Opinion: Would we use Site C's electricity?


Site C Dam Construction

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Site C Dam Electricity Demand underscores B.C.'s decarbonization path, enabling electrification of EVs, heat pumps, and industry, aligning with BC Hydro forecasts and 2030/2050 GHG targets to supply dependable, renewable baseload power.

 

Key Points

Projected clean power tied to Site C, driven by B.C. electrification to meet 2030 and 2050 greenhouse gas targets.

✅ Aligns with 25-30% by 2030 and 55-70% by 2050 GHG cuts

✅ Supports EVs, heat pumps, and industrial electrification

✅ Provides dependable baseload alongside efficiency gains

 

There are valid reasons not to build the Site C dam. There are also valid reasons to build it. One of the latter is the rapid increase in clean electricity needed to reduce B.C.’s greenhouse gas emissions from burning natural gas, gasoline, diesel and other harmful fossil fuel products.

Although former Premier Christy Clark casually avoided near-term emissions targets, Prime Minister Justin Trudeau has set Canadian targets for both 2030 and 2050, and cleaning up Canada's electricity is critical to meeting them. Studies by my research group at Simon Fraser University and other independent analysts show that B.C.’s cost-effective contribution to these national targets requires us to reduce our emissions 25 to 30 per cent by 2030 and 55 to 70 per cent by 2050 — an energy evolution involving, among other things, a much greater use of electricity in buildings, vehicles and industry.

Recent submissions to the Site C hearing have offered widely different estimates of B.C.’s electricity demand in the decade after the project’s completion in 2025, some arguing the dam’s output will be completely surplus to domestic need for years and perhaps decades, even though improved B.C.-Alberta grid links could help balance regional demand. Some of this variation in demand forecasts is understandable. Industrial demand is especially difficult to predict, dependent as it is on global economic conditions and shifting trade relations. And there are legitimate uncertainties about B.C. Hydro’s ability to reduce electricity demand by promoting efficient products and behaviour through its Power Smart program. But some of the forecasts appear to be deliberate exaggerations, designed to support fixed positions for or against Site C.

Our university-based research team models the energy system changes required to meet national and provincial emissions targets, and we have been comparing estimates of the electricity demand implications. These estimates are produced by academics, as well as by key institutions like B.C. Hydro, the National Energy Board, and the governments of Canada and B.C.

Most electricity forecasts for B.C., including the most recent by B.C. Hydro, do not assume that B.C. reduces its greenhouse gas emissions by 25 to 30 per cent by 2030 and 55 to 70 per cent by 2050. When we adjust Hydro’s forecast for just the low end of these targets, we find that in its latest, August 30, submission to the Site C hearing, which followed the premier’s over-budget go-ahead on the project, Hydro has underestimated the demand for its electricity by about three terawatt-hours in 2025, four in 2030 and 10 in 2035. Hydro’s forecast indicates that it will need the five terawatt-hours from Site C. Our research shows that even if Hydro’s demand forecast is too high, appropriate climate policy nationally and in B.C. will absorb all the electricity the dam can produce soon after its completion.

B.C. Hydro does not forecast electricity demand to 2050. But, studies by us and others show that B.C. electricity demand will be almost double today’s levels if we are to reduce emissions by 55 to 70 per cent, even amid a documented risk of missing the 2050 target, in just over three decades while our population, economy, buildings and equipment grow significantly. Most mid- and small-sized vehicles will be electric. Most buildings will be well insulated and heated by electric resistance or electric heat-pumps, either individually or via district heating systems. And many low temperature industrial applications will be electric.

Aggressive efforts to promote energy efficiency will make an important contribution, such that energy demand will not grow nearly as fast as the economy. But it is delusional to think that humans will stop using energy. Even climate policy scenarios in which we assume unprecedented success with energy efficiency show dramatic increases in the consumption of electricity, this being the most favoured zero-emission form of energy as a replacement for planet-destroying gasoline and natural gas.

The completion of the Site C dam is a complicated and challenging societal choice, and delay-related cost risks highlighted by the premier underscore the stakes. There is unbiased evidence and argument supporting either completion or cancellation. But let’s stick to the unbiased evidence. In the case of our 2030 and 2050 greenhouse gas reduction targets, such evidence shows that we must substantially increase our generation of dependable electricity. If the Site C dam is built, and if we are true to our climate goals, all its electricity will be used in B.C. soon after completion.

Mark Jaccard is a professor of sustainable energy in the School of Resource and Environmental Management at Simon Fraser University.

 

Related News

Related News

UK Energy Industry Divided Over Free Electricity Debate

UK Free Electricity Debate weighs soaring energy prices against market regulation, renewables, and social equity, examining price caps, funding via windfall taxes, grid investment, and consumer protection in the UK's evolving energy policy landscape.

 

Key Points

A policy dispute over free power, balancing consumer relief with market stability, renewables, and investment.

✅ Pros: relief for households; boosts efficiency and green adoption.

✅ Cons: risks to market signals, quality, and grid investment.

✅ Policy options: price caps, windfall taxes, targeted subsidies.

 

In recent months, the debate over free electricity in the UK has intensified, revealing a divide within the energy sector. With soaring energy prices and economic pressures impacting consumers, the discussion around providing free electricity has gained traction. However, the idea has sparked significant controversy among industry stakeholders, each with their own perspectives on the feasibility and implications of such a move.

The Context of Rising Energy Costs

The push for free electricity is rooted in the UK’s ongoing energy crisis, exacerbated by geopolitical tensions, supply chain disruptions, and the lingering effects of the COVID-19 pandemic. As energy prices reached unprecedented levels, households faced the harsh reality of skyrocketing bills, prompting calls for government intervention to alleviate financial burdens.

Supporters of free electricity argue that it could serve as a vital lifeline for struggling families and businesses. The proposal suggests that by providing a certain amount of electricity for free, the government could help mitigate the effects of rising costs while encouraging energy conservation and efficiency.

Industry Perspectives

However, the notion of free electricity has not been universally embraced within the energy sector. Some industry leaders express concerns about the financial viability of such a scheme. They argue that providing free electricity could undermine the market dynamics that incentivize investment in infrastructure and renewable energy, in a market already exposed to natural gas price volatility today. Critics warn that if energy companies are forced to absorb costs, it could lead to diminished service quality and investment in necessary advancements.

Additionally, there are worries about how free electricity could be funded. Proponents suggest that a tax on energy companies could generate the necessary revenue, but opponents question whether this would stifle innovation and competition. The fear is that placing additional financial burdens on energy providers could ultimately lead to higher prices in the long run.

Renewable Energy and Sustainability

Another aspect of the debate centers around the UK’s commitment to transitioning to renewable energy sources. Supporters of free electricity emphasize that such a policy could encourage more widespread adoption of green technologies by making energy more accessible. They argue that by removing the financial barriers associated with energy costs, households would be more inclined to invest in solar panels, heat pumps, and other sustainable solutions.

On the other hand, skeptics contend that the focus should remain on ensuring a stable and reliable energy supply as the UK moves toward its climate goals. They caution against implementing policies that might disrupt the balance of the energy market, potentially hindering the necessary investments in renewable infrastructure.

Government's Role

As discussions unfold, the government’s role in this debate is crucial. Policymakers must navigate the complex landscape of energy regulation, market dynamics, and consumer needs. The government has already introduced measures aimed at assisting vulnerable households, such as energy price caps and direct financial support. However, the question remains whether these initiatives go far enough in addressing the root causes of the energy crisis.

In this context, the government faces pressure from both consumers demanding relief and industry leaders advocating for market stability, including proposals to end the link between gas and electricity prices to curb price volatility. The challenge lies in finding a middle ground that balances immediate support for households with long-term sustainability and investment in the energy sector.

