Texas battery rush: Oil state's power woes fuel energy storage boom


Battery Energy Storage System

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Texas Battery Storage Investment Boom draws BlackRock, SK, and UBS, leveraging ERCOT price volatility, renewable energy growth, and utility-scale energy storage arbitrage to enhance grid reliability, resilience, and double-digit returns across high-demand nodes.

 

Key Points

Texas sees a rush into battery storage, using ERCOT price spreads to bolster grid reliability and earn about 20% returns.

✅ Investors exploit price volatility, peak-demand spreads.

✅ Utility-scale storage enhances ERCOT reliability.

✅ Top players: BlackRock, SK E&S, UBS; 700 MW deals.

 

BlackRock, Korea's SK, Switzerland's UBS and other companies are chasing an investment boom in battery storage plants in Texas, lured by the prospect of earning double-digit returns from the power grid problems plaguing the state, according to project owners, developers and suppliers.

Projects coming online are generating returns of around 20%, compared with single digit returns for solar and wind projects, according to Rhett Bennett, CEO of Black Mountain Energy Storage, one of the top developers in the state.

"Resolving grid issues with utility-scale energy storage is probably the hottest thing out there,” he said.

The rapid expansion of battery storage could help, through efforts like a virtual power plant initiative in Texas, prevent a repeat of the February 2021 ice storm and grid collapse which killed 246 people and left millions of Texans without power for days.

The battery rush also puts the Republican-controlled state at the forefront of President Joe Biden's push to expand renewable energy use.

Power prices in Texas can swing from highs of about $90 per megawatt hour (MWh) on a normal summer day to nearly $3,000 per MWh when demand surges on a day with less wind power, a dynamic tied to wind curtailment on the Texas grid according to a simulation by the federal government's U.S. Energy Information Administration.

That volatility, a product of demand and higher reliance on intermittent wind and solar energy, has fueled a rush to install battery plants, aided by falling battery costs, that store electricity when it is cheap and abundant and sell when supplies tighten and prices soar.

Texas last year accounted for 31% of new U.S. grid-scale energy storage, with much of it pairing storage with solar, according to energy research firm Wood Mackenzie, second only to California which has had a state mandate for battery development for a decade.

And Texas is expected to account for nearly a quarter of the U.S. grid-scale storage market over the next five years, a trajectory consistent with record U.S. solar-plus-storage growth noted by analysts, according to Wood Mackenzie projections shared with Reuters.

Developers and energy traders said locations offering the highest returns -- in strapped areas of the grid -- will become increasingly scarce as more storage comes online and, as diversifying resources for better projects suggests, electricity prices stabilize.

Texas lawmakers this week voted to provide new subsidies for natural gas power plants in a bid to shore up reliability. But the legislation also contains provisions that industry groups said could encourage investment in battery storage by supporting 'unlayering' peak demand approaches.

Amid the battery rush, BlackRock acquired developer Jupiter Power from private equity firm EnCap Investments late last year. Korea's SK E&S acquired Key Capture Energy from Vision Ridge Partners in 2021 and UBS bought five Texas projects from Black Mountain last year for a combined 700 megawatts (MW) of energy storage. None of the sales' prices were disclosed.

SK E&S said its acquisition of Key Capture was part of a strategy to invest in U.S. grid resiliency.

"SK E&S views energy storage solutions in Texas and across the U.S. as a core technology that supports a new energy infrastructure system to ensure American homes and businesses have affordable power," the company said in a statement.

 

Related News

Related News

3 ways to tap billions in new money to go green - starting this month

Inflation Reduction Act Energy Credits help households electrify with tax credits and rebates for heat pumps, EVs, rooftop solar, battery storage, and efficiency upgrades, cutting utility bills, reducing carbon emissions, and accelerating home electrification nationwide.

 

Key Points

Federal incentives offering tax credits and rebates for heat pumps, EVs, solar, and efficiency to cut emissions.

