Is it finally time to buy an electric car?


ev car lot

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Electric Vehicles deliver longer range, faster charging, and broader price options, with incentives and lease deals reducing costs; evaluate performance, home charging, road trip needs, and vehicle types like SUVs, pickups, and vans.

 

Key Points

Electric vehicles are battery-powered cars that cut costs, boost performance, and charge at home or at fast stations.

✅ Longer range and faster charging reduce range anxiety

✅ Lower operating costs vs gas: fuel, maintenance, incentives

✅ Home Level 2 charging recommended; plan for road trips

 

Electric cars now drive farther, charge faster and come in nearly every price range. But when GMC began promoting its Hummer EV pickup truck to be released this year, it became even clearer that electric cars are primed to go mainstream for many buyers.

Once the domain of environmentalists, then early adopters, electric vehicles may soon have even truck bros kicking the gasoline habit, though sales are still behind gas cars in many markets.

With many models now available or coming soon — and arriving ahead of schedule for several automakers — including a knockoff of the lovable Volkswagen Microbus — you may be wondering if it’s finally time to buy or lease one.

Here are the essential questions to answer before you do.

(Full disclosure: I’m a convert myself after six years and 70,000 gas-free miles.)


1. Can you afford an electric car?
Electric vehicles tend to be pricy to buy but can be more affordable to lease. Finding federal, state and local government incentives can also reduce sticker shock. And, even if the monthly payment is higher than a comparable gas car, operating costs are lower.

Gas vehicles cost an average of $3,356 per year to fuel, tax and insure, while electric cost just $2,722, according to a study by Self Financial, and Consumer Reports finds EVs save money in the long run too. Find out how much you can save with the Department of Energy calculator.

 

2. How far do you need to drive on a single charge?
Although almost 60 percent of all car trips in America were less than 6 miles in 2017, according to the Department of Energy, the phrase “range anxiety” scared many would-be early adopters.

Teslas became popular in part because they offered 250 miles of range. But the range of many electric vehicles between charges is now over 200 miles; even the modestly priced Chevrolet Bolt can travel 259 miles on a single charge.

Still, electric vehicles have a “road trip problem,” according to Josh Sadlier, director of content strategy for car site Edmunds.com. “If you like road trips, you almost have to have two cars — one for around town and one for longer trips,” he says.

 

3. Where will you charge it?
If you live in an apartment without a charging station, this could be a deal breaker.

The number of public chargers increased by 60 percent worldwide in 2019, according to the International Energy Agency. While these stations — some of which are free — are more available, most electric vehicle owners install a home station for faster charging.

Electric vehicles can be charged by plugging into a common 120-volt household outlet, but it’s slow, and understanding charging costs can help you plan home use. To speed up charging, many electric vehicle owners wind up buying a 240-volt charging station and having an electrician install it for a total cost of $1,200, according to the home remodeling website Fixr.

4. What will you use the car for?
While there are a few luxury electric SUVs on the market, most electric vehicles are smaller sedans or hatchbacks with limited cargo capacity. However, the coming wave of electric cars are more versatile, and many experts expect that within a decade these options will be commonplace, including vans, such as the Microbus, and trucks, such as an electric version of the popular Ford F-150 pickup.

5. Do you enjoy performance?
This is where electric vehicles really shine. According to automotive experts, electric cars beat their gas counterparts in these ways:

Immediate response with great low-end acceleration, particularly in the 0-30 mph range.
Sure-footed handling due to the heavy battery mounted under the car, giving it a low center of gravity.
No “shift shock” from changing gears in a conventional gas car’s transmission.
Little noise except from the wind and tires.

 

Other factors
Once you consider the big questions, here are other reasons to make an electric car your next choice:

Reduced environmental guilt. There is a persistent myth that electric vehicles simply move the emissions from the tailpipe to the power generating station. Yes, producing electricity produces emissions, but many electric vehicle owners charge at night when much of the electricity would otherwise be unused. According to research published by the BBC and evidence that they are better for the planet in many scenarios electric cars reduce emissions by an average of 70 percent, depending on where people live.

Less time refueling. It takes only seconds to plug in at home, and the electric vehicle will recharge while you’re doing other things. No more searching for gas stations and standing by as your tank gulps down gasoline.

No oil changes. Dealers like a constant stream of drivers coming in for oil changes so they can upsell other services. Electric vehicles have fewer moving parts and require fewer trips to the dealership for maintenance.

Carpool lanes and other perks. Check your state regulations to see if an electric vehicle gets you access to the carpool lane, free parking or other special advantages.

Enjoy the technology. Yes, electric vehicles are more expensive, but they also tend to offer top-of-the-line comfort, safety features and technology compared with their gas counterparts.

 

Related News

Related News

Biden's Climate Law Is Working, and Not Working

Inflation Reduction Act Clean Energy drives EV adoption and renewable power, but grid interconnection, permitting, and supply chain bottlenecks slow wind, solar, and offshore projects, risking emissions targets despite domestic manufacturing growth and tax incentives.

 

Key Points

An IRA push to scale EVs and renewables, meeting EV goals but lagging wind and solar amid grid and permitting delays.

✅ EV sales up 50%, 9.2% of 2023 new cars; growth may moderate.

✅ 32.3 GW added, below 46-79 GW/year needed for climate targets.

✅ Grid, permitting, and supply chain delays bottleneck wind and solar.

 

A year and a half following President Biden's enactment of an ambitious climate change bill, the landscape of the United States' clean energy transition, shaped by 2021 electricity lessons, presents a mix of successes and challenges. A recent study by a consortium of research organizations highlights that while electric vehicle (EV) sales have surged, aligning with the law's projections, the expansion of renewable energy sources like wind and solar has encountered significant hurdles.

The legislation, known as the Inflation Reduction Act, aimed for a dual thrust in America's climate strategy: boosting EV adoption, alongside EPA emission limits, and significantly increasing the generation of electricity from renewable resources. The Act, passed in 2022, was anticipated to propel the United States toward reducing its greenhouse gas emissions by approximately 40 percent from 2005 levels by the end of this decade, backed by extensive financial incentives for clean energy advancements.

Electric vehicle sales have indeed seen a remarkable uptick, with a more than 50 percent increase over the past year, as EV sales surge into 2024 across the market, culminating in EVs comprising 9.2 percent of all new car sales in the United States in 2023. This growth trajectory met the upper range of analysts' predictions post-law enactment, signaling a strong start toward achieving the Act's emission reduction targets.

However, the EV market faces uncertainties regarding the sustainability of this rapid growth. The initial surge in sales was largely driven by early adopters, and the market now confronts challenges such as high prices and limited charging infrastructure, while EVs still trail gas cars in overall market share. Despite these concerns, projections suggest that even a slowdown to 30-40 percent growth in EV sales for 2024 would align with the law's emission goals.

The renewable energy sector's progress is less straightforward. Despite achieving a record addition of 32.3 gigawatts of clean electricity capacity in the past year, the pace falls short of the projected 46 to 79 gigawatts needed annually to meet the United States' climate objectives. While there is potential for about 60 gigawatts of projects in the pipeline for this year, not all are expected to materialize on schedule, indicating a lag in the deployment of new renewable energy sources.

Logistical challenges are a significant barrier to scaling up renewable energy, especially as EV-driven electricity demand rises in the coming years. Lengthy grid connection processes, permitting delays, and local opposition hinder wind and solar project developments. Moreover, ambitious plans for offshore wind farms are hampered by supply chain issues and regulatory constraints.

To achieve the Inflation Reduction Act's ambitious targets, the United States needs to add 70 to 126 gigawatts of renewable capacity annually from 2025 to 2030—a formidable task given the current logistical and regulatory bottlenecks. The analysis underscores the urgency of addressing these non-cost barriers to unlock the full potential of the law's clean energy and emissions reduction ambitions.

In addition to promoting clean energy generation and EV adoption, the Inflation Reduction Act has spurred domestic manufacturing of clean energy technologies. With $44 billion invested in U.S. clean-energy manufacturing last year, this aspect of the law has seen considerable success, and permanent clean energy tax credits are being debated to sustain momentum, demonstrating the Act's capacity to drive economic and industrial transformation.

The law's impact extends to emerging clean energy technologies, offering tax incentives for advanced nuclear reactors, renewable hydrogen production, and carbon capture and storage projects. While these initiatives hold promise for further emissions reductions, their development and deployment are still in the early stages, with tangible outcomes expected in the longer term.

While the Inflation Reduction Act has catalyzed significant strides in certain areas of the United States' clean energy transition, including an EV inflection point in adoption trends, it faces substantial hurdles in fully realizing its objectives. Overcoming logistical, regulatory, and market challenges will be crucial for the nation to stay on course toward its ambitious climate goals, underscoring the need for continued innovation, investment, and policy refinement in the journey toward a sustainable energy future.

 

Related News

View more

Offshore chargepoint will power vessels with wind turbine electricity

Offshore Wind Vessel Charging System enables renewable energy offshore charging from wind turbines, delivering clean power to electric vessels and crew transfer ships, boosting range, safety, and net zero maritime operations with reliable, efficient infrastructure.

 

Key Points

A turbine-mounted offshore charger delivering renewable power to electric vessels, extending range and improving safety.

✅ Turbine-mounted, field-proven offshore charging interface

✅ Delivers 100% renewable electricity to electric vessels

✅ Accelerates net zero, cuts maritime fossil fuel use

 

An offshore charging system will power vessels with 100% renewably generated electricity from wind turbines, aligning with projects like battery-electric high-speed ferries now advancing in the United States.

The system, developed by Teesside marine electrical engineering firm MJR Power and Automation, will be presented at the Global Offshore Wind event in Manchester (21-22 June), alongside interest in EV energy storage for buildings that could complement offshore charging solutions.

Known as the Offshore Wind On-Turbine Electrical Vessel Charging System, MJR says the chargepoints will provide efficient, safe and reliable transfer of clean power for crew vehicles and other offshore support vessels, while emerging vehicle-to-grid capacity on wheels concepts highlight the wider role of electric fleets.

“This innovation will break down the existing range barriers and increase the uptake by vessel owners and operators, as demonstrated by electric ships on the B.C. coast moving to fully electric and green propulsion systems for retrofit and new-build vessels,” an announcement said.

“In combination with other field-proven technologies, the charging system will be an important part for government and offshore wind owners and operators to achieve their net zero maritime operations targets, and switch away from fossil fuels, complemented by port initiatives such as all-electric berth at London Gateway now under development. The ability to charge when in the field will significantly accelerate adoption of current emission-free propulsion systems, which will be a major asset for the decarbonisation of the global maritime sector.”

The firm recently announced that construction and in-house testing of the system had been completed. The development project was part of the Clean Maritime Demonstration Competition, funded by the Department for Transport and delivered in partnership with Innovate UK, reflecting wider interest in reversing the charge to the grid for resilient energy systems.

MJR electrical engineer Mohammed Latif said: “Our system will be absolutely crucial in helping governments to deliver on their net zero carbon targets, supported by plans like new UK-Europe interconnectors that strengthen clean energy supply, and I am looking forward to demonstrating how it works and the benefits it offers.”

As part of the project, MJR Power and Automation led a consortium of partners – Ore Catapult, Xceco, Artemis Technologies and Tidal Transit – that all provided expertise.

 

Related News

View more

Major investments by Canada and Quebec in electric vehicle battery assembly

Lion Electric Battery Plant Quebec secures near $100M public investment for an automated battery-pack assembly in Saint-Jérôme, fueling EV manufacturing, R&D, local supply chains, and heavy-duty zero-emission vehicle competitiveness and jobs.

 

Key Points

Automated battery-pack plant in Saint-Jérôme boosting EV manufacturing and strengthening Quebec's supply chain.

✅ $100M joint federal-provincial investment announced

✅ 135 jobs in 2023; 150 more long-term positions

✅ R&D hub to enhance heavy-duty EV battery performance

 

Canadian Prime Minister of Canada, Justin Trudeau, and the Premier of Quebec, François Legault, have announced an equal investment totalling nearly $100 million to Lion Electric, as a B.C. battery plant announcement has done in another province, for the establishment of a highly automated battery-pack assembly plant in Saint–Jérôme, in the Laurentians. This project, valued at nearly $185 million, will create 135 jobs when construction of the plant is completed in 2023. It is also expected that 150 additional jobs will be created over the longer term.

For the announcement, Mr. Trudeau and Mr. Legault were accompanied by the Minister of Innovation, Science and Industry, François-Philippe Champagne, by Quebec's Minister of Economy and Innovation, Pierre Fitzgibbon, and by Marc Bédard, President and Founder of Lion Electric.

The battery packs assembled at the new plant will be used in Lion Electric vehicles. This strategic investment will allow the company to improve its cost structure, and better control the design and shape of its batteries, making it more competitive in the heavy-duty electric vehicle market, as EV assembly deals put Canada in the race. Ultimately, the company will be able to increase the volume of its vehicle production. Lion Electric will be the first Canadian manufacturer of medium and heavy-duty vehicles to have state-of-the-art, automated battery-pack manufacturing facilities.

The company will also establish a research and development innovation centre within its manufacturing plant, which will allow it to test and refine products for future use, including batteries for emergency vehicles such as ambulances. The company will test innovations from research and development, including energy storage capacity and battery performance. The results will make these products more competitive in the North American market, where a Niagara Region battery plant signals growing demand.

The company said it expects to employ 135 people at the plant when it is operational by 2023. It also plans to invest in a research and development facility that could create a number of spinoff jobs.

"When we talk about an economic recovery that's good for workers, for families and for the environment, this is exactly the kind of project we mean," Trudeau said at a news conference in Montreal.

Trudeau toured Lion Electric's factory in Saint-Jérôme, Que., last March, just before the pandemic. (Ryan Remiorz/The Canadian Press)
It was the prime minister's first trip to Montreal in more than a year. He said one of the reasons he decided to attend the announcement was to illustrate the importance of the green economy and how Canada can capitalize on the U.S. EV pivot for future job growth.

The project also aligns with the Legault government's desire to create a supply chain within Quebec that is able to feed the electric vehicle industry, where Canada-U.S. collaboration could accelerate progress.

At Monday's announcement, Economy Minister Pierre Fitzgibbon spoke at length about the province's deposits of lithium and nickel — key components in electric vehicle batteries — as well as its supply of low-emission hydroelectricity.

"If we play our cards right, we could become world leaders in this market of the future," Fitzgibbon said.

Currently, many of those strategic minerals found in Quebec are exported to Asia where they are turned into battery cells, and then imported back to Quebec by companies like Lion, said Mickaël Dollé, a chemistry professor at the Université de Montréal.

By opening a battery assembly plant in Quebec, Lion could help stimulate more cell-makers, such as the Northvolt project near Montreal, to set up shop in the province. Further localizing the supply chain, Dollé said, means better value and a greener product. 

But other countries have the same goal in mind, he said, and the window for the province to establish itself as an important player in the emerging electric vehicle battery industry is closing quickly, as major Ford Oakville deal commitments accelerate competition.

"The decision has to be taken now, or in the coming months, but if we wait too long we may miss our main goal which is to get our own supply chain in Canada," Dollé said.

What's in a name?
Monday's announcement was closely watched in Quebec for what it foretold about the political future as well as the economic one.

By coming to Montreal and touring a vaccination clinic before making the funding announcement, Trudeau fed speculation in the province that he is preparing to call an election soon.

Intrigue also surrounded the informal meeting Trudeau had with Legault on Monday. The Quebec premier and members of his government have repeatedly expressed frustration with Trudeau during the pandemic.

 

Related News

View more

California Wants Cars to Run on Electricity. It’s Going to Need a Much Bigger Grid

California EV mandate will phase out new gas cars, raising power demand and requiring renewable energy, grid upgrades, fast chargers, time-of-use rates, and vehicle-to-grid to stabilize loads and reduce emissions statewide.

 

Key Points

California's order ends new gas-car sales by 2035, driving grid upgrades, charging infrastructure, and cleaner transport.

✅ 25% higher power demand requires new generation and storage

✅ Time-of-use pricing and midday charging reduce grid stress

✅ Vehicle-to-grid and falling battery costs enable reliability

 

Leaning on the hood of a shiny red electric Ford Mustang, California Gov. Gavin Newsom signed an executive order Wednesday to end the sale of new gas-burning cars in his state in 15 years, a move with looming challenges for regulators and industry.

Now comes the hard part.

Energy consultants and academics say converting all passenger cars and trucks to run on electricity in California could raise power demand by as much as 25%. That poses a major challenge to state power grids as California is already facing periodic rolling blackouts as it rapidly transitions to renewable energy.

California will need to boost power generation, scale up its network of fast charging stations, enhance its electric grid to handle the added load and hope that battery technology continues to improve enough that millions in America’s most populous state can handle long freeway commutes to schools and offices without problems.

“We’ve got 15 years to do the work,” said Pedro Pizarro, chief executive of Edison International, owner of Southern California Edison, a utility serving 15 million people in the state. “Frankly the state agencies are going to have to do their part. We’ve got to get to the permitting processes, the approvals; all of that work is going to have to get accelerated to meet [Wednesday’s] target.”

Switching from petroleum fuels to electricity to phase out the internal combustion engine won’t happen all at once—Mr. Newsom’s order applies to sales of new vehicles, so older gas-powered cars will be on the road in California for many years to come. But the mandate means the state will face a growing demand for megawatts.

California is already facing a shortfall of power supplies over the next couple of years. The problem was highlighted last month when a heat wave blanketed the western U.S. and the state’s grid operator instituted rolling blackouts on two occasions.

“It is too early to tell what kind of impact the order will have on our power grid, and we don’t have any specific analysis or projections,” said Anne Gonzalez, a spokeswoman for the California Independent System Operator, which runs the grid.

Currently, California faces a crunchtime in the early evening as solar power falls off and demand to power air conditioners remains relatively high. Car charging presents a new potential issue: what happens if surging demand threatens to crash the grid during peak hours?

Caroline Winn, the chief executive of San Diego Gas & Electric, a utility owned by Sempra Energy that serves 3.6 million people, said there will need to be rules and rates that encourage people to charge their cars at certain times of the day, amid broader control over charging debates.

“We need to get the rules right and the markets right, informed by lessons from 2021, in order to resolve this issue because certainly California is moving that way,” she said.

The grid will need to be upgraded to prepare for millions of new electric vehicles. The majority of people who own them usually charge them at home, which would mean changes to substations and distribution circuits to accommodate multiple homes in a neighborhood drawing power to fill up batteries. The state’s three main investor-owned utilities are spending billions of dollars to harden the grid to prevent power equipment from sparking catastrophic wildfires.


“We have a hell of a lot of work to do nationally. California is ahead of everybody and they have a hell of a lot of work to do,” said Chris Nelder, who studies EV-grid integration at the Rocky Mountain Institute, an energy and environment-policy organization that promotes clean-energy solutions.

Mr. Nelder believes the investment will be worth it, because internal combustion engines generate so much waste heat and emissions of uncombusted hydrocarbons that escape out of tailpipes. Improving energy efficiency by upgrading the electrical system could result in lower bills for customers. “We will eliminate a vast amount of waste from the energy system and make it way more efficient,” he said.

Some see the growth of electric vehicles as an opportunity more than a challenge. In the afternoon, when electricity demand is high but the sun is setting and solar power drops off quickly, batteries in passenger cars, buses and other vehicles could release power back into the electric grid to help grid stability across the system, said Matt Petersen, chairman of the Transportation Electrification Partnership, a public-private effort in Los Angeles to accelerate the deployment of electric vehicles.

The idea is known as “vehicle-to-grid” and has been discussed in a number of countries expanding EV use, including the U.K. and Denmark.

“We end up with rolling batteries that can discharge power when needed,” Mr. Petersen said, adding, “The more electric vehicles we add to the grid, the more renewable energy we can add to the grid.”

One big hurdle for the widespread deployment of electric cars is driving down the cost of batteries to make the cars more affordable. This week, Tesla Inc. Chief Executive Elon Musk said he expected to have a $25,000 model ready by about 2023, signaling a broader EV boom in the U.S.

Shirley Meng, director of the Sustainable Power and Energy Center at the University of California, San Diego, said she believed batteries would continue to provide better performance at a lower cost.

“I am confident the battery technology is ready,” she said. Costs are expected to fall as new kinds of materials and metals can be used in the underlying battery chemistry, dropping prices. “Batteries are good now, and they will be better in the next 10 years.”

John Eichberger, executive director of the Fuels Institute, a nonprofit research group launched by the National Association of Convenience Stores, said he hoped that the California Air Resources Board, which is tasked with developing new rules to implement Mr. Newsom’s order, will slow the timeline if the market and electric build-out is running behind.

“We need to think about these critical infrastructure issues because transportation is not optional,” he said. “How do we develop a system that can guarantee consumers that they can get the energy when they need it?”

 

Related News

View more

Can food waste be turned into green hydrogen to produce electricity?

Food Waste to Green Hydrogen uses biological production to create clean energy, enabling waste-to-energy, decarbonization, and renewable hydrogen for electricity, industrial processes, and transport fuels, developed at Purdue University Northwest with Purdue Research Foundation licensing.

 

Key Points

A biological process converting food waste into renewable hydrogen for clean energy, electricity, industry, and transport.

✅ Enables rapid, scalable waste-to-hydrogen deployment

✅ Supports grid power, industrial heat, and mobility fuels

✅ Backed by patents, DOE grants, and licensing deals

 

West Lafayette, Indiana-based Purdue Research Foundation recently completed a licensing agreement with an international energy company – the name of which was not disclosed – for the commercialization of a new process discovered at Purdue University Northwest (PNW) for the biological production of green hydrogen from food waste. A second licensing agreement with a company in Indiana is under negotiation.


Food waste into green hydrogen
Researchers say that this new process, which uses food waste to biologically produce hydrogen, can be used as a clean energy source for producing electricity, as well as for chemical and industrial processes like green steel production or as a transportation fuel.

Robert Kramer, professor of physics at PNW and principal investigator for the research, says that more than 30% of all food, amounting to $48 billion, is wasted in the United States each year. That waste could be used to create hydrogen, a sustainable energy source alongside municipal solid waste power options. When hydrogen is combusted, the only byproduct is water vapor.

The developed process has a high production rate and can be implemented quickly to support large H2 energy systems in practice. The process is robust, reliable, and economically viable for local energy production and processes.

The research team has received five grants from the US Department of Energy and the Purdue Research Foundation totaling around $800,000 over the last eight years to develop the science and technology that led to this process, much like advances in advanced nuclear reactors drive clean energy innovation.

Two patents have been issued, and a third patent is currently in the final stages of approval. Over the next nine months, a scale-up test will be conducted, reflecting how power-to-gas storage can integrate with existing infrastructure. Based upon test results, it is anticipated that construction could start on the first commercial prototype within a year.

Last week, a facility designed to turn non-recyclable plastics into green hydrogen was approved in the UK, as other innovations like the seawater power concept progress globally. It is the second facility of its kind there.

 

Related News

View more

Ontario to Reintroduce Renewable Energy Projects 5 Years After Cancellations

Ontario Renewable Energy Procurement 2024 will see the IESO secure wind, solar, and hydro power to meet rising electricity demand, support transit electrification, bolster grid reliability, and serve manufacturing growth across the province.

 

Key Points

A provincial IESO initiative to add 2,000 MW of clean power and plan 3,000 MW more to meet rising demand.

✅ IESO to procure 2,000 MW from wind, solar, hydro

✅ Exploring 3,000 MW via upgrades and expansions

✅ Demand growth ~2% yearly; electrification and industry

 

After the Ford government terminated renewable energy contracts five years ago, despite warnings about wind project cancellation costs that year, Ontario's electricity operator, the Independent Electricity System Operator (IESO), is now planning to once again incorporate wind and solar initiatives to address the province's increasing power demands.

The IESO, responsible for managing the provincial power supply, is set to secure 2,000 megawatts of electricity from clean sources, which include wind, solar, and hydro power, as wind power competitiveness increases across Canada. Additionally, the IESO is exploring the possibilities of reacquiring, upgrading, or expanding existing facilities to generate an additional 3,000 MW of electricity in the future.

These new power procurement efforts in Ontario aim to meet the rising energy demand driven by transit electrification and large-scale manufacturing projects, even as national renewable growth projections were scaled back after Ontario scrapped its clean energy program, which are expected to exert greater pressure on the provincial grid.

The IESO projects a consistent growth in demand of approximately two percent per year over the next two decades. This growth has prompted the Ford government, amid debate over Ontario's electricity future in the province, to take proactive measures to prevent potential blackouts or disruptions for both residential and commercial consumers.

This renewed commitment to renewable energy represents a significant policy shift for Premier Doug Ford, reflecting his new stance on wind power over time, who had previously voiced strong opposition to wind turbines and pledged to dismantle all windmills in the province. In 2018, shortly after taking office, the government terminated 750 renewable energy contracts that had been signed by the previous Liberal government, incurring fees of $230 million for taxpayers.

At the time, the government cited reasons such as surplus electricity supply and increased costs for ratepayers as grounds for contract cancellations. Premier Ford expressed pride in the decision, echoing a proud of cancelling contracts stance, claiming that it saved taxpayers $790 million and eliminated what he viewed as detrimental wind turbines that had negatively impacted the province's energy landscape for 15 years.

The Ontario government's new wind and solar energy procurement initiatives are scheduled to commence in 2024, following a court ruling on a Cornwall wind farm that spotlighted cancellation decisions.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.