Future Implications

The ongoing debate about free electricity in the UK underscores broader themes related to energy policy, market regulation, and social equity, with rising electricity prices abroad offering context for comparison. As the country navigates its energy transition, the decisions made today will have far-reaching implications for both consumers and the industry.

If the government chooses to pursue a model that includes free electricity, it will need to carefully consider how to implement such a system without jeopardizing the market. Transparency, stakeholder engagement, and thorough impact assessments will be essential to ensure that any new policies are sustainable and equitable.

Conversely, if the concept of free electricity is ultimately rejected, the focus will likely shift back to addressing energy costs through other means, such as enhancing energy efficiency programs or increasing support for vulnerable populations.

The divide within the UK’s energy industry regarding free electricity highlights the complexities of balancing consumer needs with market stability. As the energy crisis continues to unfold, the conversations surrounding this issue will remain at the forefront of public discourse. Ultimately, finding a solution that addresses the immediate challenges while promoting a sustainable energy future will be key to navigating this critical juncture in the UK’s energy landscape.

 

Related News

View more

Windstorm Causes Significant Power Outages

Vancouver October 2024 Windstorm brought extreme weather to British Columbia, causing power outages, storm damage, and downed lines as BC Hydro crews led emergency response and restoration, highlighting climate change resilience and community preparedness.

 

Key Points

A severe storm with 100 km/h gusts that caused outages and damage in Vancouver, prompting wide power restoration.

✅ 100 km/h gusts toppled trees and downed power lines

✅ Over 200,000 BC Hydro customers lost electricity

✅ Crews and communities coordinated emergency response

 

In October 2024, a powerful windstorm swept through the Vancouver area, resulting in widespread power outages and disruption across the region. The storm, characterized by fierce winds and heavy rainfall, reflected conditions seen when strong winds in the Miami Valley knocked out power earlier this year, and was part of a larger weather pattern that affected much of British Columbia. Residents braced for the impacts, with local authorities and utility companies preparing for the worst.

The Storm's Impact

The windstorm hit Vancouver with wind gusts exceeding 100 km/h, toppling trees, and downing power lines. As the storm progressed, reports of damaged properties and fallen trees began to flood in. Many neighborhoods experienced significant power outages, mirroring widespread outages in Quebec earlier in the season, with thousands of residents left without electricity for extended periods. The areas hardest hit included the West End, Kitsilano, and parts of the North Shore, where the impact of the storm was particularly severe.

Utility companies, including BC Hydro operations, mobilized their crews quickly in response to the storm's aftermath. Emergency response teams worked tirelessly to restore power, often facing challenging conditions. The restoration efforts were complicated by the sheer number of outages reported—over 200,000 customers were affected at the height of the storm. Crews encountered not only downed lines but also hazardous conditions as they navigated through debris-laden streets.

Community Response and Resilience

In the wake of the storm, the community showcased remarkable resilience. Local residents rallied together to assist one another, sharing resources and providing support to those most affected. Many community centers opened their doors as emergency shelters, offering warmth and safety to those without power, a step also taken when a London power outage disrupted mornings for thousands across the city.

Authorities also emphasized the importance of preparedness in such situations. They urged residents to have emergency kits ready, including food, water, and essential supplies, noting that nearby areas like North Seattle can face sudden outages with little warning. Local officials highlighted the value of staying informed through weather updates and alerts, allowing residents to make informed decisions during extreme weather events.

The Role of Climate Change

The October windstorm serves as a stark reminder of the increasing frequency and intensity of extreme weather events, a trend often linked to climate change. Experts have noted that rising global temperatures are contributing to more severe weather patterns, including stronger storms and increased Toronto flooding events. As cities like Vancouver face the reality of climate change, discussions about infrastructure resilience and adaptation strategies have gained urgency.

City planners and environmental advocates are pushing for initiatives that enhance the city's ability to withstand extreme weather. This includes improving stormwater management systems, increasing green spaces to absorb rainfall, and investing in renewable energy sources. By addressing these challenges proactively, Vancouver aims to mitigate the impacts of future storms and protect its residents.

Moving Forward

As recovery efforts continue, the focus now shifts to restoring normalcy and preparing for future weather events. Residents are encouraged to report any ongoing outages or hazards to local authorities and to stay updated through reliable news sources. BC Hydro and other utility companies are committed to transparency, providing regular updates on power restoration efforts, even as outages can persist for days as seen in Toronto after a spring storm.

The October 2024 windstorm will be remembered not only for its immediate impacts but also as a catalyst for discussions on resilience and community preparedness. As Vancouver looks ahead, the lessons learned from this storm will shape strategies for better handling extreme weather, ensuring that the city is equipped to face the challenges posed by a changing climate.

In conclusion, while the windstorm caused significant disruption and hardship for many, it also highlighted the strength of community spirit and the importance of proactive planning in the face of climate challenges. Vancouver's response and recovery will be crucial in building a more resilient future for all its residents.

 

Related News

View more

California just made more clean energy than it needed

CAISO Net Negative Emissions signal moments when greenhouse gas intensity of serving ISO demand drops below zero, driven by high renewable generation, low load, strong solar exports, and imports accounting in the California grid.

 

Key Points

Moments when CAISO's CO2 to serve demand is below zero, driven by renewables, exports, and import accounting.

✅ Calculated using imports and exports to serve ISO demand

✅ Occur during high solar output, low weekend load

✅ Coincide with curtailment and record renewable penetration

 

We’re a long way from the land of milk and honey, but on Easter Sunday – for about an hour – we got a taste.

On Sunday, at 1:55 PM Pacific Time the California Independent Systems Operator (CAISO) reported that greenhouse gas emissions necessary to serve its demand (~80% of California’s electricity demand on an annual basis), was measured at a rate -16 metric tons of CO2 per hour. Five minutes later, the value was -2 mTCO2/h, before it crept back up to 40 mTCO2/h at 2:05 PM PST. At 2:10 PST though it fell back to -86 mTCO2/h and stayed negative until 3:05 PM PST, even as global CO2 emissions flatlined in 2019 according to the IEA.

This information was brought to the attention of pv magazine via tweet from eagle eye Jon Pa after CAISO’s site first noted the negative values:

The region was still generating CO2 though, as natural gas, biogas, biomass, geothermal and even coal plants were running and pumping out emissions, even as potent greenhouse gases declined in the US under control efforts. CAISO’s Greenhouse Gas Emission Tracking Methodology, December 28, 2016 (pdf) notes the below calculations to create the value what it terms, “Total GHG emissions to serve ISO demand”:

Of importance to note is that to get to the net negative value, CAISO considered all electricity imports and exports, a reminder that climate policy shapes grid operations across North America. And as can be noted in the image below the CO2 intensity of imports during the day rapidly declined as the sun came up, first going negative around 9:05 AM PST, and mostly staying so until just before 6 PM PST.

During this same weekend, other records were noted (reiterating that we’re in record setting season and as the state pursues its 100% carbon-free mandate now in law) such as a new electricity export record of greater than 2 GW and total renewable electricity as part of total demand at greater than 70%.

At the peak negative moment of 2:15 PM PST, -112 mTCO2/h seen below, the total amount of clean instantaneous generation being used in the power grid region was 17 GW, a far cry from heat-driven reliability strains like rolling blackout warnings that arise during extreme demand, with renewables giving 76% of the total, hydro 14%, nuclear 13% and imports of -12% countering the CO2 coming from just over 1.4 GW of gas generation.

Also of importance are a few layers of nuance in the electricity demand charts. First off we’re in the shoulder seasons  of California – nice cool weather before the warmth of summer drives air conditioning demand. Additional the weekend electricity demand is always lower, as well, Easter Sunday might have had an affect, whereas in colder regions Calgary’s electricity use can soar during frigid snaps.

Lastly to note was the amount of electricity from solar and wind generation being curtailed. And while the Sunday numbers weren’t available yet, the below image noted Saturday with 10 GWh in total being curtailed (pdf) – peaking at over 3.2 GW of instantaneous mostly solar power even as solar is now the cheapest electricity according to the IEA, in the hours of 2 and 3 PM PST. On an annualized basis, less than 2% of total potential solar electricity was curtailed in 2018.

 

 

Related News

View more

Electricity distributors warn excess solar power in network could cause blackouts, damage infrastructure

Australian Rooftop Solar Grid Constraints are driving debates over voltage rise, export limits, inverter curtailment, DER integration, and network reliability, amid concerns about localized blackouts, infrastructure protection, tariff reform, and battery storage adoption.

 

Key Points

Limits on solar exports to curb voltage rise, protect equipment, and keep the distribution grid reliable.

✅ Voltage rise triggers transformer protection and local outages.

✅ Export limits and smart inverter curtailment manage midday backfeed.

✅ Tariff reform and DER orchestration defer costly network upgrades.

 

With almost 1.8 million Australian homes and businesses relying on power from rooftop solar panels, there is a fight brewing over the impact of solar energy on the national electricity grid.

Electricity distributors are warning that as solar uptake continues to increase, there is a risk excess solar power could flow into the network, elevating power outage risks, causing blackouts and damaging infrastructure.

But is it the network businesses that are actually at risk, as customers turn away from centrally produced electricity?

This is what three different parties have to say:

Andrew Dillon of the network industry peak body, Energy Networks Australia (ENA), told 7.30 the way customers are charged for electricity has to change, or expensive grid upgrades to poles and wires will be needed to keep solar customers on the grid.

"The engineering reality is once we get too much solar in a certain space it does start to cause technical issues," he said.

"If there is too much energy coming back up the system in the middle of the day, it can cause frequency voltage disturbances in the system, which can lead to transformers tripping off to protect themselves from being damaged and that will cause localised blackouts.

"There are pockets of the grid already where we have significant penetration and we are starting to see technical issues."

However, he acknowledges that excess solar power has yet to cause any blackouts, or damage electricity infrastructure.

"I don't buy that at all," he said.

"It can be that in some suburbs or parts of suburbs a high penetration of solar on the point of use can raise voltage, these issues generally can be dealt with quickly.

"The critical issue is think where you are getting that perspective from. It is from an industry whose underlying market is threatened by customers doing it for themselves through peer-to-peer energy models. So, think with some critical insight to these claims."

He said when too many people rely on solar it threatens the very business model of the companies that own Australia's poles and wires.

"When the customers use the network less to buy centrally produced electricity, they ship less product," he said.

"When they ship less product, their underlying business is undermined, they need to charge more to the customers left and that leads to what has been called a death spiral.

"We are seeing rapid reductions in consumption at the point of use per household."

But Mr Dillon denies the distributors are acting out of self-interest.

"I absolutely reject that claim," he said.

"[What] we, as networks, have an interest in is running a safe network, running a reliable network, enabling the transition to a low carbon future and doing all that while keeping costs down as much as possible."

Solar installers say the networks are holding back business

Around Australia the poles and wires companies can decide which solar systems can connect to the grid.

Small systems can connect automatically, but in some areas, those wanting a larger system can find themselves caught up in red tape.

The vice-president of the Australian Solar Council, Glen Morris, said these limitations were holding back solar installation businesses and preventing the take-up of new battery storage technology.

"If you've already got a five kilowatt system, your house is full as far as the network is concerned," Mr Morris said.

"You go to add a battery, that's another five kilowatts and so they say no you're already full … so you can't add storage to your solar system."

The powers that be are stumbling in the dark to prevent a looming energy crisis, as the grid seeks to balance renewables' hidden challenges and competing demands.

Mr Morris also said the networks had the capacity to solve the problem of any excess solar flows into the grid, and infrastructure upgrades were not necessary.

"They already have the capability to turn off your solar invertor whenever they feel like it," he said.

"If they choose to connect that functionality, it's there in the inverter. The customer already has it."

ENA has acknowledged there is frustration with rooftop system size limits in the solar industry.

"What we are seeing is solar installers and others slightly frustrated at different requirements for different networks and sometimes they are unclear on the reasons for that," Mr Dillon said.

"Limitations are in place across the country to keep the lights on and make sure the network stays safe and we don't have sudden rushes of people connecting to the grid that causes outage issues."

But Mr Mountain is unconvinced, calling the limitations "somewhat spurious".

"The published, documented, critically reviewed analyses are few and far between, so it is very easy for engineers to make these arguments and those in policy circles only have so much tolerance for the detail," he said.

 

Related News

View more

CAA Quebec Shines at the Quebec Electric Vehicle Show

CAA Quebec Electric Mobility spotlights EV adoption, charging infrastructure, consumer education, and sustainability, highlighting policy collaboration, model showcases, and greener transport solutions from the Quebec Electric Vehicle Show to accelerate climate goals and practical ownership.

 

Key Points

CAA Quebec's program advancing EV education, charging network advocacy, and collaboration for sustainable transport.

✅ Consumer education demystifying EV range and charging

✅ Hands-on showcases of new EV models and safety tech

✅ Advocacy for faster, wider public charging networks

 

The Quebec Electric Vehicle Show has emerged as a significant event for the automotive industry, drawing attention from enthusiasts, industry experts, and consumers alike, similar to events like Everything Electric in Vancouver that amplify public interest. This year, CAA Quebec took center stage, showcasing its commitment to promoting electric vehicles (EVs) and sustainable transportation solutions.

A Strong Commitment to Electric Mobility

CAA Quebec’s participation in the show underscores its dedication to facilitating the transition to electric mobility. With the rising concerns over climate change and the increasing popularity of electric vehicles, as Canada pursues ambitious EV targets nationwide, organizations like CAA are pivotal in educating the public about the benefits and practicality of EV ownership. At the show, CAA Quebec offered valuable insights into the latest trends in electric mobility, including advancements in technology, charging infrastructure, and the overall impact on the environment.

Educational Initiatives

One of the highlights of CAA Quebec's presentation was its focus on education. The organization hosted informative sessions aimed at demystifying electric vehicles for the average consumer. Many potential buyers are still apprehensive about making the switch from traditional gasoline-powered cars. CAA Quebec addressed common misconceptions about EVs, such as range anxiety and charging challenges, providing attendees with the knowledge they need to make informed decisions.

The sessions included expert panels discussing the future of electric vehicles, with insights from automotive industry leaders and environmental experts, and addressing debates such as experts questioning Quebec's EV push that shape policy discussions.

Showcasing Innovative EVs

CAA Quebec also showcased a variety of electric vehicles from different manufacturers, giving attendees the chance to see and experience the latest models firsthand, similar to a popular EV event in Regina that drew strong community interest. This hands-on approach allowed potential buyers to explore the features of EVs, from performance metrics to safety technologies. By allowing consumers to interact with the vehicles, CAA Quebec helped to bridge the gap between interest and action, encouraging more people to consider an electric vehicle as their next purchase.

Addressing Infrastructure Challenges

A significant barrier to the widespread adoption of electric vehicles remains the availability of charging infrastructure. CAA Quebec took the opportunity to address this critical issue during the show. The organization has been actively involved in advocating for improved charging networks across Quebec, emphasizing the need for more public charging stations and faster charging options, where examples like BC's Electric Highway illustrate how corridor charging can ease long-distance travel concerns.

Collaboration with Government and Industry

CAA Quebec’s efforts are bolstered by collaboration with both government and industry stakeholders. The organization is working closely with provincial authorities to develop policies that support the growth of electric vehicle infrastructure. Additionally, partnerships with automotive manufacturers are paving the way for more sustainable practices in vehicle production and distribution, and utilities exploring vehicle-to-grid pilots in Nova Scotia to enhance grid resilience.

A Bright Future for Electric Vehicles

The Quebec Electric Vehicle Show highlighted not only the current state of electric mobility but also its promising future, reflected in growing interest in EVs in southern Alberta and other provinces. With the support of organizations like CAA Quebec, consumers are becoming more aware of the benefits of electric vehicles. This awareness is crucial as Quebec aims to achieve its ambitious climate goals, including a significant reduction in greenhouse gas emissions.

CAA Quebec's presence at the Quebec Electric Vehicle Show exemplifies its leadership in promoting electric vehicles and sustainable transportation. By focusing on education, showcasing innovative models, and advocating for improved infrastructure, CAA Quebec is helping to pave the way for a greener future. As the automotive landscape continues to evolve, the insights and initiatives presented at the show will play a vital role in guiding consumers towards embracing electric mobility. The future is electric, and with organizations like CAA Quebec at the helm, that future looks promising.

 

Related News

View more

Illinois electric utility publishes online map of potential solar capacity

ComEd Hosting Capacity Map helps Illinois communities assess photovoltaic capacity, distributed energy resources, interconnection limits, and grid planning needs, guiding developers and policymakers on siting solar, net metering feasibility, and RPS-aligned deployment by circuit.

 

Key Points

An online tool showing circuit-level DER capacity, PV limits, and interconnection readiness across ComEd.

✅ Circuit-level estimates of solar hosting capacity

✅ Guides siting, interconnection, and net metering

✅ Supports RPS goals with grid planning insights

 

As the Illinois solar market grows from the Future Energy Jobs Act, the largest utility in the state has posted a planning tool to identify potential PV capacity in their service territory. ComEd, a Northern Illinois subsidiary of Exelon, has a hosting capacity website for its communities indicating how much photovoltaic capacity can be sited in given areas, based on the existing electrical infrastructure, as utilities pilot virtual power plant programs that leverage distributed resources.

According to ComEd’s description, “Hosting Capacity is an estimate of the amount of DER [distributed energy resources] that may be accommodated under current configurations at the overall circuit level without significant system upgrades to address adverse impacts to power quality or reliability.” This website will enable developers and local decision makers to estimate how much solar could be installed by township, sections and fractions of sections as small as ½ mile by ½ mile and to gauge EV charging impacts with NREL's projection tool for distribution planning. The map sections indicate potential capacity by AC kilowatts with a link to to ComEd’s recently upgraded Interconnection and Net Metering homepage.

The Hosting Map can provide insight into how much solar can be installed in which locations in order to help solar reach a significant portion of the Illinois Renewable Portfolio Standard (RPS) of 25% electricity from renewable sources by 2025, and to plan for transportation electrification as EV charging infrastructure scales across utility territories. For example, the 18 sections of Oak Park Township capacity range from 612 to 909 kW, and total 13,260 kW of photovoltaic power. That could potentially generate around 20 million kWh, and policy actions such as the CPUC-approved PG&E EV program illustrate how electrification initiatives may influence future demand. Oak Park, according to the PlanItGreen Report Card, a joint project of the Oak Park River Forest Community Foundation and Seven Generations Ahead, uses about 325 million kWh.

Based on ComEd’s Hosting Capacity, Oak Park could generate about 6% of its electricity from solar power located within its borders. Going significantly beyond this amount would likely require a combination of upgrades by ComEd’s infrastructure, potentially higher interconnection costs and deployment of technologies like energy storage solutions. What this does indicate is that a densely populated community like Oak Park would most likely have to get the majority of its solar and renewable electricity from outside its boundaries to reach the statewide RPS goal of 25%. The Hosting Capacity Map shows a considerable disparity among communities in ½ mile by ½ mile sections with some able to host only 100-200 kWs to some with capacities of over 3,000 kW.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified