San Diego utility offers $10,000 off Nissan Leaf, BMW i3 electric cars


nissan leaf discount

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

San Diego Gas & Electric EV incentives deliver $10,000 utility discounts plus a $200 EV Climate Credit, stackable with California rebates and federal tax credits on BMW i3 and Nissan Leaf purchases through participating dealers.

 

Key Points

Utility-backed rebates that cut EV purchase costs and stack with California and federal tax credits for added savings.

✅ $10,000 off BMW i3 or Nissan Leaf via SDG&E partner dealers

✅ Stack with $7,500 federal and up to $4,500 California rebates

✅ $200 annual EV Climate Credit for eligible account holders

 

For southern California residents, it's an excellent time to start considering the purchase of a BMW i3 or Nissan Leaf electric car as EV sales top 20% in California today.

San Diego Gas & Electric has joined a host of other utility companies in the state in offering incentives towards the purchase of an i3 or a Leaf as part of broader efforts to pursue EV grid stability initiatives in California.

In total, the incentives slash $10,000 from the purchase price of either electric car, and an annual $200 credit to reduce the buyer's electricity bill is included through the EV Climate Credit program, which can complement home solar and battery options for some households.

SDG&E's incentives may be enough to sway some customers into either electric car, but there's better news: the rebates can be combined with state and federal incentives.

The state of California offers a $4,500 purchase rebate for qualified low-income applicants, while others are eligible for $2,500

Additionally, the federal government income-tax credit of up to $7,500 can bring the additional incentives to $10,000 on top of the utility's $10,000.

While the federal and state incentives are subject to qualifications and paperwork established by the two governments, the utility company's program is much more straight forward.

SDG&E simply asks a customer to provide a copy of their utility bill and a discount flyer to any participating BMW or Nissan dealership.

Additional buyers who live in the same household as the utility's primary account holder are also eligible for the incentives, although proof of residency is required.

Nissan is likely funding some of the generous incentives to clear out remaining first-generation Nissan Leafs.

The 2018 Nissan Leaf will be revealed next month and is expected to offer a choice of two battery packs—one of which should be rated at 200 miles of range or more.

SDG&E joins Southern California Edison as the latest utility company to offer discounts on electric cars as California aims for widespread electrification and will need a much bigger grid to support it, though SCE has offered just $450 towards a purchase.

However, the $450 incentive can be applied to new and used electric cars.

Up north, California utility company Pacific Gas & Electric offers $500 towards the purchase of an electric car as well, and is among utilities plotting a bullish course for EV charging infrastructure across the state today.

Two Hawaiian utilities—Kaua'i Island Utility Cooperative and the Hawaiian Electric Company—offered $10,000 rebates similar to those in San Diego from this past January through March.

Those rebates once again were destined for the Nissan Leaf.

SDG&E's program runs through September 30, 2017, or while supplies of the BMW i3 and Nissan Leaf last at participating local dealers.

 

Related News

Related News

UK must be ready for rise of electric vehicles, says ABB chief

UK EV Charging Infrastructure is accelerating as ABB and Formula E spotlight fast charging, smart grids, and public stations, preparing Britain for mass electric vehicle adoption with expanded capacity, reliable connectors, and nationwide coverage.

 

Key Points

The UK network of charge points, grid capacity, and services enabling secure, scalable electric vehicle adoption.

✅ ABB urges rapid rollout of fast chargers and smart grid upgrades

✅ National Grid forecasts up to 9m EVs by 2030 in the UK

✅ Government GBP 400m investment targets reliable nationwide coverage

 

The UK should speed up preparations for the rise of electric vehicles, according to the chief executive of ABB, the world’s largest supplier of fast-charging points.

Speaking as the Switzerland-based engineering firm became the first official sponsor of the electric street racing series Formula E, Ulrich Spiesshofer predicted a flood of consumer take-up of plug-in cars, noting how EV inquiries surged in the UK during a recent fuel supply crisis.

And he added his voice to warnings that Britain must move faster to make sure owners of electric vehicles are not stymied by a shortage of charging bays or cost concerns among consumers.

“E-mobility is unstoppable, it’s just a question of how fast and how deep it will be deployed,” he said. “The UK has a big population that really wants to contribute to a greener, more sustainable world. But there’s always a question of whether it’s quick enough. In the next couple of years, it’s in the interest of everybody to make sure the infrastructure is coming up.”

 

How green are electric cars?

He said this would include adding to the UK’s network of electric charging points, as well as ensuring enough energy capacity so that the grid can cope with rising demand.

There are 14,344 charging connectors in the UK, according to ZapMap, which charts the scale of the UK’s network.

Those charging points served around 132,000 plug-in vehicles at the end of 2017, but the National Grid has predicted that the number of electric cars could surge to 9m by 2030.

“In the next couple of years, it’s in the interest of everybody to make sure the infrastructure is coming up,” said Spiesshofer.

He welcomed the government’s budget pledge to spend £400m on improving the UK’s charging point network but warned that the power grid also needed to be ready to meet the increased demand, which many argue is manageable with proper management approaches.

Electric cars have been forecast to add about 18 gigawatts of power demand to the grid, the equivalent of six Hinkley Point C nuclear power stations.

Spiesshofer said he hoped ABB’s sponsorship of Formula E, which will last until 2025, would help spur interest in electric cars and lead to technological breakthroughs, even as the US EV boom tests charging capacity elsewhere.

 

Related News

View more

Electric car market goes zero to 2 million in five years

Electric Vehicle Market Growth accelerated as EV adoption hit 2 million in 2016, per IEA, led by China, Tesla momentum, policy incentives, charging infrastructure buildout, and diesel decline under Paris Agreement goals.

 

Key Points

EV adoption rose to 2 million in 2016, driven by policy, China, and charging buildout, yet still only 0.2% of cars.

✅ 2M EVs on roads in 2016; 60% YoY growth

✅ China led with >40% of global EV sales

✅ Policies target 30% share by 2030 via EVI

 

The number of electric vehicles on the road rocketed to 2 million in 2016 as the age of electric cars accelerates after being virtually non-existent just five years ago, according to the International Energy Agency.

Registered plug-in and battery-powered vehicles on roads worldwide rose 60% from the year before, according to the Global EV Outlook 2017 report from the Paris-based IEA. Despite the rapid growth, electric vehicles still represent just 0.2% of total light-duty vehicles even as U.S. EV sales continue to soar into 2024, suggesting a turning point.

“China was by far the largest electric car market, accounting for more than 40% of the electric cars sold in the world and more than double the amount sold in the United States,” the IEA wrote in the report published Wednesday. “It is undeniable that the current electric car market uptake is largely influenced by the policy environment.”

A multi government program called the Electric Vehicle Initiative on Thursday will set a goal for 30% market share for battery power cars, buses, trucks and vans by 2030, aligning with projections that driving electric cars within a decade could become commonplace, according to IEA. The 10 governments in the initiative include China, France, Germany, the UK and US.

India, which isn’t part of the group, said last month that it plans to sell only electric cars by the end of the next decade. Countries and cities are looking to electric vehicles to help tackle their air pollution problems.

In order to limit global warming to below 2 degrees Celsius (3.6 degrees Fahrenheit), the target set by the landmark Paris Agreement on climate change, the world will need 600 million electric vehicles by 2040, according to the IEA.

After struggling for consumer acceptance, Tesla Inc. has made electric vehicles cool and trendy, and is pushing into the mass market as the United States approaches a tipping point for mass adoption with the new Model 3 sedan.

Consumer interest and charging infrastructure, as well as declining demand for diesel cars in the wake of Volkswagen’s emissions scandal, has spurred massive investments in plug-in cars, and across Europe the share of electric cars grew during virus lockdown months, reinforcing this momentum. An electrical vehicle “cool factor” could spur sales to 450 million by 2035, according to BP chief economist Spencer Dale.

Volkswagen, the world’s largest automaker, plans to roll out four affordable electric vehicles in the coming years as part of a goal to sell more than 2 million battery-powered vehicles a year by 2025. Mercedes-Benz accelerated the introduction of ten new electric vehicles by three years to 2022 to take on Tesla as the dominance of the combustion engine gradually fades. 

 

 

Related News

View more

Vancouver adopts 100 per cent EV-ready policy

Vancouver 100% EV-Ready Policy mandates EV charging in new multi-unit residential buildings, expands DC fast charging, and supports zero-emission vehicles, reducing carbon pollution and improving air quality with BC Hydro and citywide infrastructure upgrades.

 

Key Points

A city rule making new multi-unit homes EV-ready and expanding DC fast charging to accelerate zero-emission adoption.

✅ 100% EV-ready stalls in all new multi-unit residential builds

✅ Citywide DC fast charging within 10 minutes by 2021

✅ Preferential parking policies for zero-emission vehicles

 

Vancouver is now one of the first cities in North America to adopt a 100 per cent Electric Vehicle (EV)-ready policy for all new multi-unit residential buildings, aligning with B.C.'s EV expansion efforts across the province.

Vancouver City Council approved the recommendations made in the EV Ecosystem Program Update last week. The previous requirement of 20 per cent EV parking spots meant a limited number of residents had access to an outlet, reflecting charging challenges in MURBs across Canada. The actions will help reduce carbon pollution and improve air quality by increasing opportunities for residents to move away from fossil fuel vehicles.

Vancouver is also expanding charging station infrastructure across the city, and developing a preferential parking policy for zero emissions vehicles, while residents can tap EV charger rebates to support home and workplace charging. Plans are to add more DC fast charging points, which can provide up to 200 kilometres of range in an hour. The goal is to put all Vancouver residents within a 10 minute drive of a DC fast-charging station by 2021.

#google#

A DC fast charger will be installed at Science World, and the number of DC fast chargers available at Empire Fields in east Vancouver will be expanded. BC Hydro will also add DC fast chargers at their head office and in Kerrisdale, as part of a faster charging rollout across the network.

The cost of adding charging infrastructure in the construction phase of a building is much lower than retrofitting a building later on, and EV owners can access home and workplace charging rebates to offset costs, which will save residents up to $3,300 and avoid the more complex process of increasing electrical capacity in the future. Since 2014, the existing requirements have resulted in approximately 20,000 EV-ready stalls in buildings.

 

 

Related News

View more

How Hedge Funds May Be Undermining the Electric Car Boom

Cobalt Supply Chain for EV Batteries faces shortages as lithium-ion demand surges; Tesla gigafactories, ethical sourcing, Idaho cobalt mining, and DRC risks intensify pricing, logistics, and procurement challenges for manufacturers and investors.

 

Key Points

A network supplying cobalt for lithium-ion cathodes, strained by EV demand, ethical sourcing pressures, and DRC risk.

✅ EV growth outpaces cobalt supply, widening deficits

✅ DRC reliance drives ESG scrutiny and sourcing shifts

✅ Idaho projects and stockpiling reshape U.S. supply

 

A perfect storm is brewing in the 21st Century battery market.

More specifically, it's about what goes into those batteries - and it's not just lithium.

The other element that makes up 35 percent of the lithium-ion batteries mass produced at Tesla's Nevada gigafactory and at a dozen of other behemoths slated to come on line, is cobalt. And it's already in dramatically short supply. A part of the answer to the cobalt deficit is 100 percent American, and this little-known miner is sitting on a prime Idaho cobalt project that is one of only two that looks likely to come online in the U.S. and it's right in Tesla's backyard.

 

High-Energy Batteries Need More Cobalt Than Lithium 

If you've been focusing your investment on lithium supplies lately you've been missing the even bigger story. EV batteries need about 200 grams of refined cobalt per kilowatt of battery capacity. Power walls need more than twice that. Between March 2016 and April 2017, the cost of the cobalt in that mix nearly tripled. But it isn't just the price that's got manufacturers worried. It's the shortage of availability. Keeping gigafactories stocked with enough cobalt to run at capacity is the challenge of the decade.

Tesla, now with a $50-billion market cap, launched a $5-billion battery gigafactory in Nevada in January. By the end of 2017, it will have doubled the entire global battery production capacity. By next year, it will be producing more batteries than the rest of the world combined.

It is estimated that Tesla's gigafactory alone will need anywhere between 7,000 and 17,500 tonnes of refined cobalt every year.

Tesla used to buy its finished battery cells from Panasonic, which in turn got its processed cathode powders from a Japanese company, Sumitomo was processing its own cobalt in the Philippines. However, that facility is already running at capacity and couldn't even begin to handle Tesla's gigafactory demand. In other words, Tesla's supply chain is no longer secure. And that's just Tesla.

The EV market is fifteen times larger than it was five years ago. The market has experienced a comppound annual growth rate of over 72 percent from 2011-2016, with new sources like Alberta's lithium-laced oil fields drawing investment alongside cobalt. This year, analysts expect it to gain another 25-26 percent. Last year, global EV production grew 41 percent, and sales are up more than 60 per cent year to year.

In addition,the Iron Creek project isn't a new exploration property. It has already seen major historic exploratory work, including 30,000 feet of diamond drilling. Iron Creek has historic (non 43-101 compliant) indications of 1.3 million tons grading 0.59 percent of cobalt with encouraging indications of up to 10 million tons. The 'closeology' is also brilliant. It's right next to the only advanced cobalt project in the U.S., which has a resource of 3 million-plus tonnes of cobalt.

As the battery market hits fever pitch and the supply-chain bottlenecks become unbearable, homegrown exploration is the key-first-movers and first investors will be the biggest beneficiaries.

 

A Very Precarious Supply Chain 

Supply is already in deficit, and we're also looking at an anticipated 500 percent increase in demand, making EV battery recycling an increasingly important complement to mining. Analysts at Macquarie Research project deficits of 885 tonnes of this resource next year, 3,205 in 2019 and 5,340 in 2020.

Not only is demand set to wildly outstrip supply very soon, but current supply (50 percent) comes primarily from the Democratic Republic of Congo (DRC). Buyers are coming under increasing pressure to look elsewhere for cobalt as the U.S. moves to work with allies to secure EV metals through diversified supply chains. The DRC has a horrendous record when it comes to labor practices and human rights.

Ask Apple Inc.  The tech giant recently announced it would stop buying unethical DRC cobalt for its iPhones - and as such, it has been forced to look for new suppliers.

The perfect storm continues: Some 95 percent of the world's cobalt is produced as a byproduct of copper and nickel mining, where concerns about ethical sourcing have put a spotlight on Canada's role in sustainable nickel practices worldwide. This means that cobalt supply is dependent on copper and nickel mining, and if those commodities are uneconomic to mine, there are no cobalt by-product results.

Not only is US Cobalt one of the first movers on the All-American ethical cobalt scene, but it's also financed to advance its Idaho Cobalt Belt project, and hopes to prove up 10 million tonnes of cobalt resource.

 

The Dream Team Behind Pure American Cobalt 

The CEO of US Cobalt, Wayne Tisdale, is a legend in spotting emerging trends with impeccable timing and has created billions in shareholder value. He's already done it with uranium, gold and oil and gas, and his most recent homerun was in lithium, with Pure Energy. When it launched in 2012, lithium was selling for about $5,000 per tonne. Within 18 months, it had increased 450 percent.

His next bet is on cobalt.

Tisdale and his team at Intrepid Financial have, in recent years, created $2.7 billion in value by building and financing 5 companies in completely different industries:

  • Rainy River (gold) was worth $1.2 billion at its peak
  • Xemplar (uranium) hit $1 billion at its peak
  • Ryland Oil (oil and gas) sold for $114 million
  • Webtech Wireless (tech) was worth $300 million at its peak
  • Pure Energy (lithium) is worth $65 million (and counting)

The bottom line? There is no other commodity on the market right now that we need more.

Just watch what the hedge funds are doing with cobalt because it's unprecedented. The run on physical cobalt started in February in the least expected corner: Major hedge funds started buying up physical cobalt and hoarding it in order to gain exposure, resulting in a major supply shortage for the blue metal. Swiss-based Pala Investments and China's Shanghai Chaos have already hoarded 17 percent of last year's global production. At today's prices that's worth around $280 million. At tomorrow's prices, it will be worth a lot more.

When hedge funds start stockpiling physical cobalt, it sends its traditional buyers into a panic to secure new shipments. Since November, cobalt prices have rallied more than 100 percent, and this is only the beginning. As the cobalt supply problem grows, and EV giants and gigafactories continue to increase demand, a home-grown solution is at hand. As a first principle of investing, where there is a supply problem, there is a massive opportunity for early investors.

 

Related News

View more

Wynne defends 25% hydro rate cut:

Ontario Hydro Rate Cuts address soaring electricity prices, lowering hydro bills via refinancing, FAO-reviewed costs, and long-term infrastructure investment, balancing ratepayer relief with a projected $21 billion net expense over 30 years.

 

Key Points

Ontario electricity bill relief spreading infrastructure and green energy costs over 30 years via refinancing.

✅ 25% average bill cut; $156 to $123 per month

✅ FAO projects $21B net cost over 30 years

✅ Costs shifted to long-term debt, infrastructure, green energy

 

Premier Kathleen Wynne is making no apologies for the Liberals’ 25 per cent hydro rate cuts, legislation to lower electricity rates that a legislative watchdog warns will cost at least $21 billion over three decades.

In the wake of Financial Accountability Officer Stephen LeClair’s report on the “Fair Hydro Plan,” Wynne emphasized that Ontario electricity consumers demanded and deserved relief.

“You all read the newspaper, you listen to the radio and you watch television — you know the problems that families are having around the province paying for their electricity costs,” the premier told reporters Thursday in Timmins.

That’s why the government moved forward with a rate cut, with recent Hydro One reconnections underscoring the stakes, that will see the average household’s monthly hydro bill drop from $156 to $123 once it fully takes effect next month.

In a 15-page report released Wednesday, the financial accountability officer estimated the initiative would cost the province $45 billion over the next 29 years amid a cabinet warning on prices that electricity costs could soar, while saving ratepayers $24 billion for a next expense of $21 billion.

Both the Progressive Conservatives and the New Democrats oppose the Liberal rate cut, arguing that a deal with Quebec would not lower hydro bills.

But Wynne said the government has in effect renegotiated a mortgage so it will bankroll hydro infrastructure improvements over a longer time period, though some have urged the next government to scrap the Fair Hydro Plan and review options, in order to give customers a break now.

“We’re talking about a 30-year window here. It took at least 30 years, probably 40 years, to let the electricity system degrade to the stage that it had in 2003,” she said, noting “we were having blackouts and brownouts around the province” before her party took office that year.

“There were thousands of kilometres of line that needed to be rebuilt . . . that work hadn’t been done over those generations, so electricity costs were low over that period of time but the work wasn’t being done.”

When her predecessor Dalton McGuinty came to power in 2003, Wynne said Queen’s Park began spending billions on infrastructure improvements, including expensive subsidies for green energy, such as wind turbines and solar panels.

“There’s a lot of work that has been done since then. Literally thousands of kilometres of line have been rebuilt. The coal-fired plants have been shut down. The air is cleaner. There’s less pollution in the air. The system is reliable and renewable,” she said.

“So there’s a cost associated with that and what was happening was that was work that had to be done — and all of those costs were on the shoulders of people today.”

Wynne noted “this electricity grid is an asset that is going to be used for generations to come.”

“My grandchildren are going to benefit from this asset, so I think it’s fair that we spread the cost of that over that 30-year period,” she said.

“That’s how we made this decision.”

 

 

 

Related News

View more

Deepwater Wind Eyeing Massachusetts’ South Coast for Major Offshore Wind Construction Activity

Revolution Wind Massachusetts will assemble turbine foundations in New Bedford, Fall River, or Somerset, building a local offshore wind supply chain, creating regional jobs, and leveraging pumped storage and an offshore transmission backbone.

 

Key Points

An offshore wind project assembling MA foundations, building a local supply chain, jobs, and peak clean power.

✅ 400 MW offshore wind; local fabrication of 1,500-ton foundations

✅ 300+ direct jobs, 600 indirect; MA crew vessel builds and operations

✅ Expandable offshore transmission; pumped storage for peak power

 

Deepwater Wind will assemble the wind turbine foundations for its Revolution Wind in Massachusetts, and it has identified three South Coast cities – New Bedford, Fall River and Somerset – as possible locations for this major fabrication activity, the company is announcing today.

Deepwater Wind is committed to building a local workforce and supply chain for its 400-megawatt Revolution Wind project, now under review by state and utility officials as Massachusetts advances projects like Vineyard Wind statewide.

“No company is more committed to building a local offshore wind workforce than us,” said Deepwater Wind CEO Jeffrey Grybowski. “We launched America’s offshore wind industry right here in our backyard. We know how to build offshore wind in the U.S. in the right way, and our smart approach will be the most affordable solution for the Commonwealth. This is about building a real industry that lasts.”

#google#

The construction activity will involve welding, assembly, painting, commissioning and related work for the 1,500-ton steel foundations supporting the turbine towers. This foundation-related work will create more than 300 direct jobs for local construction workers during Revolution Wind’s construction period. An additional 600 indirect and induced jobs will support this effort.

In addition, Deepwater Wind is now actively seeking proposals from Massachusetts boat builders for the construction of purpose-built crew vessels for Revolution Wind. Several dozen workers are expected to build the first of these vessels at a local boat-building facility, and another dozen workers will operate this specialty vessel over the life of Revolution Wind. (Deepwater Wind commissioned America’s only offshore wind crew vessel – Atlantic Wind Transfer’s Atlantic Pioneer – to serve the Block Island Wind Farm.)

The company will issue a formal Request for Information to local suppliers in the coming weeks. Deepwater Wind’s additional wind farms serving Massachusetts will require the construction of additional vessels, as will growth along Long Island’s South Shore in the coming years.

These commitments are in addition to Deepwater Wind’s previously-announced plans to use the New Bedford Marine Commerce Terminal for significant construction and staging operations, and to pay $500,000 per year to the New Bedford Port Authority to use the facility. During construction, the turbine marshaling activity in New Bedford is expected to support approximately 700 direct regional construction jobs.

“Deepwater Wind is building a sustainable industry on the South Coast of Massachusetts,” said Matthew Morrissey, Deepwater Wind Vice President Massachusetts. “With Revolution Wind, we are demonstrating that we can build the industry in Massachusetts while enhancing competition and keeping costs low.”

The Revolution Wind project will be built in Deepwater Wind’s federal lease site, under the BOEM lease process, southwest of Martha’s Vineyard. If approved, local construction work on Revolution Wind would begin in 2020, with the project in operations in 2023. Survey work is already underway at Deepwater Wind’s offshore lease area.

Revolution Wind will deliver “baseload” power, allowing a utility-scale renewable energy project for the first time to replace the retiring fossil fuel-fired power plants closing across the region, a transition echoed by Vineyard Wind’s first power milestones elsewhere.

Revolution Wind will be capable of delivering clean energy to Massachusetts utilities when it’s needed most, during peak hours of demand on the regional electric grid. A partnership with FirstLight Power, using its Northfield Mountain hydroelectric pumped storage in Northfield, Massachusetts, makes this peak power offering possible. This is the largest pairing of hydroelectric pumped storage and offshore wind in the world.

The Revolution Wind offshore wind farm will also be paired with a first-of-its-kind offshore transmission backbone. Deepwater Wind is partnering with National Grid Ventures on an expandable offshore transmission network that supports not just Revolution Wind, but also future offshore wind farms, as New York’s biggest offshore wind farm moves forward across the region, even if they’re built by our competitors.

This cooperation is in the best interest of Massachusetts electric customers because it will reduce the amount of electrical infrastructure needed to support the state’s 1,600 MW offshore wind goal. Instead of each subsequent developer building its own standalone cable network, other offshore wind companies could use expandable infrastructure already installed for Revolution Wind, reducing project costs and saving ratepayers money.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.