✅ 30% rooftop solar and storage credit; $2,000 annual cap for heat pumps

✅ Up to $7,500 EV tax credit; price, income, and assembly rules apply

✅ Low-income rebates and discounts available via states starting mid-2023

 

Earlier this year, Congress passed the biggest climate bill in history — cloaked under the name the “Inflation Reduction Act,” a historic climate deal by any measure.

Starting in the new year, the bill will offer households thousands of dollars to transition over from fossil-fuel burning heaters, stoves and cars to cleaner versions as renewable electricity accelerates. On Jan. 1, middle-income households will be able to access over a half-dozen tax credits for electric stoves, cars, rooftop solar and more. And starting sometime in mid-2023, lower-income households will be able to get upfront discounts on some of those same appliances — without having to wait to file their taxes to get the cash back. This handy online tool shows what you might be eligible for, depending on your Zip code and income.

But which credits should Americans focus on — and which are best for the climate? Here’s a guide to the top climate-friendly benefits of the Inflation Reduction Act, and how to access them.


Heat pumps — the best choice for decarbonizing at home

Tax credit available on Jan. 1: 30 percent of the cost, up to $2,000

Income limit: None

Ah, heat pumps — one of the most popular technologies of the transition to clean energy and to net-zero electricity systems. “Heat pump” is a bit of a misnomer for these machines, which are more like super-efficient combo air conditioning and heating systems. These appliances run on electricity and move heat, instead of creating it, and so can be three to five times more efficient than traditional gas or electrical resistance heaters.

“For a lot of people, a heat pump is going to be their biggest personal impact,” said Sage Briscoe, the federal senior policy manager at Rewiring America, a clean-energy think tank. (Heat pumps have become so iconic that Rewiring America even has a heat pump mascot.)

Heat pumps can have enormous cost and carbon savings. According to one analysis using data from the National Renewable Energy Laboratory, switching to a heat pump can save homeowners anywhere from $100 to $1,200 per year on heating bills and prevent anywhere from 1 to 8 metric tons of carbon dioxide emissions per year. For comparison, going vegan for an entire year saves about 1 metric ton of CO2 emissions.

But many consumers encounter obstacles when switching over to heat pumps. In some areas, it can be difficult to find a contractor trained and willing to install them; some homeowners report that contractors share misinformation about heat pumps, including that they don’t work in cold climates. (Modern heat pumps do work in cold climates, and can heat a home even when outdoor temperatures are down to minus-31 degrees Fahrenheit.) Briscoe recommends that homeowners look for skilled contractors who know about heat pumps and do advance research to figure out which models might work best for their home.


Electric vehicles — top choice for cutting car emissions

Tax credit available on Jan. 1: Up to $7,500 depending on the make and model of the car

Income limit: <$150,000 for single filers; <$300,000 for joint filers

If you are like the millions of Americans who don’t live in a community with ample public transit, the best way to decarbonize your transport, as New Zealand's electricity transition shows, is switching to an electric car. But electric cars can be prohibitively expensive for many Americans.

Starting Jan. 1, a new EV tax credit will offer consumers up to $7,500 off the purchase of an electric vehicle. For the first few months, Americans will get somewhere between $3,751 and $7,500 off their purchase of an EV, depending on the size of the battery in the car.

There are limitations, per the new law. The vehicles will also have to be assembled in North America, where Canada's electricity progress is notable, and cars that cost more than $55,000 aren’t eligible, nor are vans or trucks that cost more than $80,000. This week, the Internal Revenue Service provided a list of vehicles that are expected to meet the criteria starting Jan. 1.

Beginning about March, however, that $7,500 credit will be split into two parts: Consumers can get a $3,750 credit if the vehicle has a battery containing at least 40 percent critical minerals from the United States (or a country that the United States has a free-trade agreement with) and another $3,750 credit if at least 50 percent of the battery’s components were assembled and manufactured in North America. Those rules haven’t been finalized yet, so the tax credit starting on Jan. 1 is a stopgap measure until the White House has ironed out the final version.

Joe Britton, the executive director of the EV industry group Zeta, said that means there will likely be a wider group of vehicles eligible for the full tax credit in January and February than there will be later in 2023. Because of this, he recommended that potential EV owners act fast in 2023.

“I would be buying a car in the first quarter,” he said.


Rooftop solar — the best choice for generating clean energy

Tax credit available now: 30 percent of the cost of installation, no cap

Income limit: None

For those who want to generate their own clean energy, there is always rooftop solar panels. This tax credit has actually been available since the Inflation Reduction Act was signed into law in August 2022. It offers a tax credit equal to 30 percent of the cost of installing rooftop solar, with no cap. According to Rewiring America, the average 6 kilowatt solar installation costs about $19,000, making the average solar tax credit about $5,700. (The Inflation Reduction Act also includes a 30 percent tax credit for homeowners that need to upgrade their electricity panel for rooftop solar, and a 30 percent tax credit for installing battery storage to support the shift toward carbon-free electricity solutions.)

Solar panels can save homeowners tens of thousands of dollars in utility bills as extreme heat boosts electricity bills and, when combined with battery storage, can also provide a power backup in the case of a blackout or other disaster. For someone trying to move their entire home away from fossil fuels, solar panels become even more enticing: Switch everything over to electricity, and then make the electricity super cheap with the help from the sun.

For people who don’t own their own homes, there are other options as well. Renters can subscribe to a community solar project to lower their electricity bills and get indirect benefits from the tax credits.


Tips, tricks and words of caution
There are many other credits also coming out in 2023: for EV chargers (up to $1,000), a boon for expanding carbon-free electricity across the grid, heat pump water heaters (up to $2,000), and even cash for sealing up the doors and windows of your home (up to $1,200).

The most important thing to know, Briscoe said, is whether you qualify for the upfront discounts for low- and moderate-income Americans — which won’t be available until later in 2023 — or the tax credits, which will be available Jan. 1. (Try this tool.) If going the tax credit route, it’s better to spread the upgrades out across multiple years, since there is an annual limit on how many of the credits you can claim in a given year. And, she warned, it is not always going to be easy: It can be hard to find the right installers and the right information for how to make use of all the available government resources.

 

Related News

View more

Completion of 1st fast-charging network 'just the beginning' for electric car owners in N.L.

Newfoundland EV Fast-Charging Network enables DC fast charging along the Trans-Canada Highway, from Port aux Basques to St. John's, with Level 3 stations, reducing range anxiety and accelerating electric vehicle adoption.

 

Key Points

A DC fast charging corridor with Level 3 stations every 70 km, enabling EV road trips and easing range anxiety.

✅ 14 Level 3 DC fast chargers across the Trans-Canada Highway

✅ Charges most EVs to 80% in under an hour, $15/hr prorated

✅ Expansion planned into Labrador with 19 additional fast chargers

 

The first electric vehicle fast-charging network is now up and running across Newfoundland, which the province's main energy provider hopes will make road trips easier for electric car owners and encourage more drivers to go electric in the future.

With the last of the 14 charging stations coming online in Corner Brook earlier this month, drivers now have a place to charge up about every 70 kilometres along the Trans-Canada Highway, where 10 new fast-charging stations in N.B. are being planned, from Port aux Basques to St. John's, along with one in Gros Morne National Park.

Jennifer Williams, president & CEO of Newfoundland and Labrador Hydro, says many potential electric vehicle owners have been hesitant to give up on gasoline without fast chargers available across the island.

"The majority of people who were interested in EVs said one of the major barriers to them was indeed not having a fast-charging network that they could access," she said.

"We really believe that this is going to help people cross over and become an EV owner."

The charging network was first announced in October 2019, with an eye to having all 14 chargers up and running by the end of 2020. When work began, Newfoundland and Labrador was the only province in Canada without any publicly available Level 3 chargers, even as NB Power's public charging network was expanding elsewhere.

After some COVID-19 pandemic-related delays, the stations are now up and running and can charge most EVs to 80 per cent in less than an hour at a prorated cost of $15 an hour

"The pandemic did have some effect, but we're there now and we're really happy and this is just the beginning," said Williams.

Public charging becoming 'a non-issue'
That's encouraging for Jon Seary, an electric car owner and a co-founder of advocacy group Drive Electric N.L. He says the lack of fast chargers has been the "deal breaker" for many people looking to buy electric vehicles.

"Now you can drive right across the province. You can choose to stop at any of these to top up," Seary said.

Joe Butler, who is also a co-founder of the group, says the fast chargers have already made trips easier as they've come online across the island.

"In the past, it was a major impediment, really, to get anywhere, but now it's changed dramatically," said Butler.

"I just came back from Gros Morne and I had two stops and I was home, so the convenience factor if you just travel occasionally outside of town makes all the difference."

Jon Seary and Joe Butler stand with a slower level-two charging station on Kenmount Road in St. John's. 'We are at the cusp now of seeing a huge upswing in electric vehicle adoption,' Seary said. (Gavin Simms/CBC)
Seary said according to numbers from provincial motor vehicle registration, there were 195 electric cars on the road at the end of 2020, but he estimates that there are now closer to 300 vehicles in use in the province — with the potential for many more.

"We are at the cusp now of seeing a huge upswing in electric vehicle adoption," he said, even though Atlantic Canadians have been less inclined to buy EVs so far. 

"The cost of the cars is coming way down, and has come down. More places are selling them and the availability of public charging is becoming a non-issue as we put more and more charging stations out there."

The future is electric but the province's infrastructure is lagging behind, says non-profit
But Seary said there is still more work to be done to improve the province's charging infrastructure to catch up with other parts of the country. 

"We are lagging the rest of the country," Seary said, even as the N.W.T. encourages more residents to drive EVs through new initiatives.

"We have opportunities for federal funding for our charging infrastructure and it needs to be moving now. We have the surplus from Muskrat Falls to use and we have a climate that's not going to wait … this is the time to get going with this now."

Williams said together with Newfoundland Power, N.L. Hydro is now working on 19 more fast chargers to be placed elsewhere in the province and into Labrador, where the N.L. government has promoted EV adoption but infrastructure has lagged in some areas.

"We've heard very loudly and very clearly from the folks in Labrador, as well as other parts of the province, that they want to have charging stations in their neck of the woods too," she said.

"Putting them in Labrador, we believe that we'll help people get over that concern and that fear. There are EV owners in Labrador … so we believe it can work there as well."

With more chargers and electric vehicles comes less reliance on burning fossil fuels, and utilities like Nova Scotia Power are piloting vehicle-to-grid integration to amplify benefits, and Williams said 21 tonnes of greenhouse gas emissions have already been offset with the chargers as they've come online over the past few months.

"It actually does equate to as if you had powered a whole house all year, but the important part to remember [is that] these are an enabler. Putting these in place is enabling people to purchase electric vehicles," she said.

"You do 90 per cent of your charging at home, so if we're seeing about 20 tonnes has been offset in the short period of time they've been in service, for the vehicles that are charging at home, imagine how much they're actually offsetting. We figure it's well in excess of 200 tons."

 

Related News

View more

Enabling storage in Ontario's electricity system

OEB Energy Storage Integration advances DERs and battery storage through CDM guidelines, streamlined connection requirements, IESO-aligned billing, grid modernization incentives, and the Innovation Sandbox, providing regulatory clarity and consumer value across Ontario's electricity system.

 

Key Points

A suite of OEB initiatives enabling storage and DERs via modern rules, cost recovery, billing reforms, and pilots.

✅ Updated CDM guidelines recognize storage at all grid levels.

✅ Standardized connection rules for DERs effective Oct 1, 2022.

✅ Innovation Sandbox supports pilots and temporary regulatory relief.

 

The energy sector is in the midst of a significant transition, where energy storage is creating new opportunities to provide more cost-effective, reliable electricity service. The OEB recognizes it has a leadership role to play in providing certainty to the sector while delivering public value, and a responsibility to ensure that the wider impacts of any changes to the regulatory framework, including grid rule changes, are well understood. 

Accordingly, the OEB has led a host of initiatives to better enable the integration of storage resources, such as battery storage, where they provide value for consumers.

Energy storage integration – our journey 
We have supported the integration of energy storage by:

Incorporating energy storage in Conservation and Demand Management (CDM) Guidelines for electricity distributors. In December 2021, the OEB released updated CDM guidelines that, among other things, recognize storage – either behind-the-meter, at the distribution level or the transmission level – as a means of addressing specific system needs. They also provide options for distributor cost recovery, aligning with broader industrial electricity pricing discussions, where distributor CDM activities also earn revenues from the markets administered by the Independent Electricity System Operator (IESO).
 
Modernizing, standardizing and streamlining connection requirements, as well as procedures for storage and other DERs, to help address Ontario's emerging supply crunch while improving project timelines. This was done through amendments to the Distribution System Code that take effect October 1, 2022, as part of our ongoing DER Connections Review.
 
Facilitating the adoption of Distributed Energy Resources (DERs), which includes storage, to enhance value for consumers by considering lessons from BESS in New York efforts. In March 2021, we launched the Framework for Energy Innovation consultation to achieve that goal. A working group is reviewing issues related to DER adoption and integration. It is expected to deliver a report to the OEB by June 2022 with recommendations on how electricity distributors can assess the benefits and costs of DERs compared to traditional wires and poles, as well as incentives for distributors to adopt third-party DER solutions to meet system needs.
 
Examining the billing of energy storage facilities. A Generic Hearing on Uniform Transmission Rates is underway. In future phases, this proceeding is expected to examine the basis for billing energy storage facilities and thresholds for gross-load billing. Gross-load billing demand includes not just a customer’s net load, but typically any customer load served by behind-the-meter embedded generation/storage facilities larger than one megawatt (or two megawatts if the energy source is renewable).
 
Enabling electricity distributors to use storage to meet system needs. Through a Bulletin issued in August 2020, we gave assurance that behind-the-meter storage assets may be considered a distribution activity if the main purpose is to remediate comparatively poor reliability of service.
 
Offering regulatory guidance in support of technology integration, including for storage, through our OEB Innovation Sandbox, as utilities see benefits across pilot deployments. Launched in 2019, the Innovation Sandbox can also provide temporary relief from a regulatory requirement to enable pilot projects to proceed. In January 2022, we unveiled Innovation Sandbox 2.0, which improves clarity and transparency while providing opportunities for additional dialogue. 
Addressing the barriers to storage is a collective effort and we extend our thanks to the sector organizations that have participated with us as we advanced these initiatives. In that regard, we provided an update to the IESO on these initiatives for a report it submitted to the Ministry of Energy, which is also exploring a hydrogen economy to support decarbonization.

 

Related News

View more

Electric-ready ferry for Kootenay Lake to begin operations in 2023

Kootenay Lake Electric-Ready Ferry advances clean technology in BC, debuting as a hybrid diesel-electric vessel with shore power conversion planned, capacity and terminal upgrades to cut emissions, reduce wait times, and modernize inland ferry service.

 

Key Points

Hybrid diesel-electric ferry replacing MV Balfour, boosting capacity, and aiming for full electric conversion by 2030.

✅ Doubles vehicle capacity; runs with MV Osprey 2000 in summer

✅ Hybrid-ready systems installed; shore power to enable full electric

✅ Terminal upgrades at Balfour and Kootenay Bay improve reliability

 

An electric-ready ferry for Kootenay Lake is scheduled to begin operations in 2023, aligning with first electric passenger flights planned by Harbour Air, the province announced in a Sept. 3 press release.

Construction of the $62.9-million project will begin later this year, which will be carried out by Western Pacific Marine Ltd., reflecting broader CIB-supported ferry investments in B.C. underway.

“With construction beginning here in Canada on the new electric-ready ferry for Kootenay Lake, we are building toward a greener future with made-in-Canada clean technology,” said Catherine McKenna, the federal minister of infrastructure and communities.

The new ferry — which is designed to provide passengers with a cleaner vessel informed by advances in electric ships and more accessibility — will replace and more than double the capacity of the MV Balfour, which will be retired from service.

“This is an exciting milestone for a project that will significantly benefit the Kootenay region as a whole,” said Michelle Mungall, MLA for Nelson-Creston. “The new, cleaner ferry will move more people more efficiently, improving community connections and local economies.”

Up to 55 vehicles can be accommodated on the new ship, and will run in tandem with the larger MV Osprey 2000 to help reduce wait times, a strategy also seen with Washington State Ferries hybrid-electric upgrades, during the summer months.

“The vessel will be fully converted to electric propulsion by 2030, once shore power is installed and reliability of the technology advances for use on a daily basis, as demonstrated by Harbour Air's electric aircraft testing on B.C.'s coast,” said the province.

They noted that they are working to electrify their inland ferry fleet by 2040, as part of their CleanBC initiative.

“The new vessel will be configured as a hybrid diesel-electric with all the systems, equipment and components for electric propulsion,” they said.

Other planned projects include upgrades to the Balfour and Kootenay Bay terminals, and minor dredging has been completed in the West Arm.

 

Related News

View more

Invenergy and GE Renewable Energy complete largest wind project constructed in North America

North Central Energy Facilities deliver 1,484 MW of renewable power in Oklahoma, uniting Invenergy, GE Renewable Energy, and AEP with the Traverse, Maverick, and Sundance wind farms, 531 turbines, grid-scale clean energy, and regional decarbonization.

 

Key Points

A 1,484 MW trio of Oklahoma wind farms by Invenergy with GE turbines, owned by AEP to supply regional customers.

✅ 1,484 MW capacity from 531 GE 2 MW platform turbines

✅ Largest single-phase wind farm: 998 MW Traverse

✅ Owned by AEP subsidiaries SWEPCO and PSO

 

Invenergy, the largest privately held global developer, owner and operator of sustainable energy solutions and GE Renewable Energy, today announced commercial operations for the 998-megawatt Traverse Wind Energy Center, the largest wind farm constructed in a single phase in North America, reflecting broader growth such as Enel's 450 MW project announced recently.

Located in north central Oklahoma, Traverse joins the operational 199-megawatt Sundance Wind Energy Center and the 287-megawatt Maverick Wind Energy Center, as the last of three projects developed by Invenergy for American Electric Power (AEP) to reach commercial operation, amid investor activity like WEC Energy's Illinois stake in wind assets this year. These projects make up the North Central Energy Facilities and have 531 GE turbines with a combined capacity of 1,484 megawatts, making them collectively among the largest wind energy facilities globally, even as new capacity comes online such as TransAlta's 119 MW addition in the US.

"This is a moment that Invenergy and our valued partners at AEP, GE Renewable Energy, and the gracious members of our home communities in Oklahoma have been looking forward to," said Jim Shield, Senior Executive Vice President and Development Business Leader at Invenergy, reflecting broader momentum as projects like Building Energy project begin operations nationwide. "With the completion of Traverse and with it the North Central Energy Facilities, we're proud to further our commitment to responsible, clean energy development and to advance our mission to build a sustainable world."

The North Central Energy Facilities represent a $2 billion capital investment in north central Oklahoma, mirroring Iowa wind investments that spur growth, directly investing in the local economy through new tax revenues and lease payments to participating landowners and will generate enough electricity to power 440,000 American homes.

"GE was honored to work with Invenergy on this milestone wind project, continuing our long-standing partnership," said Steve Swift, Global Commercial Leader for GE's Onshore Wind business, a view reinforced by projects like North Carolina's first wind farm coming online. "Wind power is a key element of driving decarbonization, and a dependable and affordable energy option here in the US and around the world. GE's 2 MW platform turbines are ideally suited to bring reliable and sustainable renewable energy to the region for many years to come."

AEP's subsidiaries Southwestern Electric Power Company (SWEPCO) and Public Service Company of Oklahoma (PSO) assumed ownership of the three wind farms upon start of commercial operations, alongside emerging interstate delivery efforts like Wyoming-to-California wind plans, to serve their customers in Arkansas, Louisiana and Oklahoma.

 

Related News

View more

US renewable energy hit record 28% in April.

U.S. Renewable Energy Record 28% signals a cleaner power grid as wind, solar, and hydroelectric output soar; EIA data shows cost-competitive clean energy reshaping the electricity mix and reducing carbon emissions across regions.

 

Key Points

EIA-reported April share of electricity from wind, solar, and hydro, reflecting cost-driven growth in U.S. clean power.

✅ Wind, solar additions dominated recent U.S. capacity buildouts

✅ Lower levelized costs make renewables most competitive

✅ Seasonal factors and outages lowered fossil and nuclear output

 

The amount of electricity generated by renewable resources hit a record 28% in April, a breakthrough number that shows how important renewable energy has become in U.S. energy markets as it surpassed coal in 2022 overall.

"It's a 'Wow' moment," said Peter Kelly-Detwiler, an energy analyst and author of "The Energy Switch," a recent book about the transition to a carbon-free energy economy.

The percentage of U.S. electricity produced by renewable energy from wind, solar and hydroelectric dams has been steadily rising, from 8.6% in April 2001 to this April's 28%. Those numbers were released this week by the U.S. Energy Information Administration, which tracks energy data for the nation.

What explains the surge?
There are several reasons. At the top is that wind and solar installations dominated U.S. energy buildouts.

"Basically, the only things we've added to the grid in the past decade are wind, solar and natural gas," said Harrison Fell, an economist and engineer at Columbia University, where he co-leads the Power Sector and Renewables Research Initiative.

That's happening for two reasons. The first is cost. Renewables are simply the most economically competitive power currently available, Kelly-Detwiler said.

In 2021, the cost of producing a megawatt-hour of electricity from a new wind turbine was $26 to $50. The same amount of electricity from the cheapest type of natural gas plant ranged from $45 to $74, according to Lazard, a financial advisory firm that publishes annual estimates of the cost of producing electricity. 

Federal and state mandates and incentives to increase the amount of clean energy used also help, Fell said, as renewables reached 25.5% of U.S. electricity recently. 

"When you do the math on what's the most profitable thing to add, it's often going to be wind and solar at this stage," he said.

Was weather a factor?
Yes. April tends to be a particularly windy month, and this spring was windier than most, Fell said.

There's also less power coming into the grid from fossil fuels and nuclear in the spring. That's because electricity demand is generally lower because of the mild weather and fossil fuel and nuclear power plants use the time for maintenance and refueling, which reduces their production, he said.

Another surprise was that in April, wind and solar power together produced more electricity than nuclear plants nationwide. 

Historically, nuclear power plants, which are carbon-neutral, have reliably produced about 20% of America's electricity. In April that number dropped to 18% while wind and solar combined stood at 19.6%.

The nuclear decrease is partly a result of the shutdown of two plants in the past year, Indian Point in New York state and Palisades in Michigan, as well as scheduled closures for maintenance.

Will the trend continue?
When all U.S. carbon-neutral energy sources are added together – nuclear, wind, hydroelectric and solar – almost 46% of U.S. electricity in April came from sources that don't contribute greenhouse gases to the environment, federal data shows.  

"It's a milestone," Kelly-Detwiler said. "But in a few years, we'll look back and say, 'This was a nice steppingstone to the next 'Wow!' moment."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.