weather conditions in some regions, the growth in world electricity demand is expected to accelerate to an average of 3% over the next three years, the IEA’s Electricity Market Report 2023 finds. Emerging and developing economies in Asia are the driving forces behind this faster pace, which is a step up from average growth of 2.4% during the years before the pandemic and above pre-pandemic levels globally.

More than 70% of the increase in global electricity demand over the next three years is expected to come from China, India and Southeast Asia, as Asia’s power use nears half of the world by mid-decade, although considerable uncertainties remain over trends in China as its economy emerges from strict Covid restrictions. China’s share of global electricity consumption is currently forecast to rise to a new record of one-third by 2025, up from one-quarter in 2015. At the same time, advanced economies are seeking to expand electricity use to displace fossil fuels in sectors such as transport, heating and industry.

“The world’s growing demand for electricity is set to accelerate, adding more than double Japan’s current electricity consumption over the next three years,” said IEA Executive Director Fatih Birol. “The good news is that renewables and nuclear power are growing quickly enough to meet almost all this additional appetite, suggesting we are close to a tipping point for power sector emissions. Governments now need to enable low-emissions sources to grow even faster and drive down emissions so that the world can ensure secure electricity supplies while reaching climate goals.”

While natural gas-fired power generation in the European Union is forecast to fall in the coming years, as wind and solar outpaced gas in 2022, based on current trends, significant growth in the Middle East is set to partly offset this decrease. Sharp spikes in natural gas prices amid the energy crisis have in turn fuelled soaring electricity prices in some markets, particularly in Europe, prompting debate in policy circles over reforms to power market design.

Meanwhile, expected declines in coal-fired generation in Europe and the Americas are likely to be matched by a rise in the Asia-Pacific region, despite increases in nuclear power deployment and restarts of plants in some countries such as Japan. This means that after reaching an all-time high in 2022, carbon dioxide (CO2) emissions from global power generation are set to remain around the same level through 2025.

The strong growth of renewables means their share of the global power generation mix is forecast to rise from 29% in 2022 to 35% in 2025, with the shares of coal- and gas-fired generation falling. As a result, the CO2 intensity of global power generation will continue to decrease in the coming years. Europe bucked this global trend last year, however. The CO2 intensity of Europe’s power generation increased as a result of higher use of coal and gas amid steep drops in output from both hydropower, due to drought, and nuclear power, due to plant closures and maintenance. This setback will be temporary, though, as Europe’s power generation emissions are expected to decrease on average by about 10% a year through 2025.

Electricity demand trends varied widely by region in 2022. India’s electricity consumption rose strongly, while China’s growth was more subdued due to its zero-Covid policy weighing heavily on economic activity. The United States recorded a robust increase in demand, driven by economic activity and higher residential use amid hotter summer weather and a colder-than-normal winter, even as electricity sales projections continue to decline according to some outlooks.

Demand in the European Union contracted due to unusually mild winter weather and a decline in electricity consumption in the industrial sector, which significantly scaled back production because of high energy prices and supply disruptions caused by Russia’s invasion of Ukraine. The 3.5% decrease in EU demand was its second largest percentage decline since the global financial crisis in 2009, with the largest being the exceptional contraction due to the COVID-19 shock in 2020.

The new IEA report notes that electricity demand and supply worldwide are becoming increasingly weather dependent, with extreme conditions a recurring theme in 2022. In addition to the drought in Europe, there were heatwaves in India, resulting in the country’s highest ever peak in power demand. Similarly, central and eastern regions of China were hit by heatwaves and drought, which caused demand for air conditioning to surge amid reduced hydropower generation in Sichuan province. The United States also saw severe winter storms in December, triggering massive power outages.

These highlight the need for faster decarbonisation and accelerated deployment of clean energy technologies, the report says. At the same time, as the clean energy transition gathers pace, the impact of weather events on electricity demand will intensify due to the increased electrification of heating, while the share of weather-dependent renewables will continue to grow in the generation mix. In such a world, increasing the flexibility of power systems, which are under growing strain across grids and markets, while ensuring security of supply and resilience of networks will be crucial.

 

Related News

View more

Spread of Electric Cars Sparks Fights for Control Over Charging

Utility-Controlled EV Charging shapes who builds charging stations as utilities, regulators, and private networks compete over infrastructure, grid upgrades, and pricing, impacting ratepayers, competition, and EV adoption across states seeking cleaner transport.

 

Key Points

Utility-controlled EV charging is utilities building charging networks affecting rates, competition and grid costs.

✅ Regulated investment may raise rates before broader savings.

✅ Private firms warn monopolies stifle competition and innovation.

✅ Regulators balance access, equity, and grid upgrade needs.

 

Electric vehicles are widely seen as the automobile industry’s future, but a battle is unfolding in states across America over who should control the charging stations that could gradually replace fuel pumps.

From Exelon Corp. to Southern California Edison, utilities have sought regulatory approval to invest millions of dollars in upgrading their infrastructure as state power grids adapt to increased charging demand, and, in some cases, to own and operate chargers.

The proposals are sparking concerns from consumer advocates about higher electric rates and oil companies about subsidizing rivals. They are also drawing opposition from startups that say the successors to gas stations should be open to private-sector competition, not controlled by monopoly utilities.

That debate is playing out in regulatory commissions throughout the U.S. as states and utilities promote wider adoption of electric vehicles. At stake are charging infrastructure investments expected to total more than $13 billion over the next five years, as an American EV boom accelerates, according to energy consulting firm Wood Mackenzie. That would cover roughly 3.2 million charging outlets.

Calvin Butler Jr., who leads Exelon’s utilities business, said many states have grown more open to the idea of utilities becoming bigger players in charging as electric vehicles have struggled to take off in the U.S., where they make up only around 2% of new car sales.

“When the utilities are engaged, there’s quicker adoption because the infrastructure is there,” he said.

Major auto makers including General Motors Co. and Ford Motor Co. are accelerating production of electric vehicles, and models like Tesla’s Model 3 are shaping utility planning, and a number of states have set ambitious EV goals—most recently California, which aims to ban the sale of new gasoline-powered cars by 2035. But a patchy charging-station network remains a huge impediment to mass EV adoption.

Democratic presidential candidate Joe Biden has called for building more than 500,000 new public charging outlets in a decade as part of his plan to combat climate change, amid Biden’s push to electrify the transportation sector. But exactly how that would happen is unclear. The U.S. currently has fewer than 100,000 public outlets, according to the Energy Department. President Trump, who has weakened federal tailpipe emissions targets, hasn’t put forward an electric-vehicle charging plan, though he backed a 2019 transportation bill that would have provided $1 billion in grants to build alternative fueling infrastructure, including for electric vehicles.

Charging access currently varies widely by state, as does utility involvement, with many utilities bullish course on EV charging to support growth, which can range from providing rebates on home chargers to preparing sites for public charging—and even owning and operating the equipment needed to juice up electric vehicles.

As of September, regulators in 24 states had signed off on roughly $2.6 billion of utility investment in transportation electrification, according to Atlas Public Policy, a Washington, D.C., policy firm. More than half of that spending was authorized in California, where electric vehicle adoption is highest.

Nearly a decade ago, California blocked utilities from owning most charging equipment, citing concerns about potentially stifling competition. But the nation’s most populous state reversed course in 2014, seeking to spur electrification.

Regulators across the country have since been wrestling with similar questions, generating a patchwork of rules.

Maryland regulators signed off last year on a pilot program allowing subsidiaries of Exelon and FirstEnergy Corp. to own and operate public charging stations on government property, provided that the drivers who use them cover at least some of the costs.

Months later, the District of Columbia rejected an Exelon subsidiary’s request to own public chargers, saying independent charging companies had it covered.

Some charging firms argue utilities shouldn’t be given monopolies on car charging, though they might need to play a role in connecting rural customers and building stations where they would otherwise be uneconomical.

“Maybe the utility should be the supplier of last resort,” said Cathy Zoi, chief executive of charging network EVgo Services LLC, which operates more than 800 charging stations in 34 states.

Utility charging investments generally are expected to raise customers’ electricity bills, at least initially. California recently approved the largest charging program by a single utility to date: a $436 million initiative by Southern California Edison, an arm of Edison International, as the state also explores grid stability opportunities from EVs. The company said it expects the program to increase the average residential customer’s bill by around 50 cents a month.

But utilities and other advocates of electrification point to studies indicating greater EV adoption could help reduce electricity rates over time, by giving utilities more revenue to help cover system upgrades.

Proponents of having utilities build charging networks also argue that they have the scale to do so more quickly, which would lead to faster EV adoption and environmental improvements such as lower greenhouse gas emissions and cleaner air. While the investments most directly help EV owners, “they accrue immediate benefits for everyone,” said Jill Anderson, a Southern California Edison senior vice president.

Some consumer advocates are wary of approving extensive utility investment in charging, citing the cost to ratepayers.

“It’s like, ‘Pay me now, and maybe someday your rates will be less,’” said Stefanie Brand, who advocates on behalf of ratepayers for the state of New Jersey, where regulators have yet to sign off on any utility proposals to invest in electric vehicle charging. “I don’t think it makes sense to build it hoping that they will come.”

Groups representing oil-and-gas companies, which stand to lose market share as people embrace electric vehicles, also have criticized utility charging proposals.

“These utilities should not be able to use their monopoly power to use all of their customers’ resources to build investments that definitely won’t benefit everybody, and may or may not be economical at this point,” said Derrick Morgan, who leads federal and regulatory affairs at the American Fuel & Petrochemical Manufacturers, a trade organization.

Utility executives said their companies have long been used to further government policy objectives deemed to be in the public interest, drawing on lessons from 2021 to guide next steps, such as improving energy efficiency.

“This isn’t just about letting market forces work,” said Mike Calviou, senior vice president for strategy and regulation at National Grid PLC’s U.S. division.

 

Related News

View more

Renewables became the second-most prevalent U.S. electricity source in 2020

2020 U.S. Renewable Electricity Generation set a record as wind, solar, hydro, biomass, and geothermal produced 834 billion kWh, surpassing coal and nuclear, second only to natural gas in nationwide power output.

 

Key Points

The record year when renewables made 834 billion kWh, topping coal and nuclear in U.S. electricity.

✅ Renewables supplied 21% of U.S. electricity in 2020

✅ Coal output fell 20% y/y; nuclear slipped 2% on retirements

✅ EIA forecasts renewables rise in 2021-2022; coal rebounds

 

In 2020, renewable energy sources (including wind, hydroelectric, solar, biomass, and geothermal energy) generated a record 834 billion kilowatthours (kWh) of electricity, or about 21% of all the electricity generated in the United States. Only natural gas (1,617 billion kWh) produced more electricity than renewables in the United States in 2020. Renewables surpassed both nuclear (790 billion kWh) and coal (774 billion kWh) for the first time on record. This outcome in 2020 was due mostly to significantly less coal use in U.S. electricity generation and steadily increased use of wind and solar generation over time, amid declining consumption trends nationwide.

In 2020, U.S. electricity generation from coal in all sectors declined 20% from 2019, while renewables, including small-scale solar, increased 9%. Wind, currently the most prevalent source of renewable electricity in the United States, grew 14% in 2020 from 2019, and the EIA expects solar and wind to be larger sources in summer 2022, reflecting continued growth. Utility-scale solar generation (from projects greater than 1 megawatt) increased 26%, and small-scale solar, such as grid-connected rooftop solar panels, increased 19%, while early 2021 January power generation jumped year over year.

Coal-fired electricity generation in the United States peaked at 2,016 billion kWh in 2007 and much of that capacity has been replaced by or converted to natural gas-fired generation since then. Coal was the largest source of electricity in the United States until 2016, and 2020 was the first year that more electricity was generated by renewables and by nuclear power than by coal (according to our data series that dates back to 1949). Nuclear electric power declined 2% from 2019 to 2020 because several nuclear power plants retired and other nuclear plants experienced slightly more maintenance-related outages.

We expect coal-fired generation to increase in the United States during 2021 as natural gas prices continue to rise and as coal becomes more economically competitive. Based on forecasts in our Short-Term Energy Outlook (STEO), we expect coal-fired electricity generation in all sectors in 2021 to increase 18% from 2020 levels before falling 2% in 2022. We expect U.S. renewable generation across all sectors to increase 7% in 2021 and 10% in 2022, and in 2021, non-fossil fuel sources accounted for about 40% of U.S. electricity. As a result, we forecast coal will be the second-most prevalent electricity source in 2021, and renewables will be the second-most prevalent source in 2022. We expect nuclear electric power to decline 2% in 2021 and 3% in 2022 as operators retire several generators.

 

Related News

View more

BWE - Wind power potential even higher than expected

German Wind Power 2030 Outlook highlights onshore and offshore growth, repowering, higher full-load hours, and efficiency gains. Deutsche WindGuard, BWE, and LEE NRW project 200+ TWh, potentially 500 TWh, covering rising electricity demand.

 

Key Points

Forecast: efficiency and full-load gains could double onshore wind to 200+ TWh; added land could lift output to 500 TWh.

✅ Modern turbines and repowering boost full-load hours and yields

✅ Onshore generation could hit 200+ TWh on existing areas by 2030

✅ Expanding land to 2% may enable 500 TWh; offshore adds more

 

Wind turbines have become more and more efficient over the past two decades, a trend reflected in Denmark's new green record for wind-powered generation.

A new study by Deutsche WindGuard calculates the effect on the actual generation volumes for the first time, underscoring Germany's energy transition balancing act as targets scale. Conclusion of the analysis: The technical progress enables a doubling of the wind power generation by 2030.

Progressive technological developments make wind turbines more powerful and also enable more and more full-load hours, with wind leading the power mix in many markets today. This means that more electricity can be generated continuously than previously assumed. This is shown by a new study by Deutsche WindGuard, which was commissioned by the Federal Wind Energy Association (BWE) and the State Association of Renewable Energies NRW (LEE NRW).

The study 'Full load hours of wind turbines on land - development, influences, effects' describes in detail for the first time the effects of advances in wind energy technology on the actual generation volumes. It can thus serve as the basis for further calculations and potential assessments, reflecting milestones like UK wind surpassing coal in 2016 in broader analyses.

The results of the investigation show that the use of modern wind turbines with higher full load hours alone on the previously designated areas could double wind power generation to over 200 terawatt hours (TWh) by 2030. With an additional area designation, generation could even be increased to 500 TWh. If the electricity from offshore wind energy is added, the entire German electricity consumption from wind energy could theoretically be covered, and renewables recently outdelivered coal and nuclear in Germany as a sign of momentum: The current electricity consumption in Germany is currently a good 530 TWh, but will increase in the future.

Christian Mildenberger, Managing Director of LEE NRW: 'Wind can do much more: In the past 20 years, technology has made great leaps and bounds. Modern wind turbines produce around ten times as much electricity today as those built at the turn of the millennium. This must also be better reflected in potential studies by the federal and state governments. '

Wolfram Axthelm, BWE Managing Director: 'We need a new look at the existing areas and the repowering. Today in Germany not even one percent of the area is designated for wind energy inland. But even with this we could cover almost 40 percent of the electricity demand by 2030. If this area share were increased to only 2 percent of the federal area, it would be almost 100 percent of the electricity demand! Wind energy is indispensable for a CO2-neutral future. This requires a clever provision of space in all federal states. '

Dr. Dennis Kruse, Managing Director of Deutsche WindGuard: 'It turns out that the potential of onshore wind energy in Germany is still significantly underestimated. Modern wind turbines achieve a significantly higher number of full load hours than previously assumed. That means: The wind can be used more and more efficiently and deliver more income. '

On the areas already designated today, numerous older systems will be replaced by modern ones by 2030 (repowering). However, many old systems will still be in operation. According to Windguard's calculations, the remaining existing systems, together with around 12,500 new, modern wind systems, could generate 212 TWh in 2030. If the area backdrop were expanded from 0.9 percent today to 2 percent of the land area, around 500 TWh would be generated by inland wind, despite grid expansion challenges in Europe that shape deployment.

The ongoing technological development must also be taken into account. The manufacturers of wind turbines are currently working on a new class of turbines with an output of over seven megawatts that will be available in three to five years. According to calculations by the LEE NRW, by 2040 the same number of wind turbines as today could produce over 700 TWh of electricity inland. The electricity demand, which will increase in the future due to electromobility, heat pumps and the production of green hydrogen, can thus be completely covered by a combination of onshore wind, offshore wind, solar power, bioenergy, hydropower and geothermal energy, and a net-zero roadmap for Germany points to significant cost reductions.

 

Related News

View more

Here's why the U.S. electric grid isn't running on 100% renewable energy yet

US Renewable Energy Transition is the shift from fossil fuels to wind, solar, and nuclear, targeting net-zero emissions via grid modernization, battery storage, and new transmission to replace legacy plants and meet rising electrification.

 

Key Points

The move to decarbonize electricity by scaling wind, solar, and nuclear with storage and transmission upgrades.

✅ Falling LCOE makes wind and solar competitive with gas and coal.

✅ 4-hour lithium-ion storage shifts solar to evening peak demand.

✅ New high-voltage transmission links resource-rich regions to load.

 

Generating electricity to power homes and businesses is a significant contributor to climate change. In the United States, one quarter of greenhouse gas emissions come from electricity production, according to the Environmental Protection Agency.

Solar panels and wind farms can generate electricity without releasing any greenhouse gas emissions, and recent research suggests wind and solar could meet about 80% of U.S. demand with supportive infrastructure. Nuclear power plants can too, although today’s plants generate long-lasting radioactive waste, which has no permanent storage repository.

But the U.S. electrical sector is still dependent on fossil fuels. In 2021, 61 percent of electricity generation came from burning coal, natural gas, or petroleum. Only 20 percent of the electricity in the U.S. came from renewables, mostly wind energy, hydropower and solar energy, according to the U.S. Energy Information Administration, and in 2022 renewable electricity surpassed coal nationwide as portfolios shifted. Another 19 percent came from nuclear power.

The contribution from renewables has been increasing steadily since the 1990s, and the rate of increase has accelerated, with renewables projected to reach one-fourth of U.S. generation in the near term. For example, wind power provided only 2.8 billion kilowatt-hours of electricity in 1990, doubling to 5.6 billion in 2000. But from there, it skyrocketed, growing to 94.6 billion in 2010 and 379.8 billion in 2021.

That’s progress, as the U.S. moves toward 30% electricity from wind and solar this decade, but it’s not happening fast enough to eliminate the worst effects of climate change for our descendants.

“We need to eliminate global emissions of greenhouse gases by 2050,” philanthropist and technologist Bill Gates wrote in his 2023 annual letter. “Extreme weather is already causing more suffering, and if we don’t get to net-zero emissions, our grandchildren will grow up in a world that is dramatically worse off.”

And the problem is actually bigger than it looks, even as pathways to zero-emissions electricity by 2035 are being developed.

“We need not just to create as much electricity as we have now, but three times as much,” says Saul Griffith, an entrepreneur who’s sold companies to Google and Autodesk and has written books on mass electrification. To get to zero emissions, all the cars and heating systems and stoves will have to be powered with electricity, said Griffith. Electricity is not necessarily clean, but at least it it can be, unlike gas-powered stoves or gasoline-powered cars.

The technology to generate electricity with wind and solar has existed for decades. So why isn’t the electric grid already 100% powered by renewables? And what will it take to get there?

First of all, renewables have only recently become cost-competitive with fossil fuels for generating electricity. Even then, prices depend on the location, Paul Denholm of the National Renewable Energy Laboratory told CNBC.

In California and Arizona, where there is a lot of sun, solar energy is often the cheapest option, whereas in places like Maine, solar is just on the edge of being the cheapest energy source, Denholm said. In places with lots of wind like North Dakota, wind power is cost-competitive with fossil fuels, but in the Southeast, it’s still a close call.

Then there’s the cost of transitioning the current power generation infrastructure, which was built around burning fossil fuels, and policymakers are weighing ways to meet U.S. decarbonization goals as they plan grid investments.

“You’ve got an existing power plant, it’s paid off. Now you need renewables to be cheaper than running that plant to actually retire an old plant,” Denholm explained. “You need new renewables to be cheaper just in the variable costs, or the operating cost of that power plant.”

There are some places where that is true, but it’s not universally so.

“Primarily, it just takes a long time to turn over the capital stock of a multitrillion-dollar industry,” Denholm said. “We just have a huge amount of legacy equipment out there. And it just takes awhile for that all to be turned over.”

 

Intermittency and transmission
One of the biggest barriers to a 100% renewable grid is the intermittency of many renewable power sources, the dirty secret of clean energy that planners must manage. The wind doesn’t always blow and the sun doesn’t always shine — and the windiest and sunniest places are not close to all the country’s major population centers.

Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
The solution is a combination of batteries to store excess power for times when generation is low, and transmission lines to take the power where it is needed.

Long-duration batteries are under development, but Denholm said a lot of progress can be made simply with utility-scale batteries that store energy for a few hours.

“One of the biggest problems right now is shifting a little bit of solar energy, for instance, from say, 11 a.m. and noon to the peak demand at 6 p.m. or 7 p.m. So you really only need a few hours of batteries,” Denholm told CNBC. “You can actually meet that with conventional lithium ion batteries. This is very close to the type of batteries that are being put in cars today. You can go really far with that.”

So far, battery usage has been low because wind and solar are primarily used to buffer the grid when energy sources are low, rather than as a primary source. For the first 20% to 40% of the electricity in a region to come from wind and solar, battery storage is not needed, Denholm said. When renewable penetration starts reaching closer to 50%, then battery storage becomes necessary. And building and deploying all those batteries will take time and money.
 

 

Related News

View more

Rhode Island issues its plan to achieve 100% renewable electricity by 2030

Rhode Island 100% Renewable Electricity by 2030 outlines pathways via offshore wind, retail solar, RECs, and policy reforms, balancing decarbonization, grid reliability, economics, and equity to close a 4,600 GWh supply gap affordably.

 

Key Points

A statewide plan to meet all electricity demand with renewables by 2030 via offshore wind, solar, and REC policies.

✅ Up to 600 MW offshore wind could add 2,700 GWh annually

✅ Retail solar programs may supply around 1,500 GWh per year

✅ Amend RES to retain RECs and align supply with real-time demand

 

A year ago, Executive Order 20-01 cemented in a place Rhode Island’s goal to meet 100% of the state’s electricity demand with renewable energy by 2030, aligning with the road to 100% renewables seen across states. The Rhode Island Office of Energy Resources (OER) worked through the year on an economic and energy market analysis, and developed policy and programmatic pathways to meet the goal.

In the most recent development, OER and The Brattle Group co-authored a report detailing how this goal will be achieved, The Road to 100% Renewable Electricity – The Pathways to 100%.

The report includes economic analysis of the key factors that will guide Rhode Island as it accelerates adoption of carbon-free renewable resources, complementing efforts that are tracking progress on 100% clean energy targets nationwide.

The pathway rests on three principles: decarbonization, economics and policy implementation, goals echoed in Maine’s 100% renewable electricity target planning.

The report says the state needs to address the gap between projected electricity demand in 2030 and projected renewable generation capacity. The report predicts a need for 4,600 GWh of additional renewable energy to close the gap. Deploying that much capacity represents a 150% increase in the amount of renewable energy the state has procured to date. The final figure could as much as 600-700 GWh higher or lower.

Addressing the gap
The state is making progress to close the gap.

Rhode Island recently announced plans to solicit proposals for up to 600 MW of additional offshore wind resources. A draft request for proposals (RFP) is expected to be filed for regulatory review in the coming months, aligning with forecasts that one-fourth of U.S. electricity will soon be supplied by renewables as markets mature. Assuming the procurement is authorized and the full 600 MW is acquired, new offshore wind would add about 2,700 GWh per year, or about 35% of 2030 electricity demand.

Beyond this offshore wind procurement, development of retail solar through existing programs could add another 1,500 GWh per year. That leaves a smaller–though still sizable–gap of around 400 GWh per year of renewable electricity.

All this capacity will come with a hefty price. The report finds that rate impacts would likely boost e a typical 2030 monthly residential bill by about $11 to $14 with utility-scale renewables, or by as much as $30 if the entire gap were to be filled with retail solar.

The upside is that if the renewable resources are developed in-state, the local economic activity would boost Rhode Island’s gross domestic product and local jobs, especially when compared to procuring out-of-state resources or buying Renewable Energy Credits (RECs), and comes as U.S. renewable electricity surpassed coal in 2022 across the national grid.

Policy recommendations
One policy item that has to be addressed is the state’s Renewable Energy Standard (RES), which currently calls for meeting 38.5% of electricity deliveries with renewables by 2035, even as the federal 2035 clean electricity goal sets a broader benchmark for decarbonization. For example, RES compliance at present does not require the physical procurement of power produced by renewable energy facilities. Instead, electricity providers meet their requirements by purchasing RECs.

The report recommends amending the state’s RES to seek methods by which Rhode Island can retain all of the RECs procured through existing policy and program channels, along with RECs resulting from ratepayer investment in net metered projects, while Nevada’s 50% by 2030 RPS provides a useful interim comparison.

The report also recognizes that the RES alone is unlikely to drive sufficient investment renewable generation and should be paired with programs and policies to ensure sufficient renewable generation to meet the 100% goal. The state also needs to address the RECs created by behind-the-meter systems that add mechanisms to better match the timing of renewable energy generation with real-time demand. The policy would have the 100% RES remain in effect beyond 2030 and also match shifts in energy demand, particularly as other parts of the economy electrify.

Fostering equity
The state also is putting a high priority on making sure the transition to renewables is an equitable one.

The report recommends partnering with and listening to frontline communities about their needs and goals in the clean energy transition. This will include providing traditionally underserved communities with expert consultation to help guide decision making. The report also recommends holding listening sessions to increase accessibility to and understanding of energy system basics.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified