EVs could drive 38% rise in US electricity demand, DOE lab finds


ev charging stations

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

EV-Driven Electricity Demand Growth will reshape utilities through electrification, EV adoption, grid modernization, and ratebasing of charging, as NREL forecasts rising terawatt-hours, CAGR increases, and demand-side flexibility to manage emissions and reliability.

 

Key Points

Growth in power consumption fueled by EV adoption and electrification, increasing utility sales and grid investment.

✅ NREL projects 20%-38% higher U.S. load by 2050

✅ Utilities see CAGR up to 1.6% and 80 TWh/year growth

✅ Demand-side flexibility and EV charging optimize grids

 

Utilities have struggled with flat demand for years, but analysis by the National Renewable Energy Laboratory predicts steady growth across the next three decades — largely driven by the adoption of electric vehicles, including models like the Tesla Model 3 that are reshaping expectations.

The study considers three scenarios, a reference case and medium- and high-adoption electrification predictions. All indicate demand growth, but in the medium and high scenarios for 2050, U.S. electricity consumption increases by 20% and 38%, respectively, compared to business as usual.

Utilities could go from stagnant demand to compound annual growth rates of 1.6%, which would amount to sustained absolute growth of 80 terawatt-hours per year.

"This unprecedented absolute growth in annual electricity consumption can significantly alter supply-side infrastructure development requirements," the report says, and could challenge state power grids in multiple regions.

NREL's Trieu Mai, principal investigator for the study, cautions that more research is needed to fully assess the drivers and impacts of electrification, "as well as the role and value of demand-side flexibility."

"Although we extensively and qualitatively discuss the potential drivers and barriers behind electric technology adoption in the report, much more work is needed to quantitatively understand these factors," Mai said in a statement.

However, utilities have largely bought into the dream.

"Electric vehicles are the biggest opportunity we see right now," Energy Impact Partners CEO Hans Kobler told Utility Dive. And the impact could go beyond just higher kilowattt-hour sales, particularly as electric truck fleets come online.

"When the transportation sector is fully electrified, it will result in around $6 trillion in investment," Kobler said. "Half of that is on the infrastructure side of the utility." And the industry can also benefit through ratebasing charging stations and managing the new demand.

One benefit that NREL's report points to is the possibility of "expanded value streams enabled by electric and/or grid-connected technologies," such as energy storage and mobile chargers that enhance flexibility.

"Many electric utilities are carefully watching the trend toward electrification, as it has the potential to increase sales and revenues that have stagnated or fallen over the past decade," the report said, highlighting potential benefits for all customers as adoption grows. "Beyond power system planning, other motivations to study electrification include its potential to impact energy security, emissions, and innovation in electrical end-use technologies and overall efficient system integration. The impacts of electrification could be far-reaching and have benefits and costs to various stakeholders."

 

Related News

Related News

Dutch produce more green electricity but target still a long way off

Netherlands renewable energy progress highlights rising wind energy and solar power output, delivering 17 billion kWh of green electricity from sustainable sources, yet trailing EU targets, with wind providing 60% and solar 34%.

 

Key Points

It is the country's growth in green electricity, led by wind and solar, yet short of EU targets at 13.8% of generation.

✅ 17 billion kWh green output; 13.8% of total generation

✅ Wind energy up 16% to 9.6 billion kWh; 60% of green power

✅ Solar power up about 13%; 34% of renewable production

 

The Netherlands is generating more electricity from sustainable sources as US renewable record 28% in April underscores broader momentum but is still far from reaching its targets, the national statistics office CBS said on Friday.

In total, the Netherlands produced 17 billion kilowatts of green energy last year, a rise of 10% on 2016. Sustainable sources now account for 13.8 per cent of energy generation, even as solar reshapes prices in Northern Europe across the region.

The biggest growth was in wind energy – up 16 per cent to 9.6 billion kWh – or the equivalent of energy for three million households. Wind energy now accounts for 60 per cent of green Dutch power. The amount of solar power, which accounts for 34% of green energy production, rose almost 13 per cent, and Dutch solar outpaces Canada according to recent reports.

In January, European statistics agency Eurostat said the Netherlands is near the bottom of a new table on renewable energy use in Europe. The EU has a target of a fifth of all energy use from green sources by 2020 and – while some countries have reached their own targets, including Germany's 50% clean power milestones – the Dutch, French and Irish need to increase their rates by at least 6%, Eurostat said, and Ireland has set green electricity goals for the next four years to close the gap.

 

Related News

View more

Canada’s Opportunity in the Global Electricity Market

Canada Clean Electricity Exports leverage hydroelectric power, energy storage, and transmission interconnections to meet rising IEA-forecast demand, support electrification, decarbonize grids, and attract green finance with stable policy and advanced technology.

 

Key Points

Canada's cross-border power sales from hydro and renewables, enabled by storage, transmission, and supportive policy.

✅ Hydro leads generation; expand transmission interties to the US

✅ Deploy storage to balance wind and solar variability

✅ Streamline regulation and green finance to scale exports

 

As global electricity demand continues to surge, Canada finds itself uniquely positioned to capitalize on this expanding market by choosing an electric, connected and clean pathway that scales with demand. With its vast natural resources, advanced technology, and stable political environment, Canada can play a crucial role in meeting the world’s energy needs while also advancing its own economic interests.

The International Energy Agency (IEA) has projected that global electricity demand will grow significantly over the next decade, driven by factors such as population growth, urbanization, and the increasing electrification of various sectors, including transportation and industry. This presents a golden opportunity for Canada to bolster its energy security as it boasts an abundance of renewable energy sources, particularly hydroelectric power. Currently, hydroelectricity accounts for about 60% of Canada’s total electricity generation, making it one of the largest producers of this clean energy source in the world.

The growing emphasis on renewable energy aligns perfectly with Canada’s strengths, with the Prairie Provinces emerging as leaders in new wind and solar capacity across the country. As countries worldwide strive to reduce their carbon footprints and transition to greener energy solutions, Canada’s clean energy resources can be harnessed not only to meet domestic needs but also to export electricity to neighboring countries and beyond. The U.S., for instance, is already a significant market for Canadian electricity, with interconnections facilitating the flow of power across borders. Expanding these connections and investing in infrastructure could further increase Canada’s electricity exports.

Moreover, advancements in energy storage technology present another avenue for Canada to enhance its role in the global electricity market. With the rise of intermittent energy sources like wind and solar, the ability to store excess electricity generated during peak production times becomes essential. Canada’s expertise in technology and innovation positions it well to develop and deploy energy storage solutions that can stabilize the grid through grid modernization projects and ensure a reliable supply of electricity.

Additionally, Canada’s commitment to reducing greenhouse gas emissions and combating climate change aligns with the global shift towards sustainable energy. By investing in renewable energy projects and supporting research and development, Canada can not only meet its climate targets, including zero-emissions electricity by 2035, but also attract international investment. Green financing initiatives are becoming increasingly popular, and Canada can leverage its reputation as a leader in environmental stewardship to tap into this growing market.

However, to fully realize these opportunities, Canada must address some key challenges. Regulatory hurdles, infrastructure limitations, and the need for a coordinated national energy strategy are critical issues that must be navigated. Streamlining regulations and fostering collaboration between federal and provincial governments will be essential in creating a conducive environment for investment in renewable energy projects.

Furthermore, public acceptance and community engagement are vital components of developing new energy projects, especially where solar power adoption lags and outreach is needed. Ensuring that local communities benefit from these initiatives—whether through job creation, economic investment, or shared revenues—will help garner support and facilitate smoother project implementation.

In addition to domestic efforts, Canada should also position itself as a global leader in energy diplomacy. By collaborating with other nations to share best practices, technologies, and resources, Canada can strengthen its influence in international energy discussions. Engaging in multilateral initiatives aimed at addressing energy poverty and promoting sustainable development will not only enhance Canada’s standing on the world stage but also open doors for Canadian companies to expand their reach.

In conclusion, as the global demand for electricity rises, Canada stands at a crossroads, with a tremendous opportunity to lead in the clean energy sector. By leveraging its natural resources, investing in technology, and fostering international partnerships, Canada can not only meet its energy needs but also pursue zero-emission electricity by 2035 while positioning itself as a key player in the global electricity market. The path forward will require strategic planning, investment, and collaboration, but the potential rewards are significant—both for Canada and the planet.

 

Related News

View more

After rising for 100 years, electricity demand is flat. Utilities are freaking out.

US Electricity Demand Stagnation reflects decoupling from GDP as TVA's IRP revises outlook, with energy efficiency, distributed generation, renewables, and cheap natural gas undercutting coal, reshaping utility business models and accelerating grid modernization.

 

Key Points

US electricity demand stagnation is flat load growth driven by efficiency, DG, and decoupling from GDP.

✅ Flat sales pressure IOU profits and legacy baseload investments.

✅ Efficiency and rooftop solar reduce load growth and capacity needs.

✅ Utilities must pivot to services, DER orchestration, and grid software.

 

The US electricity sector is in a period of unprecedented change and turmoil, with emerging utility trends reshaping strategies across the industry today. Renewable energy prices are falling like crazy. Natural gas production continues its extraordinary surge. Coal, the golden child of the current administration, is headed down the tubes.

In all that bedlam, it’s easy to lose sight of an equally important (if less sexy) trend: Demand for electricity is stagnant.

Thanks to a combination of greater energy efficiency, outsourcing of heavy industry, and customers generating their own power on site, demand for utility power has been flat for 10 years, with COVID-19 electricity demand underscoring recent variability and long-run stagnation, and most forecasts expect it to stay that way. The die was cast around 1998, when GDP growth and electricity demand growth became “decoupled”:


 

This historic shift has wreaked havoc in the utility industry in ways large and small, visible and obscure. Some of that havoc is high-profile and headline-making, as in the recent requests from utilities (and attempts by the Trump administration) to bail out large coal and nuclear plants amid coal and nuclear industry disruptions affecting power markets and reliability.

Some of it, however, is unfolding in more obscure quarters. A great example recently popped up in Tennessee, where one utility is finding its 20-year forecasts rendered archaic almost as soon as they are released.

 

Falling demand has TVA moving up its planning process

Every five years, the Tennessee Valley Authority (TVA) — the federally owned regional planning agency that, among other things, supplies electricity to Tennessee and parts of surrounding states — develops an Integrated Resource Plan (IRP) meant to assess what it requires to meet customer needs for the next 20 years.

The last IRP, completed in 2015, anticipated that there would be no need for major new investment in baseload (coal, nuclear, and hydro) power plants; it foresaw that energy efficiency and distributed (customer-owned) energy generation would hold down demand.

Even so, TVA underestimated. Just three years later, the Times Free Press reports, “TVA now expects to sell 13 percent less power in 2027 than it did two decades earlier — the first sustained reversal in the growth of electricity usage in the 85-year history of TVA.”

TVA will sell less electricity in 10 years than it did 10 years ago. That is bonkers.

This startling shift in prospects has prompted the company to accelerate its schedule. It will now develop its next IRP a year early, in 2019.

Think for a moment about why a big utility like TVA (serving 9 million customers in seven states, with more than $11 billion in revenue) sets out to plan 20 years ahead. It is investing in extremely large and capital-intensive infrastructure like power plants and transmission lines, which cost billions of dollars and last for decades. These are not decisions to make lightly; the utility wants to be sure that they will still be needed, and will still pay off, for many years to come.

Now think for a moment about what it means for the electricity sector to be changing so fast that TVA’s projections are out of date three years after its last IRP, so much so that it needs to plunge back into the multimillion-dollar, year-long process of developing a new plan.

TVA wanted a plan for 20 years; the plan lasted three.

 

The utility business model is headed for a reckoning

TVA, as a government-owned, fully regulated utility, has only the goals of “low cost, informed risk, environmental responsibility, reliability, diversity of power and flexibility to meet changing market conditions,” as its planning manager told the Times Free Press. (Yes, that’s already a lot of goals!)

But investor-owned utilities (IOUs), which administer electricity for well over half of Americans, face another imperative: to make money for investors. They can’t make money selling electricity; monopoly regulations forbid it, raising questions about utility revenue models as marginal energy costs fall. Instead, they make money by earning a rate of return on investments in electrical power plants and infrastructure.

The problem is, with demand stagnant, there’s not much need for new hardware. And a drop in investment means a drop in profit. Unable to continue the steady growth that their investors have always counted on, IOUs are treading water, watching as revenues dry up

Utilities have been frantically adjusting to this new normal. The generation utilities that sell into wholesale electricity markets (also under pressure from falling power prices; thanks to natural gas and renewables, wholesale power prices are down 70 percent from 2007) have reacted by cutting costs and merging. The regulated utilities that administer local distribution grids have responded by increasing investments in those grids, including efforts to improve electricity reliability and resilience at lower cost.

But these are temporary, limited responses, not enough to stay in business in the face of long-term decline in demand. Ultimately, deeper reforms will be necessary.

As I have explained at length, the US utility sector was built around the presumption of perpetual growth. Utilities were envisioned as entities that would build the electricity infrastructure to safely and affordably meet ever-rising demand, which was seen as a fixed, external factor, outside utility control.

But demand is no longer rising. What the US needs now are utilities that can manage and accelerate that decline in demand, increasing efficiency as they shift to cleaner generation. The new electricity paradigm is to match flexible, diverse, low-carbon supply with (increasingly controllable) demand, through sophisticated real-time sensing and software.

That’s simply a different model than current utilities are designed for. To adapt, the utility business model must change. Utilities need newly defined responsibilities and new ways to make money, through services rather than new hardware. That kind of reform will require regulators, politicians, and risky experiments. Very few states — New York, California, Massachusetts, a few others — have consciously set off down that path.

 

Flat or declining demand is going to force the issue

Even if natural gas and renewables weren’t roiling the sector, the end of demand growth would eventually force utility reform.

To be clear: For both economic and environmental reasons, it is good that US power demand has decoupled from GDP growth. As long as we’re getting the energy services we need, we want overall demand to decline. It saves money, reduces pollution, and avoids the need for expensive infrastructure.

But the way we’ve set up utilities, they must fight that trend. Every time they are forced to invest in energy efficiency or make some allowance for distributed generation (and they must always be forced), demand for their product declines, and with it their justification to make new investments.

Only when the utility model fundamentally changes — when utilities begin to see themselves primarily as architects and managers of high-efficiency, low-emissions, multidirectional electricity systems rather than just investors in infrastructure growth — can utilities turn in earnest to the kind planning they need to be doing.

In a climate-aligned world, utilities would view the decoupling of power demand from GDP growth as cause for celebration, a sign of success. They would throw themselves into accelerating the trend.

Instead, utilities find themselves constantly surprised, caught flat-footed again and again by a trend they desperately want to believe is temporary. Unless we can collectively reorient utilities to pursue rather than fear current trends in electricity, they are headed for a grim reckoning.

 

Related News

View more

Russian hackers had 'hundreds of victims' as they infiltrated U.S. power grid

Russian cyberattacks on U.S. power grid exposed DHS warnings: Dragonfly/Energetic Bear breached control rooms, ICS networks, and could trigger blackouts via switch manipulation, phishing, and malware, threatening critical infrastructure and utility operations nationwide.

 

Key Points

State-backed breaches of utility ICS and control rooms enabled potential switch manipulation and blackouts.

✅ DHS: Dragonfly/Energetic Bear breached utility networks

✅ Access reached control rooms and ICS for switch control

✅ Ongoing campaign via phishing, malware, lateral movement

 

Russian hackers for a state-sponsored organization invaded hundreds of control rooms of U.S. electric utilities that could have led to blackouts, a new report says.

The group, known as Dragonfly or Energetic Bear, infiltrated networks of U.S. utilities as part of an effort that is likely ongoing, Department of Homeland Security officials told the Wall Street Journal.

Jonathan Home, chief of industrial-control-system analysis for DHS, said the hackers “got to the point where they could have thrown switches” and upset power flows.

Although the agency did not disclose which companies were impacted, the officials at a briefing Monday said that there were “hundreds of victims” including breaches at power plants across the U.S., and that some companies may not be aware that hackers infiltrated their networks yet.

According to experts, Russia has been preparing for such attacks for some time now, prompting a renewed focus on protecting the grid among utilities and policymakers.

“They’ve been intruding into our networks and are positioning themselves for a limited or widespread attack,” said former Deputy Assistant Defense Secretary Michael Carpenter, now senior director at the Penn Biden Center at the University of Pennsylvania, per the Wall Street Journal. “They are waging a covert war on the West.”

Earlier this year, the Trump administration claimed Russia had staged a power grid hacking campaign against the U.S. energy grid and other U.S. infrastructure.

The report comes after President Trump told reporters last week during a joint press conference in Helsinki alongside Russian President Vladimir Putin that he had no reason not to believe the Russian leader's assurances to him that the Kremlin was not to blame for interference in the election.

Trump later admitted that he misspoke when he said he didn’t “see any reason why” Russia would have meddled in the 2016 election, and said he believes the U.S. intelligence community assessment that found that the Russian government did interfere in the electoral process.

 

Related News

View more

Hydro One wants to spend another $6-million to redesign bills

Hydro One Bill Redesign Spending sparks debate over Ontario Energy Board regulation, rate applications, privatization, and digital billing upgrades, as surveys cite confusing invoices under the Fair Hydro Plan for residential, commercial, and industrial customers.

 

Key Points

$15M project to simplify Hydro One bills, upgrade systems, and improve digital billing for commercial customers.

✅ $9M spent; $6M proposed for C&I and large-account changes.

✅ OEB to rule amid rate application and privatization scrutiny.

✅ Survey: 40% of customers struggled to understand bills.

 

Ontario's largest and recently privatized electricity utility has spent $9-million to redesign bills and is proposing to spend an additional $6-million on the project.

Hydro One has come under fire for spending since the Liberal government sold more than half of the company, notably for its CEO's $4.5-million pay.

Now, the NDP is raising concerns with the $15-million bill redesign expense contained in a rate application from the formerly public utility.

"I don't think the problem we face is a bill that people can't understand, I think the problem is rates that are too high," said energy critic Peter Tabuns. "Fifteen million dollars seems awfully expensive to me."

But Hydro One says a 2016 survey of its customers indicated about 40 per cent had trouble understanding their bills.

Ferio Pugliese, the company's executive vice-president of customer care and corporate affairs, said the redesign was aimed at giving customers a simpler bill.

"The new format is a format that when tested and put in front of our customers has been designed to give customers the four or five salient items they want to see on their bill," he said.

About $9-million has already gone into redesigning bills, mostly for residential customers, Pugliese said. Cosmetic changes to bills account for about 25 per cent of the cost, with the rest of the money going toward updating information systems and improving digital billing platforms, he said.

The additional $6-million Hydro One is looking to spend would go toward bill changes mostly for its commercial, industrial and large distribution account customers.

Energy Minister Glenn Thibeault noted in a statement that the Ontario Energy Board has yet to decide on the expense, but he suggested he sees the bill redesign as necessary alongside legislation to lower electricity rates introduced by the province.

"With Ontarians wanting clearer bills that are easier to understand, Hydro One's bill redesign project is a necessary improvement that will help customers," he wrote.

"Reductions from the Fair Hydro Plan (the government's 25 per cent cut to bills last year) are important information for both households and businesses, and it's our job to provide clear, helpful answers whenever possible."

The OEB recently ordered Hydro One to lower a rate increase it had been seeking for this year to 0.2 per cent down from 4.8 per cent.

The regulator also rejected a Hydro One proposal to give shareholders all of the tax savings generated by the IPO in 2015 when the Liberal government first began partially privatizing the utility. The OEB instead mandated shareholders receive 62 per cent of the savings while ratepayers receive the remaining 38 per cent.

 

 

Related News

View more

Yale Report on Western Grid Integration: Just Say Yes

Western Grid Integration aligns CAISO with a regional transmission operator under FERC oversight, boosting renewables, reliability, and cost savings while respecting state energy policy, emissions goals, and utility regulation across the West.

 

Key Points

Western Grid Integration lets CAISO operate under FERC to cut costs, boost reliability, and accelerate renewables.

✅ Lowers wholesale costs via wider dispatch and resource sharing

✅ Improves reliability with regional balancing and reserves

✅ Preserves state policy authority under FERC oversight

 

A strong and timely endorsement for western grid integration forcefully rebuts claims that moving from a balkanized system with 38 separate entities to a regional operation could introduce environmental problems, raise costs, or, as critics warn, export California’s energy policies to other western states, or open state energy and climate policies to challenge by federal regulators. In fact, Yale University’s Environmental Protection Clinic identifies numerous economic and environmental benefits from allowing the California Independent System Operator to become a regional grid operator.

The groundbreaking report comprehensively examines the policy and legal merits of allowing the California Independent System Operator (CAISO) to become a regional grid operator, open to any western utility or generator that wants to join, as similar market structure overhauls proceed in New England.

The Yale report identifies the increasing constraints that today’s fragmented western grid imposes on system-wide electricity costs and reliability, addresses the potential benefits of integration, and evaluates  potential legal risks for the states involved. California receives particular attention because its legislature is considering the first step in the grid integration process, which involves authorizing the CAISO to create a fully independent board, even as it examines revamping electricity rates to clean the grid (other western states are unlikely to approve joining an entity whose governance is determined solely by California’s governor and legislature, as is the case now).

 

Elements of the report

The analysis examined all of California’s key energy and climate policies, from its cap on carbon emissions to its renewable energy goals and its pollution standards for power plants, and concludes that none would face additional legal risks under a fully integrated western grid. The operator of such a grid would be regulated by an independent federal agency (the Federal Energy Regulatory Commission)—but so is the CAISO itself, now and since its inception, by virtue of its extended involvement in interstate electricity commerce throughout the West. 

And if empowered to serve the entire region, the CAISO would not interfere with the longstanding rights of California and other states to regulate their utilities’ investments or set energy and climate policies. The study points out that grid operators don’t set energy policies for the states they serve; they help those states minimize costs, enhance reliability in the wake of California blackouts across the state, and avoid unnecessary pollution.

And as to whether an integrated grid would help renewable energy or fossil fuels, the report finds that renewable resources would be the inevitable winners, thanks to their lower operating costs, although the most important winners would be western utility customers, through lower bills, expanded retail choice options, and improved reliability.

 

Call to action

The Yale report concludes with what amounts to a call to action for California’s legislators:

“In sum, enhanced Western grid integration in general, and the emergence of a regional system operator in particular, would not expose California’s clean energy policies to additional legal risks. Shifting to a regional grid operator would enable more efficient, affordable and reliable integration of renewable resources without increasing the legal risk to California’s clean energy policies.”

The authors of the analysis, from the Yale Law School and the Yale School of Forestry and Environmental Studies, are Juliana Brint, Josh Constanti, Franz Hochstrasser. and Lucy Kessler. They dedicated months to the project, consulted with a diverse group of reviewers, and made the trek from New Haven to Folsom, CA, to visit the California Independent System Operator and interview key staff members.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.