Power Outage Affects 13,000 in North Seattle


power-outage-affects-13000-in-north-seattle

Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

North Seattle Power Outage disrupts 13,000 in Ballard, Northgate, and Lake City as Seattle City Light crews repair equipment failures. Aging infrastructure, smart grid upgrades, microgrids, and emergency preparedness highlight resilience and reliability challenges.

 

Key Points

A major outage affecting 13,000 in North Seattle from equipment failures and aging grid, prompting repairs and planning.

✅ 13,000 customers in Ballard, Northgate, Lake City affected

✅ Cause: equipment failures and aging infrastructure

✅ Crews, smart grid upgrades, and preparedness improve resilience

 

On a recent Wednesday morning, a significant power outage struck a large area of North Seattle, affecting approximately 13,000 residents and businesses. This incident not only disrupted daily routines, as seen in a recent London outage, but also raised questions about infrastructure reliability and emergency preparedness in urban settings.

Overview of the Outage

The outage began around 9 a.m., with initial reports indicating that neighborhoods including Ballard, Northgate, and parts of Lake City were impacted. Utility company Seattle City Light quickly dispatched crews to identify the cause of the outage and restore power as soon as possible. By noon, the utility reported that repairs were underway, with crews working diligently to restore service to those affected.

Such outages can occur for various reasons, including severe weather, such as windstorm-related failures, equipment failure, or accidents involving utility poles. In this instance, the utility confirmed that a series of equipment failures contributed to the widespread disruption. The situation was exacerbated by the age of some infrastructure in the area, highlighting ongoing concerns about the need for modernization and upgrades.

Community Impact

The power outage caused significant disruptions for residents and local businesses. Many households faced challenges as their morning routines were interrupted—everything from preparing breakfast to working from home became more complicated without electricity. Schools in the affected areas also faced challenges, as some had to adjust their schedules and operations.

Local businesses, particularly those dependent on refrigeration and electronic payment systems, felt the immediate impact. Restaurants struggled to serve customers without power, while grocery stores dealt with potential food spoilage, leading to concerns about lost inventory and revenue. The outage underscored the vulnerability of businesses to infrastructure failures, as recent Toronto outages have shown, prompting discussions about contingency plans and backup systems.

Emergency Response

Seattle City Light’s swift response was crucial in minimizing the outage's impact. Utility crews worked through the day to restore power, and the company provided regular updates to the community, keeping residents informed about progress and estimated restoration times. This transparent communication was essential in alleviating some of the frustration among those affected, and contrasts with extended outages in Houston that heightened public concern.

Furthermore, the outage served as a reminder of the importance of emergency preparedness for both individuals and local governments, and of utility disaster planning that supports resilience. Many residents were left unprepared for an extended outage, prompting discussions about personal emergency kits, alternative power sources, and community resources available during such incidents. Local officials encouraged residents to stay informed about power outages and to have a plan in place for emergencies.

Broader Implications for Infrastructure

This incident highlights the broader challenges facing urban infrastructure. Many cities, including Seattle, are grappling with aging power grids that struggle to keep up with modern demands, and power failures can disrupt transit systems like the London Underground during peak hours. Experts suggest that regular assessments and updates to infrastructure are critical to ensuring reliability and resilience against both natural and human-made disruptions.

In response to increasing frequency and severity of power outages, including widespread windstorm outages in Quebec, there is a growing call for investment in modern technologies and infrastructure. Smart grid technology, for instance, can enhance monitoring and maintenance, allowing utilities to respond more effectively to outages. Additionally, renewable energy sources and microgrid systems could offer more resilience and reduce reliance on centralized power sources.

The recent power outage in North Seattle was a significant event that affected thousands of residents and businesses. While the immediate response by Seattle City Light was commendable, the incident raised important questions about infrastructure reliability and emergency preparedness. As cities continue to grow and evolve, the need for modernized power systems and improved contingency planning will be crucial to ensuring that communities can withstand future disruptions.

As residents reflect on this experience, it serves as a reminder of the interconnectedness of urban living and the critical importance of reliable infrastructure in maintaining daily life. With proactive measures, cities can work towards minimizing the impact of such outages and building a more resilient future for their communities.

 

Related News

Related News

Maryland opens solar-power subscriptions to all

Maryland Community Solar Program enables renters and condo residents to subscribe to offsite solar, earn utility bill discounts, and support projects across BGE, Pepco, Delmarva, and Potomac Edison territories, with low to moderate income participation.

 

Key Points

A pilot allowing residents to subscribe to offsite solar and get bill credits and savings, regardless of home ownership.

✅ 5-10 percent discounts on standard utility rates

✅ Available in BGE, Pepco, Delmarva, Potomac Edison areas

✅ Includes low and moderate income subscriber carve-outs

 

Maryland has launched a pilot program that will allow anyone to power their home with solar panels — even if they are renters or condo-dwellers, or live in the shade of trees.

Solar developers are looking for hundreds of residents to subscribe to six power projects planned across the state, including recently announced sites in Owings Mills and Westminster. Their offers include discounts on standard electric rates.

The developers need a critical mass of customers who are willing to buy the projects’ electricity before they can move forward with plans to install solar panels on about 80 acres. Under state rules, the customer base must include low- and moderate-income residents, many of whom face energy insecurity challenges.

The idea of the community solar program is to tap into the pool of residential customers who don’t want to get their energy from fossil fuels but currently have no way to switch to a cleaner alternative.

That could significantly expand demand for solar projects, said Gary Skulnik, a longtime Maryland solar entrepreneur.

Skulnik is now CEO of Neighborhood Sun, a company recruiting customers for the six projects.

“You’re signing up for a project that won’t exist unless we get enough subscribers,” Skulnik said. “You’re actually getting a new project built.”

It could also stoke simmering conflicts over what sort of land is appropriate for solar development.

The General Assembly authorized the community solar pilot program in 2015. But not-in-my-backyard opposition and concerns about the loss of agricultural land have slowed progress.

Community solar could force more communities to confront those sorts of clashes — and to consider more carefully where solar farms belong.

“We are going to see a lot more solar development in the state,” said Megan Billingsley, assistant director of the Valleys Planning Council in Baltimore County. “One of the things we haven’t seen is any direction or thoughtful planning on where we want to see solar development.”

The General Assembly authorized about 200 megawatts in community solar projects — enough to power about 40,000 households — over three years.

Customers can sign up for projects built within the territory of their electric utility. About half of that solar energy load has been allotted for the region served by Baltimore Gas and Electric Co.

By subscribing to a community solar project, customers won’t actually be getting their electricity from its photovoltaic panels. But their payments will help finance it and, in some cases, complementary battery storage solutions as well.

The Public Service Commission has approved six projects so far: Two in BGE territory, in Owings Mills and near Westminster; one in Pepco territory, in Prince George’s County; two in Delmarva Power and Light territory, in Caroline and Worcester counties; and one in Potomac Edison territory, in Washington County where planning officials have developed proposed recommendations.

More projects are expected to win approval in the next two years.

But none of them can be built unless they catch on with electricity customers. The developers are looking for 2,600 customers statewide.

Skulnik would not say how many customers an individual project needs to get the green light. But he said that the Prince George’s proposal, a 25-acre array atop a Fort Washington landfill is the closest, with about 100 subscribers so far.

The terms of subscription vary by project, but discounts range from 5 percent to 10 percent off utility rates. Customers are asked to commit to the projects for as long as 25 years. (They can break the contracts with advance notice, or if they move to a different utility service area.)

Maryland joins more than a dozen states in advancing community solar projects, as scientists work to improve solar and wind power technology.

Corey Ramsden is an executive for Solar United Neighbors, a nonprofit that promotes the solar industry in eight states and the District of Columbia.

He said potential customers are often confused by the mechanics of subscribing to community solar, or hesitant to commit for years or even decades. The industry is working to answer questions and get people more comfortable with the idea, he said.

But it has been a challenge across the country, including debates over New England grid upgrades, and in Maryland. Advocates for solar say there is broad support for renewable energy generation. The state has set goals to increase green energy use and reduce greenhouse gas emissions.

Still, many Marylanders don’t welcome the reality when a project attempts to move in.

Rural land is often the most desirable for solar developers, because it requires the least effort to prepare for an array of panels. But community groups in those areas have asked whether land historically used for farming is right for a more industrial use.

“People are very much in favor of going for a lot more renewables, for whatever reason,” said Dru Schmidt-Perkins, the former president of the land conservation group 1,000 Friends of Maryland. “That support comes to a screeching halt when land that is perceived to be valuable for other things, whether a historic view­shed or farming, suddenly becomes a target of a location for this new project.”

Such concerns have at least temporarily stalled the momentum for solar across the state. Anne Arundel County had at least five small community solar projects in the pipeline in December when officials decided to pause development for eight months. Baltimore County officials imposed a four-month moratorium on solar development before passing an ordinance last year to limit the size and number of solar farms.

Billingsley said the Valley Plannings Council, which advocates for historic and rural areas in western Baltimore County, is frustrated that there hasn’t been more discussion about which areas the county should target for solar development — and which it shouldn’t.

She said she fears that pressure to expand solar farms across rural lands is only going to grow as community solar projects launch, and as lawmakers in Annapolis talk about more policies to promote investment in renewable energy.

Schmidt-Perkins called community solar “an amazing program” for those who would install solar panels on their roofs if they could. But she said its launch heightens the importance of discussions about a broader solar strategy.

“Most communities are caught a little flat-footed on this and are somewhat at the mercy of an industry that’s chomping at the bit,” she said. “It’s time for Maryland to say, ‘Okay, let’s come up with our plan so that we know how much solar can we really generate in this state on lands that are not conflict-based.’”

 

Related News

View more

Why Is Georgia Importing So Much Electricity?

Georgia Electricity Imports October 2017 surged as hydropower output fell and thermal power plants underperformed; ESCO balanced demand via low-cost imports, mainly from Azerbaijan, amid rising tariffs, kWh consumption growth, and a widening generation-consumption gap.

 

Key Points

They mark a record import surge due to costly local generation, lower hydropower, ESCO balancing costs, and rising demand.

✅ Imports rose 832% YoY to 157 mln kWh, mainly from Azerbaijan

✅ TPP output fell despite capacity; only low-tariff plants ran

✅ Balancing price 13.8 tetri/kWh signaled costly domestic PPAs

 

In October 2017, Georgian power plants generated 828 mln. KWh of electricity, marginally up (+0.79%) compared to September. Following the traditional seasonal pattern and amid European concerns over dispatchable power shortages affecting markets, the share of electricity produced by renewable sources declined to 71% of total generation (87% in September), while thermal power generation’s share increased, accounting for 29% of total generation (compared to 13% in September). When we compare last October’s total generation with the total generation of October 2016, however, we observe an 8.7% decrease in total generation (in October 2016, total generation was 907 mln. kWh). The overall decline in generation with respect to the previous year is due to a simultaneous decline in both thermal power and hydro power generation. 

Consumption of electricity on the local market in the same period was 949 mln. kWh (+7% compared to October 2016, and +3% with respect to September 2017), and reflected global trends such as India's electricity growth in recent years. The gap between consumption and generation increased to 121 mln. kWh (15% of the amount generated in October), up from 100 mln. kWh in September. Even more importantly, the situation was radically different with respect to the prior year, when generation exceeded consumption.

The import figure for October was by far the highest from the last 12 years (since ESCO was established), occurring as Ukraine electricity exports resumed regionally, highlighting wider cross-border dynamics. In October 2017, Georgia imported 157 mln. kWh of electricity (for 5.2 ¢/kWh – 13 tetri/kWh). This constituted an 832% increase compared to October 2016, and is about 50% larger than the second largest import figure (104.2 mln. kWh in October 2014). Most of the October 2017 imports (99.6%) came from Azerbaijan, with the remaining 0.04% coming from Russia.

The main question that comes to mind when observing these statistics is: why did Georgia import so much? One might argue that this is just the result of a bad year for hydropower generation and increased demand. This argument, however, is not fully convincing. While it is true that hydropower generation declined and demand increased, the country’s excess demand could have been easily satisfied by its existing thermal power plants, even as imported coal volumes rose in regional markets. Instead of increasing, however, the electricity coming from thermal power plants declined as well. Therefore, that cannot be the reason, and another must be found. The first that comes to mind is that importing electricity may have been cheaper than buying it from local TPPs, or from other generators selling electricity to ESCO under power purchase agreements (PPAs). We can test the first part of this hypothesis by comparing the average price of imported electricity to the price ceiling on the tariff that TPPs can charge for the electricity they sell. Looking at the trade statistics from Geostat, the average price for imported electricity in October 2017 remained stable with respect to the same month of the previous year, at 5.2 ¢ (13 tetri) per kWh. Only two thermal power plants (Gardabani and Mtkvari) had a price ceiling below 13 tetri per kWh. Observing the electricity balance of Georgia, we see that indeed more than 98% of the electricity generated by TPPs in October 2017 was generated by those two power plants.

What about other potential sources of electricity amid Central Asia's power shortages at the time? To answer this question, we can use the information derived from the weighted average price of balancing electricity. Why balancing electricity? Because it allows us to reconstruct the costs the market operator (ESCO) faced during the month of October to make sure demand and supply were balanced, and it allows us to gain an insight about the price of electricity sold through PPAs.

ESCO reports that the weighted average price of balancing electricity in October 2017 was 13.8 tetri/kWh, (25% higher than in October 2016, when it was below the average weighted cost of imports – 11 vs. 13 – and when the quantity of imported electricity was substantially smaller). Knowing that in October 2017, 61% of balancing electricity came from imports, while 39% came from hydropower and wind power plants selling electricity to ESCO under their PPAs, we can deduce that in this case, internal generation was (on average) also substantially more expensive than imports. Therefore, the high cost of internally generated electricity, rather than the technical impossibility of generating enough electricity to satisfy electricity demand, indeed appears to be one the main reasons why electricity imports spiked in October 2017.

 

Related News

View more

‘Tsunami of data’ could consume one fifth of global electricity by 2025

ICT Electricity Demand is surging as data centers, 5G, IoT, and server farms expand, straining grids, boosting carbon emissions, and challenging climate targets unless efficiency, renewable energy, and smarter cooling dramatically improve.

 

Key Points

ICT electricity demand is power used by networks, devices, and data centers across the global communications sector.

✅ Projected to reach up to 20 percent of global electricity by 2025

✅ Driven by data centers, 5G traffic, IoT, and high-res streaming

✅ Mitigation: efficiency, renewable PPAs, advanced cooling, workload shifts

 

The communications industry could use 20% of all the world’s electricity by 2025, hampering attempts to meet climate change targets, even as countries like New Zealand's electrification plans seek broader decarbonization, and straining grids as demand by power-hungry server farms storing digital data from billions of smartphones, tablets and internet-connected devices grows exponentially.

The industry has long argued that it can considerably reduce carbon emissions by increasing efficiency and reducing waste, but academics are challenging industry assumptions. A new paper, due to be published by US researchers later this month, will forecast that information and communications technology could create up to 3.5% of global emissions by 2020 – surpassing aviation and shipping – and up to 14% 2040, around the same proportion as the US today.

Global computing power demand from internet-connected devices, high resolution video streaming, emails, surveillance cameras and a new generation of smart TVs is increasing 20% a year, consuming roughly 3-5% of the world’s electricity in 2015, says Swedish researcher Anders Andrae.

In an update o a 2016 peer-reviewed study, Andrae found that without dramatic increases in efficiency, the ICT industry could use 20% of all electricity and emit up to 5.5% of the world’s carbon emissions by 2025. This would be more than any country, except China, India and the USA, where China's data center electricity use is drawing scrutiny.

He expects industry power demand to increase from 200-300 terawatt hours (TWh) of electricity a year now, to 1,200 or even 3,000TWh by 2025. Data centres on their own could produce 1.9 gigatonnes (Gt) (or 3.2% of the global total) of carbon emissions, he says.

“The situation is alarming,” said Andrae, who works for the Chinese communications technology firm Huawei. “We have a tsunami of data approaching. Everything which can be is being digitalised. It is a perfect storm. 5G [the fifth generation of mobile technology] is coming, IP [internet protocol] traffic is much higher than estimated, and all cars and machines, robots and artificial intelligence are being digitalised, producing huge amounts of data which is stored in data centres.”

US researchers expect power consumption to triple in the next five years as one billion more people come online in developing countries, and the “internet of things” (IoT), driverless cars, robots, video surveillance and artificial intelligence grows exponentially in rich countries.

The industry has encouraged the idea that the digital transformation of economies and large-scale energy efficiencies will slash global emissions by 20% or more, but the scale and speed of the revolution has been a surprise.

Global internet traffic will increase nearly threefold in the next five years says the latest Cisco Visual Networking Index, a leading industry tracker of internet use.

“More than one billion new internet users are expected, growing from three billion in 2015 to 4.1bn by 2020. Over the next five years global IP networks will support up to 10bn new devices and connections, increasing from 16.3bn in 2015 to 26bn by 2020,” says Cisco.

A 2016 Berkeley laboratory report for the US government estimated the country’s data centres, which held about 350m terabytes of data in 2015, could together need over 100TWh of electricity a year by 2020. This is the equivalent of about 10 large nuclear power stations.

Data centre capacity is also rocketing in Europe, where the EU's plan to double electricity use by 2050 could compound demand, and Asia with London, Frankfurt, Paris and Amsterdam expected to add nearly 200MW of consumption in 2017, or the power equivalent of a medium size power station.

“We are seeing massive growth of data centres in all regions. Trends that started in the US are now standard in Europe. Asia is taking off massively,” says Mitual Patel, head of EMEA data centre research at global investment firm CBRE.

“The volume of data being handled by such centres is growing at unprecedented rates. They are seen as a key element in the next stage of growth for the ICT industry”, says Peter Corcoran, a researcher at the university of Ireland, Galway.

Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions

Ireland, which with Denmark is becoming a data base for the world’s biggest tech companies, has 350MW connected to data centres but this is expected to triple to over 1,000MW, or the equivalent of a nuclear power station size plant, in the next five years.

Permission has been given for a further 550MW to be connected and 750MW more is in the pipeline, says Eirgrid, the country’s main grid operator.

“If all enquiries connect, the data centre load could account for 20% of Ireland’s peak demand,” says Eirgrid in its All-Island Generation Capacity Statement 2017-2026  report.

The data will be stored in vast new one million square feet or larger “hyper-scale” server farms, which companies are now building. The scale of these farms is huge; a single $1bn Apple data centre planned for Athenry in Co Galway, expects to eventually use 300MW of electricity, or over 8% of the national capacity and more than the daily entire usage of Dublin. It will require 144 large diesel generators as back up for when the wind does not blow.

 Facebook’s Lulea data centre in Sweden, located on the edge of the Arctic circle, uses outside air for cooling rather than air conditioning and runs on hydroelectic power generated on the nearby Lule River. Photograph: David Levene for the Guardian

Pressed by Greenpeace and other environment groups, large tech companies with a public face , including Google, Facebook, Apple, Intel and Amazon, have promised to use renewable energy to power data centres. In most cases they are buying it off grid but some are planning to build solar and wind farms close to their centres.

Greenpeace IT analyst Gary Cook says only about 20% of the electricity used in the world’s data centres is so far renewable, with 80% of the power still coming from fossil fuels.

“The good news is that some companies have certainly embraced their responsibility, and are moving quite aggressively to meet their rapid growth with renewable energy. Others are just growing aggressively,” he says.

Architect David Hughes, who has challenged Apple’s new centre in Ireland, says the government should not be taken in by the promises.

“Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions. Data centres … have eaten into any progress we made to achieving Ireland’s 40% carbon emissions reduction target. They are just adding to demand and reducing our percentage. They are getting a free ride at the Irish citizens’ expense,” says Hughes.

Eirgrid estimates indicate that by 2025, one in every 3kWh generated in Ireland could be going to a data centre, he added. “We have sleepwalked our way into a 10% increase in electricity consumption.”

Fossil fuel plants may have to be kept open longer to power other parts of the country, and manage issues like SF6 use in electrical equipment, and the costs will fall on the consumer, he says. “We will have to upgrade our grid and build more power generation both wind and backup generation for when the wind isn’t there and this all goes onto people’s bills.”

Under a best case scenario, says Andrae, there will be massive continuous improvements of power saving, as the global energy transition gathers pace, renewable energy will become the norm and the explosive growth in demand for data will slow.

But equally, he says, demand could continue to rise dramatically if the industry keeps growing at 20% a year, driverless cars each with dozens of embedded sensors, and cypto-currencies like Bitcoin which need vast amounts of computer power become mainstream.

“There is a real risk that it all gets out of control. Policy makers need to keep a close eye on this,” says Andrae.

 

Related News

View more

U.S. Nonprofit Invests $250M in Electric Trucks for California Ports

California Ports Electric Truck Leasing accelerates zero-emission logistics, cutting diesel pollution at Los Angeles and Long Beach. A $250 million nonprofit plan funds heavy-duty EVs and charging infrastructure to improve air quality and community health.

 

Key Points

A nonprofit's $250M plan to lease EV trucks at LA/Long Beach ports to cut diesel emissions and improve air quality.

✅ $250M lease program for heavy-duty EVs at LA/Long Beach ports

✅ Cuts diesel emissions; improves air quality in nearby communities

✅ Requires robust charging infrastructure and OEM partnerships

 

In a significant move towards sustainable transportation, a prominent U.S. nonprofit has announced plans to invest $250 million in leasing electric trucks for operations at California ports. This initiative aims to reduce air pollution and promote greener logistics, responding to the urgent need for environmentally friendly solutions in the transportation sector.

Addressing Environmental Concerns

California’s ports, particularly the Port of Los Angeles and the Port of Long Beach, are among the busiest in the United States. However, they also contribute significantly to air pollution due to the heavy reliance on diesel trucks for cargo transport. These ports are essential for the economy, facilitating trade and commerce, but the environmental toll is considerable. Diesel emissions are linked to respiratory issues and other health problems in nearby communities, which often bear the brunt of pollution.

The nonprofit's investment in electric trucks is a critical step towards mitigating these environmental challenges. By transitioning to electric vehicles (EVs), the project aims to significantly cut emissions from port operations, contributing to California's broader goals of reducing greenhouse gas emissions and improving air quality.

The Scale of the Initiative

This ambitious initiative involves leasing a fleet of electric trucks that will operate within the ports and surrounding areas. The $250 million investment is expected to facilitate the acquisition of hundreds of electric vehicles, which will replace conventional diesel trucks used for cargo transport. This fleet will help demonstrate the viability and effectiveness of electric trucks in heavy-duty applications, paving the way for broader adoption.

The plan includes partnerships with established electric truck manufacturers, such as the Volvo VNR Electric platform, and local logistics companies to ensure seamless integration of these vehicles into existing operations. By collaborating with industry leaders, the initiative seeks to establish a model that can be replicated in other major logistics hubs across the country.

Economic and Community Benefits

The introduction of electric trucks is expected to yield multiple benefits, not only in terms of environmental impact but also economically. As these trucks begin operations, and as other fleets adopt electric mail trucks, they will create jobs within the green technology sector, from manufacturing to maintenance and charging infrastructure development. The project is anticipated to stimulate local economies, providing new opportunities in communities that have historically been disadvantaged by pollution.

Moreover, the initiative is poised to enhance public health. By reducing diesel emissions, the nonprofit aims to improve air quality for residents living near the ports, and emerging research links EV adoption to fewer asthma-related ER visits in local communities. This could lead to decreased healthcare costs associated with pollution-related illnesses, benefiting both the community and the healthcare system.

Challenges Ahead

While the initiative is promising, challenges remain. The successful implementation of electric trucks at scale requires a robust charging infrastructure capable of supporting the significant power needs of a large fleet. Additionally, the transition from diesel to electric vehicles involves significant upfront costs, even with leasing arrangements. Ensuring that logistics companies can manage these costs effectively will be crucial for the project's success.

Furthermore, electric trucks currently face limitations in terms of range and payload capacity compared to their diesel counterparts. Continued advancements in battery technology and infrastructure development will be necessary to fully realize the potential of electric vehicles in heavy-duty applications.

The Bigger Picture

This investment in electric trucks aligns with broader national and global efforts to combat climate change. As governments and organizations commit to reducing carbon emissions, initiatives like this one represent crucial steps toward achieving sustainability goals, and ports worldwide are also piloting complementary technologies like hydrogen-powered cranes to decarbonize cargo handling.

California has set ambitious targets for reducing greenhouse gas emissions, including a mandate for all new trucks to be zero-emission by 2045. The nonprofit’s investment not only supports these goals, amid ongoing debates over funding priorities in the state, but also serves as a pilot program that could inform future policies and investments in clean transportation.

The $250 million investment in electric trucks for California ports marks a significant milestone in the push for sustainable transportation solutions. By addressing the urgent need for cleaner logistics, this initiative stands to benefit the environment, public health, and the economy. As the project unfolds, it will be closely watched as a potential model for similar efforts across the country and beyond, with developments such as the all-electric berth at London Gateway illustrating parallel advances, highlighting the critical intersection of innovation, sustainability, and community well-being in the modern logistics landscape.

 

Related News

View more

Maine Governor calls for 100% renewable electricity

Maine Climate Council Act targets 80% renewable power by 2030 and 100% by 2050, slashing greenhouse gas emissions via clean electricity, grid procurement, long-term contracts, wind and hydro integration, resilience planning, and carbon sequestration.

 

Key Points

A Maine policy forming a Climate Council to reach 80% renewables in 2030 100% in 2050 and cut greenhouse gas emissions.

✅ 80% renewable electricity by 2030; 100% by 2050.

✅ 45% GHG cut by 2030; 80% by 2050.

✅ Utility procurement authority for clean capacity and energy.

 

The winds of change have shifted and are blowing Northward, as Maine’s Governor, Janet T. Mills, has put forth an act establishing a Climate Council to guide the state’s consumption to 80% renewable electricity in 2030 and 100% by 2050, echoing New York's Green New Deal ambitions underway.

The act, LR 2478 (pdf), also sets a goal of reducing greenhouse gas emissions by 45% in 2030 and 80% by 2050. The document will be submitted to the state Legislature for consideration.

The commission would have the authority to direct investor owned transmission and distribution utilities to run competitive procurement processes, and enter into long-term contracts for capacity resources, energy resources, renewable energy credit contracts, and participate in regional programs, as these all lead toward the clean electricity and emissions-reducing goals that mirror California's 100% mandate debates today.

The Climate Council would convene industry working groups, including Scientific and Technical, Transportation, Coastal and Marine, Energy, and Building & Infrastructure working groups, plus others as needed, where examples like New Zealand's electricity transition could inform discussions.

Membership within the council would include two members of the State Senate, two members of the House, a tribal representative, many department commissioners (Education, Defense, Transportation, etc.), multiple directors, business representatives, environmental non-profit members, and climate science and resilience representatives as well.

The council would update the Maine State Climate Plan every four years, and solicit input from the public and report out progress on its goals every two years, similar to planning underway in Minnesota's carbon-free plan framework. The first Climate Action Plan would be submitted to the legislature by December 1, 2020.

Specifically, the responsibilities of the Scientific and Technical Subcommittee were laid out. The group would be scheduled to meet at least every six months, beginning no later than October 1, 2019. The group would be tasked with reviewing existing scientific literature, including net-zero electricity pathways research, to use it as guidance, recognizing gaps in the state’s knowledge, and guiding outside experts to ascertain this knowledge.  The group would consider ocean acidification, and climate change effects on the state’s species; establish science-based sea-level rise projections for the state’s coastal regions by December 1, 2020; create a climate risk map for flooding and extreme weather events; and consider carbon sequestration via biomass growth.

The state’s largest power plants (above image), generate about 31% from gas, 28% from wood and 41% from hydro+wind. Already, the state has a very clean electricity profile, much like efforts to decarbonize Canada's power sector continue apace. Below, the U.S. Energy Information Administration (EIA) notes that 51% of electricity generation within the state comes from mostly wind+hydro, with a small touch from solar power. The state also gets 24% from wood and other biomass, which would lead some to argue that the state is already at 75% “renewable electricity”. The Governor’s document does reference wind power specifically as a renewable, however, no other specific electricity source. And there is much reference to forestry, agriculture, and logging – specifically noting carbon sequestration – but nothing regarding electricity.

The state’s final 25% of electricity mostly comes from natural gas, even as renewable electricity momentum builds across North America, with this author choosing to put “other” under the fossil percentage noted above.

 

Related News

View more

Tesla’s Powerwall as the beating heart of your home

GMP Tesla Powerwall Program replaces utility meters with smart battery storage, enabling virtual power plant services, demand response, and resilient homes, integrating solar readiness, EV charging support, and smart grid controls across Vermont households.

 

Key Points

Green Mountain Power uses Tesla Powerwalls as smart meters, creating a VPP for demand response and home backup.

✅ $30 monthly for 10 years or $3,000 upfront for two units

✅ Utility controls batteries for peak shaving and demand response

✅ Enables backup power, solar readiness, and EV charging support

 

There are more than 100 million single-family homes in the United States of America. If each of these homes were to have two 13.5 kWh Tesla Powerwalls, that would total 2.7 Terawatt-hours worth of electricity stored. Prior research has suggested that this volume of energy storage could get us halfway to the 5.4 TWh of storage needed to let the nation get 80% of its electricity from solar and wind, as states like California increasingly turn to grid batteries to support the transition.

Vermont utility Green Mountain Power (GMP) seeks to remove standard electric utility metering hardware and replace it with the equipment inside of a Tesla Powerwall, as part of a broader digital grid evolution underway. Mary Powell, President and CEO of Green Mountain Power, says, “We have a vision of a battery system in every single home” and they’ve got a patent pending software solution to make it happen.

The Resilient Home program will install two standard Tesla Powerwalls each in 250 homes in GMP’s service area. The homeowner will pay either $30 a month for ten years ($3,600), or $3,000 up front. At the end of the ten year period, payments end, but the unit can stay in the home for an additional five years – or as long as it has a usable life.

A single Powerwall costs approximately $6,800, making this a major discount.

GMP notes that the home must have reliable internet access to allow GMP and Tesla to communicate with the Powerwall. GMP will control the functions of the Powerwall, effectively operating a virtual power plant across participating homes, expanding the scope of programs like those that saved the state’s ratepayers more than $500,000 during peak demand events last year. The utility specifically notes that customers agree to share stored energy with GMP on several peak demand days each year.

The hardware can be designed to interact with current backup generators during power outages, or emerging fuel cell solutions that maintain battery charge longer during extended outages, however, the units will not charge from the generator. As noted the utility will be making use of the hardware during normal operating times, however, during a power outage the private home owner will be able to use the electricity to back up both their house and top off their car.

The utility told pv magazine USA that the Powerwalls are standard from the factory, with GMP’s patent pending software solution being the special sauce (has a hint of recent UL certifications). GMP said the program will also get home owners “adoption ready” for solar power, including microgrid energy storage markets, and other smart devices.

Sonnen’s ecoLinx is already directly interacting with a home’s electrical panel (literally throwing wifi enabled circuit breakers). Now with Tesla Powerwalls being used to replace utility meters, we see one further layer of integration that will lead to design changes that will drive residential solar toward $1/W. Electric utilities are also experimenting with controlling module level electronics and smart solar inverters in 100% residential penetration situations. And of course, considering that California is requiring solar – and probably storage in the future – in all new homes, we should expect to see further experimentation in this model. Off grid solar inverter manufacturers already include electric panels with their offerings.

If we add in the electric car, and have vehicle-to-grid abilities, we start to see a very strong amount of electricity generation and energy storage, helping to keep the lights on during grid stress, potentially happening in more than 100 million residential power plants. Resilient homes indeed.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified