Swiss electricity getting cleaner, says energy report


Loentsch power plant

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Switzerland Renewable Power Mix shows 62 percent renewables in 2016, led by hydropower, with solar, wind, and biomass growing as nuclear declines under Energy Strategy 2050, while unverified imports include fossil fueled European market electricity.

 

Key Points

2016 Swiss power mix: 62% renewables led by hydropower, with nuclear declining and solar, wind, and biomass rising.

✅ Hydropower supplies 56% of electricity consumption.

✅ Other renewables total 5.9%: solar, wind, biomass.

✅ Nuclear share fell to 17% as phaseout advances.

 

The electricity consumed in Switzerland is ever greener, according to government statistics: some 62% comes from renewable sources, compared with about 25.5% in the U.S. at the time, while nuclear has fallen to 17%.

The figures (in French/German)external link were released on Monday by the Federal Office of Energy, which gathers each year the sources used by electricity providers in Switzerland. The latest report refers to 2016.

As expected, hydropower is the biggest source of juice, at 56%. This marks an increase of 2.5 percentage points on the previous year. Other renewables – solar, wind, biomass and small-scale hydropower – made up 5.9%, a one-point increase on 2015, mirroring gains seen in U.S. solar generation over recent years.

#google#

Taken together, this means that just over three-fifths of electricity provided in the country in 2016 came from renewable sources, a figure helped by the slight decline in the use of nuclear, which fell from 20.7% to 17%, a shift similar to when U.S. renewables became the second-most prevalent source in 2020, reflecting broader trends.

Another 20% comes from unverified sources, which the energy office explains as energy used by high-consuming businesses which is often bought on the European market and not traced within Switzerland. Much of it may be fossil fuel burning.

Overall the figures tie in closely with the government’s Energy Strategy 2050external link, a sweeping plan endorsed by voters last year that aims to completely phase out nuclear by the mid-point of the century, as well as promote renewable sources and reduce consumption, in line with progress such as Germany's 50% clean electricity reported recently.

The electricity consumption figures should not be confused with those for overall energy produced, which (for reasons of import and export) are different: overall, 59% of the production total is hydropower, 33% remains nuclear, 5% other renewable, and 3% fossil fuels, and abroad U.S. renewables hit a 28% monthly record in April, highlighting differing baselines.


 

 

Related News

Related News

Unilorin develops device to check electricity theft

Ilorin Electricity Theft Device delivers remote monitoring and IoT-based detection for smart meters, identifying bypassed prepaid meters, triggering disconnects, and alerting the utility control room to curb distribution losses and energy theft.

 

Key Points

A prototype IoT system that detects electricity theft, enables remote disconnection, and alerts utility control rooms.

✅ Remote monitoring flags bypassed prepaid meters.

✅ Sends alerts to utility control room with customer details.

✅ Enables safe remote cut-off to reduce distribution losses.

 

The Department of Electrical and Electronics Engineering, University of Ilorin, has unveiled a prototype anti-theft device capable of remotely monitoring and detecting customers stealing electricity.

The Acting Head of the Department, Dr Mudathir Akorede told newsmen on Tuesday in Ilorin that the device could also cut off electricity supply to the premises of customers stealing electricity.

”This will simultaneously send a message to the utility control room, and in light of rising ransomware attacks targeting power systems, to alert the system operator with such customer’s details displayed on the control panel,” he said.

Akorede said that processes of filing application for patenting the invention, in line with emerging IoT security standards for the electricity sector, had commenced through the university’s Laboratory to Product Centre.

The don explained that the device was developed by himself and some students of the Department, reflecting how university teams contribute to innovations like generating electricity from falling snow in the field.

Akorede said, “I gave the project to my undergraduate students; they carried out the project to a level and I took it over and brought it to a level that was up to standard.”

The Don further said,”The invention is now up to the standard that it can be patented.

“I have brought this to the attention of the Ibadan Electricity Distribution Company, although not officially, but if adopted, and as utilities pursue digitizing the grid strategies, the device would enable distribution companies to cut their commercial losses substantially.”

He said that the idea followed the discovery that most people use electricity without paying for it.

”A lot of people that have been able to get the prepaid meter, even though they can afford to pay their bills, still want to bypass this thing to steal electricity and this is not helping the companies.

“It is not helping all of us as a whole. If the industry should collapse, with emerging cyber weapons that can disrupt power grids underscoring systemic risks, everybody would bear the brunt of that problem and that is why the consumers too have to share out of the problem

“But this is not to say that distribution companies also do not have their share of the blame by not wanting to take on responsibilities such as faulty transformers.”

 

Related News

View more

Student group asking government for incentives on electric cars

PEI Electric Vehicle Incentives aim to boost EV adoption through subsidies and rebates, advocated by Renewable Transport PEI, with MLAs engagement, modeling Norway's approach, offsetting HST gaps, and making electric cars more competitive for Islanders.

 

Key Points

PEI Electric Vehicle Incentives are proposed subsidies and rebates to make EVs affordable and competitive for Islanders.

✅ Targets EV adoption with rebates up to 20 percent

✅ Modeled on Norway policies; offsets prior HST-era gaps

✅ Backed by Renewable Transport PEI engaging MLAs

 

Noah Ellis, assistant director of Renewable Transport P.E.I., is asking government to introduce incentives for Islanders to buy electric cars, as cost barriers remain a key hurdle for many.

RTPEI is a group composed of high school students at Colonel Gray going into their final year."We wanted to give back and contribute to our community and our country and we thought this would be a good way to do so," Ellis told Compass.

 

Meeting with government

"We want to see the government bring in incentives for electric vehicles, similar to New Brunswick's rebate program, because it would make them more competitive with their gasoline counterparts," Ellis said.

'We wanted to give back and contribute to our community … we thought this would be a good way to do so.'— Noah Ellis

Ellis said the group has spoken with opposition MLAs and is meeting with cabinet ministers soon to discuss subsidies for Islanders to buy electric cars, noting that Atlantic Canadians are less inclined to buy EVs compared to the rest of the country.

He referred to Norway as a prime example for the province to model potential incentives, even as Labrador's EV infrastructure gaps underscore regional challenges — a country that, as of last year, announced nearly 40 per cent of the nation's newly registered passenger vehicles as electric powered.

'Incentives that are fiscally responsible'

Ellis said they group isn't looking for anything less than a 20 per cent incentive on electric vehicles — 10 per cent higher than the provinces cancelled hybrid car tax rebate that existed prior to HST.

"Electric vehicle incentives do work we just have to work with economists and environmentalists, and address critics of EV subsidies, to find the right balance of incentives that are fiscally responsible for the province but will also be effective," Ellis said.

 

Related News

View more

Coal comeback unlikely after Paris climate pact withdrawal, says utility CEO

US Shift From Coal to Renewables accelerates as natural gas, solar, and wind power gain market share, driven by the Paris climate agreement, clean energy mandates, smart grid upgrades, and energy efficiency.

 

Key Points

An industry trend where power producers replace coal with natural gas, solar, and wind to meet clean energy goals.

✅ Shareholders and customers demand cleaner power portfolios

✅ Natural gas, solar, and wind outcompete coal on cost and risk

✅ Smart grid and efficiency investments reduce emissions further

 

President Trump once again promised to revive the U.S. coal industry when he announced his intention to withdraw the U.S. from the Paris climate agreement.

But that reversal seems as unlikely as ever as electric power producers, the biggest consumers of coal in the U.S., continue to shift to natural gas and renewable energy sources like solar and wind power. In 2016, natural gas became the leading fuel for U.S. electricity generation for the first time, responsible for 33.8% of the output, compared with 30.4% for coal, according to the U.S. Energy Information Administration, even as coal-fired generation was projected to rise in 2021 in the short term.

Nick Akins, the CEO of American Electric Power, one of the largest utilities in the U.S., says the preference for gas, renewables and energy efficiency, will only grow in response to increasing demands from shareholders and customers for cleaner energy, regardless of changes in national energy policy.

With 5.4 million customers in 11 states, AEP plans to spend $1.5 billion on renewable energy from 2017 through 2019, and $13 billion on transmission and distribution improvements, including new “smart” technologies that will make the grid more resilient and efficient, AEP says.

We spoke with Akins on Thursday, just after Trump’s announcement. The transcript is edited for length and clarity.

 

What do you think of Trump’s decision to pull the U.S. from the climate agreement?

I don’t think it’s unexpected. He obviously made the point that he’s willing to renegotiate or have further dialogue about it. That’s a good sign. From our perspective, we’re going to continue along the path we’re already on toward a cleaner energy economy.

 

AEP and the U.S. electric power industry in general have been moving away from coal in favor of natural gas and renewable energy. Will this decision by the Trump administration have any impact on that trend?

If you look at our resource plans in all of the states we serve, they are focused on renewables, natural gas and transmission, as declining returns from coal generation pressure investment choices across the industry. And big-data analytics improves the efficiency of the grid, so energy efficiency is obviously a key component, as Americans use less electricity overall.

Our carbon dioxide emissions in 2016 were 44% below 2000 levels, and that progress will continue with the additions of more renewables, energy efficiency and natural gas.

So, you don’t see coal making a comeback at AEP or other utilities?

No, I don’t think so. … You wouldn’t make a decision (to build a coal power plant) at this point because it’s heavily capital-intensive, and involves a longer-term process and risk to build. And, of course, you can add renewables that are very efficient and natural gas that’s efficient and much less expensive and risky, in terms of construction and operation.

 

Do you plan to close any more coal-powered plants soon? 

I suspect we’ll see some more retirements in the future, with coal and nuclear closures test just transition in many communities, and as we progress towards that cleaner energy economy, and consider the expectations of our customers and shareholders for us to mitigate risk, you’ll continue to see that happen.

But on the other hand, I want to make sure there’s an understanding that coal will remain a part of the portfolio, even though in rare cases new coal plants are still being built where options are limited, but it will be of a lesser degree because of these other resources that are available to us now that weren’t available to us just a few years ago.

 

Do you find yourself under more or less pressure from customers and shareholders to move to cleaner forms of energy?

I think there’s more pressure. Investors are looking for the sustainability of the company going forward and mitigation of risks … From a customer standpoint, we have some large customers interested in moving into our service territory who are looking for cleaner energy, and want to know if we’re focused on that. Some of them want to be supplied entirely by those clean sources. So, we’re clearly responding to our customers’ and our shareholders’ expectations.

 

What’s the solution for workers at coal mines and coal power plants who have lost their jobs?

Certainly, the skill sets of employees in mining and around machinery are transferable to other areas of manufacturing, like aerospace and defense. So, we’re really focusing on economic-development efforts in our service territories … particularly in the coal states … to bring coal miners back to work, not necessarily in coal mines but certainly (in manufacturing).

 

Related News

View more

Sparking change: what Tesla's Model 3 could mean for electric utilities

EV Opportunity for Utilities spans EV charging infrastructure, grid modernization, demand response, time-of-use rates, and customer engagement, enabling predictable load growth, flexible charging, and stronger utility branding amid electrification and resilience challenges.

 

Key Points

It is the strategy to leverage EV adoption for load growth, grid flexibility, and branded charging services.

✅ Monetizes EV load via TOU rates, managed charging, and V2G.

✅ Uses rate-based infrastructure to expand equitable charging access.

✅ Enhances resilience and DER integration through smart grid upgrades.

 

Tesla recently announced delivery of the first 30 production units of its Model 3 electric vehicle (EV). EV technology has generated plenty of buzz in the electric utility industry over the past decade and, with last week’s announcement, it would appear that projections of a significant market presence for EVs could give way to rapid growth.

Tesla’s announcement could not have come at a more critical time for utilities, which face unprecedented challenges. For the past 15 years, utilities have been grappling with increasingly frequent “100-year storms,” including hurricanes, snowstorms and windstorms, underscoring the reality that the grid’s aging infrastructure is not fit to withstand increasingly extreme weather, along with other threats, such as cyber attacks.

Coupled with flat or declining load growth, changing regulations, increasing customer demand, and new technology penetration, these challenges have given the electric utility industry good reason to describe its future as “threatened.” These trends, each exacerbating the others, mean essentially that utilities can no longer rely on traditional ways of doing business.

EVs have significant potential to help relieve the industry’s pessimistic outlook. This article will explore what EV growth could mean for utilities and how they can begin establishing critical foundations today to help ensure their ability to exploit this opportunity.

 

The opportunity

At the Bloomberg New Energy Finance (BNEF) Global Summit 2017, BNEF Advisory Board Chairman Michael Liebreich announced the group’s prediction that electric vehicles will comprise 35-47 percent of new vehicle sales globally by 2040.

U.S. utilities have good reason to be optimistic about this potential new revenue source, as EV-driven demand growth could be substantial according to federal lab analyses. If all 236 million gas-powered cars in the U.S. — average miles driven per year: 12,000 — were replaced with electric vehicles, which travel an average of 100 miles on 34 kWh, they would require 956 billion kWh each year. At a national average cost of $0.12 / kWh, the incremental energy sold by utilities in the U.S. would bring in around $115 billion per year in new revenues. A variety of factors could increase or decrease this number, but it still represents an attractive opportunity for the utility sector.

Capturing this burgeoning market is not simply a matter of increased demand; it will also require utilities to be predictable, adaptable and brandable. Moreover, while the aggregate increase in demand might be only 3-4 percent, demand can come as a flexible and adaptable load through targeted programming. Also, if utilities target the appropriate customer groups, they can brand themselves as the providers of choice for EV charging. The power of stronger branding, in a sector that’s experiencing significant third-party encroachment, could be critical to the ongoing financial health of U.S. utilities.

Many utilities are already keenly aware of the EV opportunity and are speeding down this road (no pun intended) as part of their plans for utility business model reinvention. Following are several questions to be asked when evaluating the EV opportunity.

 

Is the EV opportunity feasible with today’s existing grid?

According to a study conducted by the U.S. Department of Energy’s Pacific Northwest National Laboratory, the grid is already capable of supporting more than 150 million pure electric vehicles, even as electric cars could challenge state grids in the years ahead, a number equal to at least 63 percent of all gas-powered cars on the road today. This is significant, considering that a single EV plugged into a Level 2 charger can double a home’s peak electricity demand. Assuming all 236 million car owners eventually convert to EVs, utilities will need to increase grid capacity. However, today’s grid already has the capacity to accommodate the most optimistic prediction of 35-47 percent EV penetration by 2040, which is great news.

 

Should the EV opportunity be owned by utilities?

There’s significant ongoing debate among regulators and consumer advocacy groups as to whether utilities should own the EV charging infrastructure, with fights for control over charging reflecting broader market concerns today. Those who are opposed to this believe that the utilities will have an unfair pricing advantage that will inhibit competition. Similarly, if the infrastructure is incorporated into the rate base, those who do not own electric vehicles would be subsidizing the cost for those who do.

If the country is going to meet the future demands of electric cars, the charging infrastructure and power grid will need help, and electric utilities are in the best position to address the problem, as states like California explore EVs for grid stability through utility-led initiatives that can scale. By rate basing the charging infrastructure, utilities can provide charging services to a wider range of customers. This would not favor one economic group over another, which many fear would happen if the private sector were to control the EV charging market.

 

If you build it, will they come?

At this point, we can conclude that growth in EV market penetration is a tremendous opportunity for utilities, one that’s most advantageous to electricity customers if utilities own some, if not all, of the charging infrastructure. The question is, if you build it, will they come — and what are the consequences if they don’t?

With any new technology, there’s always a debate centered around adoption timing — in this case, whether to build the infrastructure ahead of demand for EV or wait for adoption to spike. Either choice could have disastrous consequences if not considered properly. If utilities wait for the adoption to spike, their lack of EV charging infrastructure could stunt the growth of the EV sector and leave an opening for third-party providers. Moreover, waiting too long will inhibit GHG emissions reduction efforts and generally complicate EV technology adoption. On the other hand, building too soon could lead to costly stranded assets. Both problems are rooted in the inability to control adoption timing, and, until recently, utilities didn’t have the means or the savvy to influence adoption directly.

 

How should utilities prepare for the EV?

Beyond the challenges of developing the hardware, partnerships and operational programs to accommodate EV, including leveraging energy storage and mobile chargers for added flexibility, influencing the adoption of the infrastructure will be a large part of the challenge. A compelling solution to this problem is to develop an engaged customer base.

A more engaged customer base will enable utilities to brand themselves as preferred EV infrastructure providers and, similarly, empower them to influence the adoption rate. There are five key factors in any sector that influence innovation adoption:

  1. Relative advantage – how improved an innovation is over the previous generation.

  2. Compatibility – the level of compatibility an innovation has with an individual’s life.

  3. Complexity – if the innovation is to difficult to use, individuals will not likely adopt it.

  4. Trialability – how easily an innovation can be experimented with as it’s being adopted.

  5. Observability – the extent that an innovation is visible to others.

Although much of EV adoption will depend on the private vehicle sector influencing these five factors, there’s a huge opportunity for utilities to control the compatibility, complexity and observability of the EV. According to  “The New Energy Consumer: Unleashing Business Value in a Digital World,” utilities can influence customers’ EV adoption through digital customer engagement. Studies show that digitally engaged customers:

  • have stronger interest and greater likelihood to be early EV adopters;

  • are 16 percent more likely to purchase home-based electric vehicle charging stations and installation services;

  • are 17 percent more likely to sign up for financing for home-based electric vehicle charging stations; and

  • increase the adoption of consumer-focused programs.

These findings suggest that if utilities are going to seize the full potential of the EV opportunity, they must start engaging customers now so they can appropriately influence the timing and branding of EV charging assets.

 

How can utilities engage consumers in preparation?

If utilities establish the groundwork to engage customers effectively, they can reduce the risks of waiting for an adoption spike and of building and investing in the asset too soon. To improve customer engagement, utilities need to:

  1. Change their customer conversations from bills, kWh, and outages, to personalized, interesting topics, communicated at appropriate intervals and via appropriate communication channels, to gain customers’ attention.

  2. Establish their roles as trusted advisors by presenting useful, personalized recommendations that benefit customers. These tips should change dynamically with changing customer behavior, or they risk becoming stagnant and redundant, thereby causing customers to lose interest.

  3. Convert the perception of the utility as a monopolistic, inflexible entity to a desirable, consumer-oriented brand through appropriate EV marketing.

It’s critical to understand that this type of engagement strategy doesn’t even have to provide EV-specific messaging at first. It can start by engaging customers through topics that are relevant and unique, through established or evolving customer-facing programs, such as EE, BDR, TOU, HER.

As lines of communication open up between utility and users, utilities can begin to understand their customers’ energy habits on a more granular level. This intelligence can be used by business analysts to help educate program developers on the optimal EV program timing. For example, as customers become interested in services in which EV owners typically enlist, utilities can target them for EV program marketing. As the number of these customers grows, the window for program development opens, and their levels of interest can be used to inform program and marketing timelines.

While all this may seem like an added nuisance to an EV asset development strategy, there’s significant risk of losing this new asset to third-party providers. This is a much greater burden to utilities than spending the time to properly own the EV opportunity.

 

Related News

View more

Israeli ministries order further reduction in coal use

Israel Coal Reduction accelerates the energy transition, cutting coal use in electricity production by 30% as IEC shifts to natural gas, retires Hadera units, and targets a 2030 phase-out to lower emissions.

 

Key Points

Plan to cut coal power by 30%, retire IEC units, and end coal by 2030, shifting electricity generation to natural gas.

✅ 30% immediate cut in coal use for electricity by IEC

✅ Hadera units scheduled for retirement and gas replacement by 2022

✅ Complete phase-out of coal and gasoil in power by 2030

 

Israel's Energy and Water and Environmental Protection Ministers have ordered an immediate 30% reduction in coal use for electricity production by state utility Israel Electric Corporation as the country increases its dependence on domestic natural gas.

IEC, which operates four coal power plants with a total capacity of 4,850 MW and imports thermal coal from Australia, Colombia, Russia and South Africa, has been planning, as part of the decision to reduce coal use, to shut one of its coal plants during autumn 2018, when demand is lowest.

Israel has already decided to shut the four units of the oldest coal power plant at Hadera by 2022, echoing Britain's coal-free week milestones, and replace the capacity with gas plants.

"By 2030 Israel will completely stop the use of coal and gasoil in electricity production," minister Yuval Steinmetz said.

Coal consumption peaked in 2012 at 14 million mt and has declined steadily, aligning with global trends where renewables poised to eclipse coal in power generation, with the coming on line of Israel's huge Tamar offshore gas field in 2013.

In 2015 coal accounted for more than 50% of electricity production, even as German renewables outpaced coal in generation across that market. Coal's share would decline to less than 30% under the latest decision.

Israel's coal consumption in 2016 totaled 8.7 million mt, as India rationed coal supplies amid surging demand, and was due to decline to 8 million mt last year.

Three years ago, the ministers ordered a 15% reduction in coal use, while Germany's coal generation share remained significant, and the following year a further 5% cut was added.

 

Related News

View more

Russia Develops Cyber Weapon That Can Disrupt Power Grids

CrashOverride malware is a Russian-linked ICS cyberweapon targeting power grids, SCADA systems, and utility networks; linked to Electrum/Sandworm, it threatens U.S. transmission and distribution with modular attacks and time-bomb payloads across critical infrastructure.

 

Key Points

A modular ICS malware linked to Russian actors that disrupts power grids via SCADA abuse and forced breaker outages.

✅ Targets breakers and substation devices to sustain outages

✅ Modular payloads adapt to ICS protocols and vendors

✅ Enables timed, multi-site attacks against transmission and distribution

 

Hackers allied with the Russian government have devised a cyberweapon that has the potential to be the most disruptive yet against electric systems that Americans depend on for daily life, according to U.S. researchers.

The malware, which researchers have dubbed CrashOverride, is known to have disrupted only one energy system — in Ukraine in December. In that incident, the hackers briefly shut down one-fifth of the electric power generated in Kiev.

But with modifications, it could be deployed against U.S. electric transmission and distribution systems to devastating effect, said Sergio Caltagirone, director of threat intelligence for Dragos, a cybersecurity firm that studied the malware and issued a recent report.

And Russian government hackers have shown their interest in targeting U.S. energy and other utility systems, with reports of suspected breaches at U.S. power plants in recent years, researchers said.

“It’s the culmination of over a decade of theory and attack scenarios,” Caltagirone warned. “It’s a game changer.”

The revelation comes as the U.S. government is investigating a wide-ranging, ambitious effort by the Russian government last year to disrupt the U.S. presidential election and influence its outcome, and has issued a condemnation of Russian power grid hacking as well. That campaign employed a variety of methods, including hacking hundreds of political and other organizations, and leveraging social media, U.S. officials said.

Dragos has named the group that created the new malware Electrum, and it has determined with high confidence that Electrum used the same computer systems as the hackers who attacked the Ukraine electric grid in 2015. That attack, which left 225,000 customers without power, was carried out by Russian government hackers, other U.S. researchers concluded. U.S. government officials have not officially attributed that attack to the Russian government, but some privately say they concur with the private-sector analysis.

“The same Russian group that targeted U.S. [industrial control] systems in 2014, including the Dragonfly campaign documented by Symantec, turned out the lights in Ukraine in 2015,” said John Hultquist, who analyzed both incidents while at iSight Partners, a cyber-intelligence firm now owned by FireEye, where he is director of intelligence analysis. Hultquist’s team had dubbed the group Sandworm.

“We believe that Sandworm is tied in some way to the Russian government — whether they’re contractors or actual government officials, we’re not sure,” he said. “We believe they are linked to the security services.”

Sandworm and Electrum may be the same group or two separate groups working within the same organization, but the forensic evidence shows they are related, said Robert M. Lee, chief executive of Dragos.

The Department of Homeland Security, which works with the owners of the nation’s critical infrastructure systems, did not respond to a request for comment Sunday.

Energy-sector experts said that the new malware is cause for concern, but that the industry is seeking to develop ways to disrupt attackers who breach their systems, including documented access to U.S. utility control rooms in prior incidents.

“U.S. utilities have been enhancing their cybersecurity, but attacker tools like this one pose a very real risk to reliable operation of power systems,” said Michael J. Assante, who worked at Idaho National Labs and is a former chief security officer of the North American Electric Reliability Corporation, where he oversaw the rollout of industry cybersecurity standards.

CrashOverride is only the second instance of malware specifically tailored to disrupt or destroy industrial control systems. Stuxnet, the worm created by the United States and Israel to disrupt Iran’s nuclear capability, was an advanced military-grade weapon designed to affect centrifuges that enrich uranium.

In 2015, the Russians used malware to gain access to the power supply network in western Ukraine, but it was hackers at the keyboards who remotely manipulated the control systems to cause the blackout — not the malware itself, Hultquist said.

With CrashOverride, “what is particularly alarming . . . is that it is all part of a larger framework,” said Dan Gunter, a senior threat hunter for Dragos.

The malware is like a Swiss Army knife, where you flip open the tool you need and where different tools can be added to achieve different effects, Gunter said.

Theoretically, the malware can be modified to attack different types of industrial control systems, such as water and gas. However, the adversary has not demonstrated that level of sophistication, Lee said.

Still, the attackers probably had experts and resources available not only to develop the framework but also to test it, Gunter said. “This speaks to a larger effort often associated with nation-state or highly funded team operations.”

One of the most insidious tools in CrashOverride manipulates the settings on electric power control systems. It scans for critical components that operate circuit breakers and opens the circuit breakers, which stops the flow of electricity. It continues to keep them open even if a grid operator tries to close them, creating a sustained power outage.

The malware also has a “wiper” component that erases the software on the computer system that controls the circuit breakers, forcing the grid operator to revert to manual operations, which means driving to the substation to restore power.

With this malware, the attacker can target multiple locations with a “time bomb” functionality and set the malware to trigger simultaneously, Lee said. That could create outages in different areas at the same time.

The outages would last a few hours and probably not more than a couple of days, Lee said. That is because the U.S. electric industry has trained its operators to handle disruptions caused by large storms, alongside a renewed focus on protecting the grid in response to recent alerts. “They’re used to having to restore power with manual operations,” he said.

So although the malware is “a significant leap forward in tradecraft, it’s also not a doomsday scenario,” he said.

The malware samples were first obtained by ESET, a Slovakian research firm, which shared some of them with Dragos. ESET has dubbed the malware Industroyer.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified