Opinion: Would we use Site C's electricity?


Site C Dam Construction

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Site C Dam Electricity Demand underscores B.C.'s decarbonization path, enabling electrification of EVs, heat pumps, and industry, aligning with BC Hydro forecasts and 2030/2050 GHG targets to supply dependable, renewable baseload power.

 

Key Points

Projected clean power tied to Site C, driven by B.C. electrification to meet 2030 and 2050 greenhouse gas targets.

✅ Aligns with 25-30% by 2030 and 55-70% by 2050 GHG cuts

✅ Supports EVs, heat pumps, and industrial electrification

✅ Provides dependable baseload alongside efficiency gains

 

There are valid reasons not to build the Site C dam. There are also valid reasons to build it. One of the latter is the rapid increase in clean electricity needed to reduce B.C.’s greenhouse gas emissions from burning natural gas, gasoline, diesel and other harmful fossil fuel products.

Although former Premier Christy Clark casually avoided near-term emissions targets, Prime Minister Justin Trudeau has set Canadian targets for both 2030 and 2050, and cleaning up Canada's electricity is critical to meeting them. Studies by my research group at Simon Fraser University and other independent analysts show that B.C.’s cost-effective contribution to these national targets requires us to reduce our emissions 25 to 30 per cent by 2030 and 55 to 70 per cent by 2050 — an energy evolution involving, among other things, a much greater use of electricity in buildings, vehicles and industry.

Recent submissions to the Site C hearing have offered widely different estimates of B.C.’s electricity demand in the decade after the project’s completion in 2025, some arguing the dam’s output will be completely surplus to domestic need for years and perhaps decades, even though improved B.C.-Alberta grid links could help balance regional demand. Some of this variation in demand forecasts is understandable. Industrial demand is especially difficult to predict, dependent as it is on global economic conditions and shifting trade relations. And there are legitimate uncertainties about B.C. Hydro’s ability to reduce electricity demand by promoting efficient products and behaviour through its Power Smart program. But some of the forecasts appear to be deliberate exaggerations, designed to support fixed positions for or against Site C.

Our university-based research team models the energy system changes required to meet national and provincial emissions targets, and we have been comparing estimates of the electricity demand implications. These estimates are produced by academics, as well as by key institutions like B.C. Hydro, the National Energy Board, and the governments of Canada and B.C.

Most electricity forecasts for B.C., including the most recent by B.C. Hydro, do not assume that B.C. reduces its greenhouse gas emissions by 25 to 30 per cent by 2030 and 55 to 70 per cent by 2050. When we adjust Hydro’s forecast for just the low end of these targets, we find that in its latest, August 30, submission to the Site C hearing, which followed the premier’s over-budget go-ahead on the project, Hydro has underestimated the demand for its electricity by about three terawatt-hours in 2025, four in 2030 and 10 in 2035. Hydro’s forecast indicates that it will need the five terawatt-hours from Site C. Our research shows that even if Hydro’s demand forecast is too high, appropriate climate policy nationally and in B.C. will absorb all the electricity the dam can produce soon after its completion.

B.C. Hydro does not forecast electricity demand to 2050. But, studies by us and others show that B.C. electricity demand will be almost double today’s levels if we are to reduce emissions by 55 to 70 per cent, even amid a documented risk of missing the 2050 target, in just over three decades while our population, economy, buildings and equipment grow significantly. Most mid- and small-sized vehicles will be electric. Most buildings will be well insulated and heated by electric resistance or electric heat-pumps, either individually or via district heating systems. And many low temperature industrial applications will be electric.

Aggressive efforts to promote energy efficiency will make an important contribution, such that energy demand will not grow nearly as fast as the economy. But it is delusional to think that humans will stop using energy. Even climate policy scenarios in which we assume unprecedented success with energy efficiency show dramatic increases in the consumption of electricity, this being the most favoured zero-emission form of energy as a replacement for planet-destroying gasoline and natural gas.

The completion of the Site C dam is a complicated and challenging societal choice, and delay-related cost risks highlighted by the premier underscore the stakes. There is unbiased evidence and argument supporting either completion or cancellation. But let’s stick to the unbiased evidence. In the case of our 2030 and 2050 greenhouse gas reduction targets, such evidence shows that we must substantially increase our generation of dependable electricity. If the Site C dam is built, and if we are true to our climate goals, all its electricity will be used in B.C. soon after completion.

Mark Jaccard is a professor of sustainable energy in the School of Resource and Environmental Management at Simon Fraser University.

 

Related News

Related News

California just made more clean energy than it needed

CAISO Net Negative Emissions signal moments when greenhouse gas intensity of serving ISO demand drops below zero, driven by high renewable generation, low load, strong solar exports, and imports accounting in the California grid.

 

Key Points

Moments when CAISO's CO2 to serve demand is below zero, driven by renewables, exports, and import accounting.

✅ Calculated using imports and exports to serve ISO demand

✅ Occur during high solar output, low weekend load

✅ Coincide with curtailment and record renewable penetration

 

We’re a long way from the land of milk and honey, but on Easter Sunday – for about an hour – we got a taste.

On Sunday, at 1:55 PM Pacific Time the California Independent Systems Operator (CAISO) reported that greenhouse gas emissions necessary to serve its demand (~80% of California’s electricity demand on an annual basis), was measured at a rate -16 metric tons of CO2 per hour. Five minutes later, the value was -2 mTCO2/h, before it crept back up to 40 mTCO2/h at 2:05 PM PST. At 2:10 PST though it fell back to -86 mTCO2/h and stayed negative until 3:05 PM PST, even as global CO2 emissions flatlined in 2019 according to the IEA.

This information was brought to the attention of pv magazine via tweet from eagle eye Jon Pa after CAISO’s site first noted the negative values:

The region was still generating CO2 though, as natural gas, biogas, biomass, geothermal and even coal plants were running and pumping out emissions, even as potent greenhouse gases declined in the US under control efforts. CAISO’s Greenhouse Gas Emission Tracking Methodology, December 28, 2016 (pdf) notes the below calculations to create the value what it terms, “Total GHG emissions to serve ISO demand”:

Of importance to note is that to get to the net negative value, CAISO considered all electricity imports and exports, a reminder that climate policy shapes grid operations across North America. And as can be noted in the image below the CO2 intensity of imports during the day rapidly declined as the sun came up, first going negative around 9:05 AM PST, and mostly staying so until just before 6 PM PST.

During this same weekend, other records were noted (reiterating that we’re in record setting season and as the state pursues its 100% carbon-free mandate now in law) such as a new electricity export record of greater than 2 GW and total renewable electricity as part of total demand at greater than 70%.

At the peak negative moment of 2:15 PM PST, -112 mTCO2/h seen below, the total amount of clean instantaneous generation being used in the power grid region was 17 GW, a far cry from heat-driven reliability strains like rolling blackout warnings that arise during extreme demand, with renewables giving 76% of the total, hydro 14%, nuclear 13% and imports of -12% countering the CO2 coming from just over 1.4 GW of gas generation.

Also of importance are a few layers of nuance in the electricity demand charts. First off we’re in the shoulder seasons  of California – nice cool weather before the warmth of summer drives air conditioning demand. Additional the weekend electricity demand is always lower, as well, Easter Sunday might have had an affect, whereas in colder regions Calgary’s electricity use can soar during frigid snaps.

Lastly to note was the amount of electricity from solar and wind generation being curtailed. And while the Sunday numbers weren’t available yet, the below image noted Saturday with 10 GWh in total being curtailed (pdf) – peaking at over 3.2 GW of instantaneous mostly solar power even as solar is now the cheapest electricity according to the IEA, in the hours of 2 and 3 PM PST. On an annualized basis, less than 2% of total potential solar electricity was curtailed in 2018.

 

 

Related News

View more

BC Hydro hoping to be able to charge customers time of use rates

BC Hydro Time-of-Use Rates propose off-peak credits and peak surcharges, with 5 cent/kWh differentials, encouraging demand shifting, EV charging at night, and smart meter adoption, pending BC Utilities Commission review in an optional opt-in program.

 

Key Points

Optional pricing that credits 5 cents/kWh off-peak and adds 5 cents/kWh during 4-9 p.m. peak to encourage load shifting.

✅ Off-peak credit: 11 p.m.-7 a.m., 5 cents/kWh savings

✅ Peak surcharge: 4-9 p.m., additional 5 cents/kWh

✅ Opt-in only; BCUC review; suits EV charging and flexible loads

 

BC Hydro is looking to charge customers less for electricity during off peak hours and more during the busiest times of the day, reflecting holiday electricity demand as well.

The BC Utilities Commission is currently reviewing the application that if approved would see customers receive a credit of 5 cents per kilowatt hour for electricity used from 11 p.m. to 7 a.m.

Customers would be charged an additional 5 cents per kWh for electricity used during the on-peak period from 4 p.m. to 9 p.m., and in Ontario, there were no peak-rate cuts for self-isolating customers during early pandemic response.

There would be no credit or additional charge will be applied to usage during the off-peak period from 7 a.m. to 4 p.m. and 9 p.m. to 11 p.m.

“We know the way our customers are using power is changing and they want more options,” BC Hydro spokesperson Susie Rieder said.

“It is optional and we know it may not work for everyone.”

For example, if a customer has an electric vehicle it will be cheaper to plug the car in after 9 p.m., similar to Ontario's ultra-low overnight plan offerings, rather than immediately after returning home from a standard work day.

If approved, the time of use rates would only apply to customers who opt in to the program, whereas Ontario provided electricity relief during COVID-19.

During the pandemic, Ontario extended off-peak electricity rates to help households and small businesses.

The regulatory review process is expected to take about one year.

Other jurisdictions, including Ontario's ultra-low overnight pricing, currently offer off peak rates. One of the challenges is that consumers change in hopes of altering their behaviour, but in reality, end up paying more.

“The cheapest electrical grid system is one with consistent demand and the issue of course is our consumption is not flat,” energyrates.ca founder Joel MacDonald said.

“There is a 5 cent reduction in off peak times, there is a 5 cent increase in peak times, you would have to switch 50 per cent of your load.”

 

Related News

View more

Power Outage Affects 13,000 in North Seattle

North Seattle Power Outage disrupts 13,000 in Ballard, Northgate, and Lake City as Seattle City Light crews repair equipment failures. Aging infrastructure, smart grid upgrades, microgrids, and emergency preparedness highlight resilience and reliability challenges.

 

Key Points

A major outage affecting 13,000 in North Seattle from equipment failures and aging grid, prompting repairs and planning.

✅ 13,000 customers in Ballard, Northgate, Lake City affected

✅ Cause: equipment failures and aging infrastructure

✅ Crews, smart grid upgrades, and preparedness improve resilience

 

On a recent Wednesday morning, a significant power outage struck a large area of North Seattle, affecting approximately 13,000 residents and businesses. This incident not only disrupted daily routines, as seen in a recent London outage, but also raised questions about infrastructure reliability and emergency preparedness in urban settings.

Overview of the Outage

The outage began around 9 a.m., with initial reports indicating that neighborhoods including Ballard, Northgate, and parts of Lake City were impacted. Utility company Seattle City Light quickly dispatched crews to identify the cause of the outage and restore power as soon as possible. By noon, the utility reported that repairs were underway, with crews working diligently to restore service to those affected.

Such outages can occur for various reasons, including severe weather, such as windstorm-related failures, equipment failure, or accidents involving utility poles. In this instance, the utility confirmed that a series of equipment failures contributed to the widespread disruption. The situation was exacerbated by the age of some infrastructure in the area, highlighting ongoing concerns about the need for modernization and upgrades.

Community Impact

The power outage caused significant disruptions for residents and local businesses. Many households faced challenges as their morning routines were interrupted—everything from preparing breakfast to working from home became more complicated without electricity. Schools in the affected areas also faced challenges, as some had to adjust their schedules and operations.

Local businesses, particularly those dependent on refrigeration and electronic payment systems, felt the immediate impact. Restaurants struggled to serve customers without power, while grocery stores dealt with potential food spoilage, leading to concerns about lost inventory and revenue. The outage underscored the vulnerability of businesses to infrastructure failures, as recent Toronto outages have shown, prompting discussions about contingency plans and backup systems.

Emergency Response

Seattle City Light’s swift response was crucial in minimizing the outage's impact. Utility crews worked through the day to restore power, and the company provided regular updates to the community, keeping residents informed about progress and estimated restoration times. This transparent communication was essential in alleviating some of the frustration among those affected, and contrasts with extended outages in Houston that heightened public concern.

Furthermore, the outage served as a reminder of the importance of emergency preparedness for both individuals and local governments, and of utility disaster planning that supports resilience. Many residents were left unprepared for an extended outage, prompting discussions about personal emergency kits, alternative power sources, and community resources available during such incidents. Local officials encouraged residents to stay informed about power outages and to have a plan in place for emergencies.

Broader Implications for Infrastructure

This incident highlights the broader challenges facing urban infrastructure. Many cities, including Seattle, are grappling with aging power grids that struggle to keep up with modern demands, and power failures can disrupt transit systems like the London Underground during peak hours. Experts suggest that regular assessments and updates to infrastructure are critical to ensuring reliability and resilience against both natural and human-made disruptions.

In response to increasing frequency and severity of power outages, including widespread windstorm outages in Quebec, there is a growing call for investment in modern technologies and infrastructure. Smart grid technology, for instance, can enhance monitoring and maintenance, allowing utilities to respond more effectively to outages. Additionally, renewable energy sources and microgrid systems could offer more resilience and reduce reliance on centralized power sources.

The recent power outage in North Seattle was a significant event that affected thousands of residents and businesses. While the immediate response by Seattle City Light was commendable, the incident raised important questions about infrastructure reliability and emergency preparedness. As cities continue to grow and evolve, the need for modernized power systems and improved contingency planning will be crucial to ensuring that communities can withstand future disruptions.

As residents reflect on this experience, it serves as a reminder of the interconnectedness of urban living and the critical importance of reliable infrastructure in maintaining daily life. With proactive measures, cities can work towards minimizing the impact of such outages and building a more resilient future for their communities.

 

Related News

View more

Maryland opens solar-power subscriptions to all

Maryland Community Solar Program enables renters and condo residents to subscribe to offsite solar, earn utility bill discounts, and support projects across BGE, Pepco, Delmarva, and Potomac Edison territories, with low to moderate income participation.

 

Key Points

A pilot allowing residents to subscribe to offsite solar and get bill credits and savings, regardless of home ownership.

✅ 5-10 percent discounts on standard utility rates

✅ Available in BGE, Pepco, Delmarva, Potomac Edison areas

✅ Includes low and moderate income subscriber carve-outs

 

Maryland has launched a pilot program that will allow anyone to power their home with solar panels — even if they are renters or condo-dwellers, or live in the shade of trees.

Solar developers are looking for hundreds of residents to subscribe to six power projects planned across the state, including recently announced sites in Owings Mills and Westminster. Their offers include discounts on standard electric rates.

The developers need a critical mass of customers who are willing to buy the projects’ electricity before they can move forward with plans to install solar panels on about 80 acres. Under state rules, the customer base must include low- and moderate-income residents, many of whom face energy insecurity challenges.

The idea of the community solar program is to tap into the pool of residential customers who don’t want to get their energy from fossil fuels but currently have no way to switch to a cleaner alternative.

That could significantly expand demand for solar projects, said Gary Skulnik, a longtime Maryland solar entrepreneur.

Skulnik is now CEO of Neighborhood Sun, a company recruiting customers for the six projects.

“You’re signing up for a project that won’t exist unless we get enough subscribers,” Skulnik said. “You’re actually getting a new project built.”

It could also stoke simmering conflicts over what sort of land is appropriate for solar development.

The General Assembly authorized the community solar pilot program in 2015. But not-in-my-backyard opposition and concerns about the loss of agricultural land have slowed progress.

Community solar could force more communities to confront those sorts of clashes — and to consider more carefully where solar farms belong.

“We are going to see a lot more solar development in the state,” said Megan Billingsley, assistant director of the Valleys Planning Council in Baltimore County. “One of the things we haven’t seen is any direction or thoughtful planning on where we want to see solar development.”

The General Assembly authorized about 200 megawatts in community solar projects — enough to power about 40,000 households — over three years.

Customers can sign up for projects built within the territory of their electric utility. About half of that solar energy load has been allotted for the region served by Baltimore Gas and Electric Co.

By subscribing to a community solar project, customers won’t actually be getting their electricity from its photovoltaic panels. But their payments will help finance it and, in some cases, complementary battery storage solutions as well.

The Public Service Commission has approved six projects so far: Two in BGE territory, in Owings Mills and near Westminster; one in Pepco territory, in Prince George’s County; two in Delmarva Power and Light territory, in Caroline and Worcester counties; and one in Potomac Edison territory, in Washington County where planning officials have developed proposed recommendations.

More projects are expected to win approval in the next two years.

But none of them can be built unless they catch on with electricity customers. The developers are looking for 2,600 customers statewide.

Skulnik would not say how many customers an individual project needs to get the green light. But he said that the Prince George’s proposal, a 25-acre array atop a Fort Washington landfill is the closest, with about 100 subscribers so far.

The terms of subscription vary by project, but discounts range from 5 percent to 10 percent off utility rates. Customers are asked to commit to the projects for as long as 25 years. (They can break the contracts with advance notice, or if they move to a different utility service area.)

Maryland joins more than a dozen states in advancing community solar projects, as scientists work to improve solar and wind power technology.

Corey Ramsden is an executive for Solar United Neighbors, a nonprofit that promotes the solar industry in eight states and the District of Columbia.

He said potential customers are often confused by the mechanics of subscribing to community solar, or hesitant to commit for years or even decades. The industry is working to answer questions and get people more comfortable with the idea, he said.

But it has been a challenge across the country, including debates over New England grid upgrades, and in Maryland. Advocates for solar say there is broad support for renewable energy generation. The state has set goals to increase green energy use and reduce greenhouse gas emissions.

Still, many Marylanders don’t welcome the reality when a project attempts to move in.

Rural land is often the most desirable for solar developers, because it requires the least effort to prepare for an array of panels. But community groups in those areas have asked whether land historically used for farming is right for a more industrial use.

“People are very much in favor of going for a lot more renewables, for whatever reason,” said Dru Schmidt-Perkins, the former president of the land conservation group 1,000 Friends of Maryland. “That support comes to a screeching halt when land that is perceived to be valuable for other things, whether a historic view­shed or farming, suddenly becomes a target of a location for this new project.”

Such concerns have at least temporarily stalled the momentum for solar across the state. Anne Arundel County had at least five small community solar projects in the pipeline in December when officials decided to pause development for eight months. Baltimore County officials imposed a four-month moratorium on solar development before passing an ordinance last year to limit the size and number of solar farms.

Billingsley said the Valley Plannings Council, which advocates for historic and rural areas in western Baltimore County, is frustrated that there hasn’t been more discussion about which areas the county should target for solar development — and which it shouldn’t.

She said she fears that pressure to expand solar farms across rural lands is only going to grow as community solar projects launch, and as lawmakers in Annapolis talk about more policies to promote investment in renewable energy.

Schmidt-Perkins called community solar “an amazing program” for those who would install solar panels on their roofs if they could. But she said its launch heightens the importance of discussions about a broader solar strategy.

“Most communities are caught a little flat-footed on this and are somewhat at the mercy of an industry that’s chomping at the bit,” she said. “It’s time for Maryland to say, ‘Okay, let’s come up with our plan so that we know how much solar can we really generate in this state on lands that are not conflict-based.’”

 

Related News

View more

A Snapshot of the US Market for Smart Solar Inverters

Smart solar inverters anchor DER communications and control, meeting IEEE 1547 and California Rule 21 for volt/VAR, reactive power, and ride-through, expanding hosting capacity and enabling grid services via secure real-time telemetry and commands.

 

Key Points

Smart solar inverters use IEEE 1547, volt/VAR and reactive power to stabilize circuits and integrate DER safely.

✅ Meet IEEE 1547, Rule 21 ride-through and volt/VAR functions

✅ Support reactive power to manage voltage and hosting capacity

✅ Enable utility communications, telemetry, and grid services

 

Advanced solar inverters could be one of the biggest distributed energy resource communications and control points out there someday. With California now requiring at least early-stage “smart” capabilities from all new solar projects — and a standards road map for next-stage efforts like real-time communications and active controls — this future now has a template.

There are still a lot of unanswered questions about how smart inverters will be used.

That was the consensus at Intersolar this week, where experts discussed the latest developments on the U.S. smart solar inverter front. After years of pilot projects, multi-stakeholder technical working groups, and slow and steady standards development, solar smart inverters are finally starting to hit the market en masse — even if it’s not yet clear just what will be done with them once they’re installed.

“From the technical perspective, the standards are firm,” Roger Salas, distribution engineering manager for Southern California Edison, said. In September of last year, his utility started requiring that all new solar installations come with “Phase 1" advanced inverter functionality, as defined under the state’s Rule 21.

Later this month, it’s going to start requiring “reactive power priority” for these inverters, and in February 2019, it’s going to start requiring that inverters support the communications capabilities described in “Phase 2,” as well as some more advanced “Phase 3” capabilities.

 

Increasing hosting capacity: A win-win for solar and utilities

Each of these phases aligns with a different value proposition for smart inverters. The first phase is largely preventative, aimed at solving the kinds of problems that have forced costly upgrades to how inverters operate in solar-heavy Germany and Hawaii.

The key standard in question in the U.S. is IEEE 1547, which sets the rules for what grid-connected DERs must do to stay safe, such as trip offline when the grid goes down, or avoid overloading local transformers or circuits.

The old version of the standard, however, had a lot of restrictive rules on tripping off during relatively common voltage excursions, which could cause real problems on circuits with a lot of solar dropping off all at once.

Phase 1 implementation of IEEE 1547 is all about removing these barriers, Salas said. “They need to be stable, they need to be connected, they need to be able to support the grid.”

This should increase hosting capacity on circuits that would have otherwise been constrained by these unwelcome behaviors, he said.

 

Reactive power: Where utility and solar imperatives collide

The old versions of IEEE 1547 also didn’t provide rules for how inverters could use one of their more flexible capabilities: the ability to inject or absorb reactive power to mitigate voltage fluctuations, including those that may be caused by the PV itself. The new version opens up this capability, which could allow for an active application of reactive power to further increase hosting capacity, as well as solve other grid edge challenges for utilities.

But where utilities see opportunity, the solar industry sees a threat. Every unit of reactive power comes at the cost of a reduction in the real power output of solar inverters — and almost every solar installation out there is paid based on the real power it produces.

“If you’re tasked to do things that rob your energy sales, that will reduce compensation,” noted Ric O'Connell, executive director of the Oakland, Calif.-based GridLab. “And a lot of systems have third-party owners — the Sunruns, the Teslas — with growing Powerwall fleets — that have contracts, performance guarantees, and they want to get those financed. It’s harder to do that if there’s uncertainty in the future with curtailment."

“That’s the bottleneck right now,” said Daniel Munoz-Alvarez, a GTM Research grid edge analyst. “As we develop markets on the retail end for ...volt/VAR control to be compensated on the grid edge and that is compensated back to the customer, then the customer will be more willing to allow the utility to control their smart inverters or to allow some automation.”

But first, he said, “We need some agreed-upon functions.”

 

The future: Communications, controls and DER integration

The next stage of smart inverter functionality is establishing communications with the utility. After that, utilities will be able use them to monitor key DER data, or issue disconnect and reconnect commands in emergencies, as well as actively orchestrate other utility devices and systems through emerging virtual power plant strategies across their service areas.

This last area is where Salas sees the greatest opportunity to putting mass-market smart solar inverters to use. “If you want to maximize the DERs and what they can do, the need information from the grid. And DERs provide operational and capability information to the utility.”

Inverter makers have already been forced by California to enable the latest IEEE 1547 capabilities into their existing controls systems — but they are clearly embracing the role that their devices can play on the grid as well. Microinverter maker Enphase leveraged its work in Hawaii into a grid services business, seeking to provide data to utilities where they already had a significant number of installations. While Enphase has since scaled back dramatically, its main rival SolarEdge has taken up the same challenge, launching its own grid services arm earlier this summer.

Inverters have been technically capable of doing most of these things for a long time. But utilities and regulators have been waiting for the completion of IEEE 1547 to move forward decisively. Patrick Dalton, senior engineer for Xcel Energy, said his company’s utilities in Colorado and Minnesota are still several years away from mandating advanced inverter capabilities and are waiting for California’s energy transition example in order to choose a path forward.

In the meantime, it’s possible that Xcel's front-of-meter volt/VAR optimization investments in Colorado, including grid edge devices from startup Varentec, could solve many of the issues that have been addressed by smart inverter efforts in Hawaii and California, he noted.

The broader landscape for rolling out smart inverters for solar installations hasn’t changed much, with Hawaii and California still out ahead of the pack, while territories such as Puerto Rico microgrid rules evolve to support resilience. Arizona is the next most important state, with a high penetration of distributed solar, a contentious policy climate surrounding its proper treatment in future years, and a big smart inverter pilot from utility Arizona Public Service to inform stakeholders.

All told, eight separate smart inverter pilots are underway across eight states at present, according to GTM Research: Pacific Gas & Electric and San Diego Gas & Electric in California; APS and Salt River Project in Arizona; Hawaiian Electric in Hawaii; Duke Energy in North Carolina; Con Edison in New York; and a three-state pilot funded by the Department of Energy’s SunShot program and led by the Electric Power Research Institute.

 

Related News

View more

‘Tsunami of data’ could consume one fifth of global electricity by 2025

ICT Electricity Demand is surging as data centers, 5G, IoT, and server farms expand, straining grids, boosting carbon emissions, and challenging climate targets unless efficiency, renewable energy, and smarter cooling dramatically improve.

 

Key Points

ICT electricity demand is power used by networks, devices, and data centers across the global communications sector.

✅ Projected to reach up to 20 percent of global electricity by 2025

✅ Driven by data centers, 5G traffic, IoT, and high-res streaming

✅ Mitigation: efficiency, renewable PPAs, advanced cooling, workload shifts

 

The communications industry could use 20% of all the world’s electricity by 2025, hampering attempts to meet climate change targets, even as countries like New Zealand's electrification plans seek broader decarbonization, and straining grids as demand by power-hungry server farms storing digital data from billions of smartphones, tablets and internet-connected devices grows exponentially.

The industry has long argued that it can considerably reduce carbon emissions by increasing efficiency and reducing waste, but academics are challenging industry assumptions. A new paper, due to be published by US researchers later this month, will forecast that information and communications technology could create up to 3.5% of global emissions by 2020 – surpassing aviation and shipping – and up to 14% 2040, around the same proportion as the US today.

Global computing power demand from internet-connected devices, high resolution video streaming, emails, surveillance cameras and a new generation of smart TVs is increasing 20% a year, consuming roughly 3-5% of the world’s electricity in 2015, says Swedish researcher Anders Andrae.

In an update o a 2016 peer-reviewed study, Andrae found that without dramatic increases in efficiency, the ICT industry could use 20% of all electricity and emit up to 5.5% of the world’s carbon emissions by 2025. This would be more than any country, except China, India and the USA, where China's data center electricity use is drawing scrutiny.

He expects industry power demand to increase from 200-300 terawatt hours (TWh) of electricity a year now, to 1,200 or even 3,000TWh by 2025. Data centres on their own could produce 1.9 gigatonnes (Gt) (or 3.2% of the global total) of carbon emissions, he says.

“The situation is alarming,” said Andrae, who works for the Chinese communications technology firm Huawei. “We have a tsunami of data approaching. Everything which can be is being digitalised. It is a perfect storm. 5G [the fifth generation of mobile technology] is coming, IP [internet protocol] traffic is much higher than estimated, and all cars and machines, robots and artificial intelligence are being digitalised, producing huge amounts of data which is stored in data centres.”

US researchers expect power consumption to triple in the next five years as one billion more people come online in developing countries, and the “internet of things” (IoT), driverless cars, robots, video surveillance and artificial intelligence grows exponentially in rich countries.

The industry has encouraged the idea that the digital transformation of economies and large-scale energy efficiencies will slash global emissions by 20% or more, but the scale and speed of the revolution has been a surprise.

Global internet traffic will increase nearly threefold in the next five years says the latest Cisco Visual Networking Index, a leading industry tracker of internet use.

“More than one billion new internet users are expected, growing from three billion in 2015 to 4.1bn by 2020. Over the next five years global IP networks will support up to 10bn new devices and connections, increasing from 16.3bn in 2015 to 26bn by 2020,” says Cisco.

A 2016 Berkeley laboratory report for the US government estimated the country’s data centres, which held about 350m terabytes of data in 2015, could together need over 100TWh of electricity a year by 2020. This is the equivalent of about 10 large nuclear power stations.

Data centre capacity is also rocketing in Europe, where the EU's plan to double electricity use by 2050 could compound demand, and Asia with London, Frankfurt, Paris and Amsterdam expected to add nearly 200MW of consumption in 2017, or the power equivalent of a medium size power station.

“We are seeing massive growth of data centres in all regions. Trends that started in the US are now standard in Europe. Asia is taking off massively,” says Mitual Patel, head of EMEA data centre research at global investment firm CBRE.

“The volume of data being handled by such centres is growing at unprecedented rates. They are seen as a key element in the next stage of growth for the ICT industry”, says Peter Corcoran, a researcher at the university of Ireland, Galway.

Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions

Ireland, which with Denmark is becoming a data base for the world’s biggest tech companies, has 350MW connected to data centres but this is expected to triple to over 1,000MW, or the equivalent of a nuclear power station size plant, in the next five years.

Permission has been given for a further 550MW to be connected and 750MW more is in the pipeline, says Eirgrid, the country’s main grid operator.

“If all enquiries connect, the data centre load could account for 20% of Ireland’s peak demand,” says Eirgrid in its All-Island Generation Capacity Statement 2017-2026  report.

The data will be stored in vast new one million square feet or larger “hyper-scale” server farms, which companies are now building. The scale of these farms is huge; a single $1bn Apple data centre planned for Athenry in Co Galway, expects to eventually use 300MW of electricity, or over 8% of the national capacity and more than the daily entire usage of Dublin. It will require 144 large diesel generators as back up for when the wind does not blow.

 Facebook’s Lulea data centre in Sweden, located on the edge of the Arctic circle, uses outside air for cooling rather than air conditioning and runs on hydroelectic power generated on the nearby Lule River. Photograph: David Levene for the Guardian

Pressed by Greenpeace and other environment groups, large tech companies with a public face , including Google, Facebook, Apple, Intel and Amazon, have promised to use renewable energy to power data centres. In most cases they are buying it off grid but some are planning to build solar and wind farms close to their centres.

Greenpeace IT analyst Gary Cook says only about 20% of the electricity used in the world’s data centres is so far renewable, with 80% of the power still coming from fossil fuels.

“The good news is that some companies have certainly embraced their responsibility, and are moving quite aggressively to meet their rapid growth with renewable energy. Others are just growing aggressively,” he says.

Architect David Hughes, who has challenged Apple’s new centre in Ireland, says the government should not be taken in by the promises.

“Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions. Data centres … have eaten into any progress we made to achieving Ireland’s 40% carbon emissions reduction target. They are just adding to demand and reducing our percentage. They are getting a free ride at the Irish citizens’ expense,” says Hughes.

Eirgrid estimates indicate that by 2025, one in every 3kWh generated in Ireland could be going to a data centre, he added. “We have sleepwalked our way into a 10% increase in electricity consumption.”

Fossil fuel plants may have to be kept open longer to power other parts of the country, and manage issues like SF6 use in electrical equipment, and the costs will fall on the consumer, he says. “We will have to upgrade our grid and build more power generation both wind and backup generation for when the wind isn’t there and this all goes onto people’s bills.”

Under a best case scenario, says Andrae, there will be massive continuous improvements of power saving, as the global energy transition gathers pace, renewable energy will become the norm and the explosive growth in demand for data will slow.

But equally, he says, demand could continue to rise dramatically if the industry keeps growing at 20% a year, driverless cars each with dozens of embedded sensors, and cypto-currencies like Bitcoin which need vast amounts of computer power become mainstream.

“There is a real risk that it all gets out of control. Policy makers need to keep a close eye on this,” says Andrae.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified