Texas battery rush: Oil state's power woes fuel energy storage boom


Battery Energy Storage System

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Texas Battery Storage Investment Boom draws BlackRock, SK, and UBS, leveraging ERCOT price volatility, renewable energy growth, and utility-scale energy storage arbitrage to enhance grid reliability, resilience, and double-digit returns across high-demand nodes.

 

Key Points

Texas sees a rush into battery storage, using ERCOT price spreads to bolster grid reliability and earn about 20% returns.

✅ Investors exploit price volatility, peak-demand spreads.

✅ Utility-scale storage enhances ERCOT reliability.

✅ Top players: BlackRock, SK E&S, UBS; 700 MW deals.

 

BlackRock, Korea's SK, Switzerland's UBS and other companies are chasing an investment boom in battery storage plants in Texas, lured by the prospect of earning double-digit returns from the power grid problems plaguing the state, according to project owners, developers and suppliers.

Projects coming online are generating returns of around 20%, compared with single digit returns for solar and wind projects, according to Rhett Bennett, CEO of Black Mountain Energy Storage, one of the top developers in the state.

"Resolving grid issues with utility-scale energy storage is probably the hottest thing out there,” he said.

The rapid expansion of battery storage could help, through efforts like a virtual power plant initiative in Texas, prevent a repeat of the February 2021 ice storm and grid collapse which killed 246 people and left millions of Texans without power for days.

The battery rush also puts the Republican-controlled state at the forefront of President Joe Biden's push to expand renewable energy use.

Power prices in Texas can swing from highs of about $90 per megawatt hour (MWh) on a normal summer day to nearly $3,000 per MWh when demand surges on a day with less wind power, a dynamic tied to wind curtailment on the Texas grid according to a simulation by the federal government's U.S. Energy Information Administration.

That volatility, a product of demand and higher reliance on intermittent wind and solar energy, has fueled a rush to install battery plants, aided by falling battery costs, that store electricity when it is cheap and abundant and sell when supplies tighten and prices soar.

Texas last year accounted for 31% of new U.S. grid-scale energy storage, with much of it pairing storage with solar, according to energy research firm Wood Mackenzie, second only to California which has had a state mandate for battery development for a decade.

And Texas is expected to account for nearly a quarter of the U.S. grid-scale storage market over the next five years, a trajectory consistent with record U.S. solar-plus-storage growth noted by analysts, according to Wood Mackenzie projections shared with Reuters.

Developers and energy traders said locations offering the highest returns -- in strapped areas of the grid -- will become increasingly scarce as more storage comes online and, as diversifying resources for better projects suggests, electricity prices stabilize.

Texas lawmakers this week voted to provide new subsidies for natural gas power plants in a bid to shore up reliability. But the legislation also contains provisions that industry groups said could encourage investment in battery storage by supporting 'unlayering' peak demand approaches.

Amid the battery rush, BlackRock acquired developer Jupiter Power from private equity firm EnCap Investments late last year. Korea's SK E&S acquired Key Capture Energy from Vision Ridge Partners in 2021 and UBS bought five Texas projects from Black Mountain last year for a combined 700 megawatts (MW) of energy storage. None of the sales' prices were disclosed.

SK E&S said its acquisition of Key Capture was part of a strategy to invest in U.S. grid resiliency.

"SK E&S views energy storage solutions in Texas and across the U.S. as a core technology that supports a new energy infrastructure system to ensure American homes and businesses have affordable power," the company said in a statement.

 

Related News

Related News

BC Hydro Introduces 'Vehicle-to-Grid' Pilot Initiative

BC Hydro Vehicle-to-Grid Pilot enables EVs to deliver V2G power, using bidirectional charging to provide grid services, clean energy resilience, and emergency power for microgrids, critical infrastructure, and storm response.

 

Key Points

BC Hydro's V2G pilot uses parked EVs as mobile batteries, supplying bidirectional power to the grid for resilience.

✅ Medium- and heavy-duty EV integration via 60 kW charger

✅ Supports critical infrastructure and storm response

✅ Cleaner, faster alternative to diesel generators

 

BC Hydro has unveiled an innovative pilot project designed to enable electric vehicles (EVs) to contribute electricity back to the power grid, with some owners able to sell electricity back to the grid through managed programs, effectively transforming these vehicles into mobile energy storage units that function as capacity on wheels for the electricity system.

The utility company recently announced the successful trial of the vehicle-to-grid program, allowing for the transfer of electricity from the batteries of medium- and heavy-duty EVs back to the electrical grid. This surplus electricity can be utilized in various ways, including supporting emergency response efforts by energizing critical infrastructure and to power buildings during natural disasters or major storms. It offers a cleaner, faster, and more flexible alternative to conventional methods like the use of diesel generators.

BC Hydro's President and CEO, Chris O'Riley, highlighted the significance of this initiative, stating, "The average car is parked 95 per cent of the time, and with the evolution of technology solutions like vehicle-to-grid, stationary vehicles hold the potential to become mobile batteries, powered by clean and affordable electricity."

The successful test was conducted using a Lion Electric school bus provided by Lynch Bus Lines, which was connected to a 60-kilowatt charger, illustrating BC Hydro's rollout of faster electric vehicle charging across the province. BC Hydro pointed out that the typical bus battery holds 66 kilowatts of electricity, sufficient to power 24 single-family homes with electric heating for two hours. Therefore, if 1,000 of these buses were converted to electric power, they could collectively supply electricity to 24,000 homes for two hours.

This groundbreaking project is a collaborative effort between BC Hydro, Powertech, and Coast to Coast Experience, with funding support from the provincial government amid study findings that B.C. may need to double its power output to meet transport electrification.

While this pilot marks the first of its kind in Canada, similar technology has already been successfully implemented in Europe and the United States, including California's efforts to leverage EVs for grid stability that offer promising potential for enhancing the energy landscape and sustainability in the region.

Separately, Nova Scotia Power plans to pilot electric vehicle to grid integration in Atlantic Canada, underscoring growing national interest in V2G approaches.

 

Related News

View more

Hydro One Networks Inc. - Ivy, ONroute and Canadian Tire make it easy to charge your next road trip

ONroute EV Charging Stations now live on Ontario's Highways 401 and 400, powered by Ivy Charging Network with 150 kW fast chargers, Tesla-compatible ports, Canadian Tire support, and government-backed clean transportation infrastructure.

 

Key Points

ONroute EV Charging Stations are Ivy-managed 150 kW fast-charging hubs along Highways 401/400, compatible with all EVs.

✅ Up to 150 kW DC fast charging; ~100 km added in about 10 minutes

✅ Compatible with all EV models, including Tesla-compatible ports

✅ Located along Highways 401/400; 2-4 chargers per ONroute site

 

Electric vehicle (EV) drivers can now charge at 10 ONroute locations along Highways 401 and 400, reflecting progress on the province's charging network rollout to date.

Ivy Charging Network, ONroute and their partners, Canadian Tire Corporation (CTC) and the Ministry of Transportation (MTO) announced the opening of four Charge & Go EV fast-charging stations today: Ingleside, Innisfil, Tilbury North, Woodstock

Each of Ivy's Charge & Go level 3 fast-chargers at ONroute locations will support the charging of all EV models, including charging ports for Tesla drivers.

 

Quick Facts

Ivy Charging Network is installing 69 level 3 fast-chargers across all ONroute locations, with the possibility of further expansion as Ontario makes it easier to build charging stations through supportive measures.

Ivy's ONroute Charge & Go locations will offer charging speeds of up-to 150 kWs, delivering up to a 100 km charge in 10 minutes.

This partnership is part of CTC's ongoing expansion of EV charging infrastructure across Canada, as utilities like BC Hydro add more stations across southern B.C.

Ivy Charging Network is a joint venture between Hydro One and Ontario Power Generation.

Natural Resources Canada, through its Electric Vehicle and Alternative Fuel Infrastructure Deployment Initiative, invested $8-million to help build the broader Ivy Charging Network, alongside other federal funding for smart chargers supporting deployments, providing access to 160 level 3 fast-chargers across Ontario including these ONroute locations.

'Our partnership with ONroute, Canadian Tire and the Ontario Ministry of Transportation will end range anxiety for EV drivers travelling on the province's major highways. These new fast-charging locations will give drivers the confidence they need on their road trips, to get them where they need to go this summer,' said Michael Kitchen, General Manager, Ivy Charging Network.

'ONroute is proud to now offer EV charging stations to our customers, in partnership with Ivy and Canadian Tire. We are focused on supporting the growth of electric cars and offering this convenience for our customers as we strive to be the recharge destination for all travelers across Ontario,' said Melanie Teed-Murch, Chief Executive Officer of ONroute.

'Together with our partners, CTC is proud to announce the opening of EV fast-charging stations at four additional ONroute locations along the 400-series highways. Our network of EV charging stations is just one of the ways CTC is supporting EV drivers of today and tomorrow to make life in Canada better, with growth similar to NB Power's public charging network underway,' said Micheline Davies, SVP, Automotive, Canadian Tire Corporation. 'We will have approximately 140 sites across the country by the end of the year, making CTC one of the largest retail networks of EV fast charging stations in Canada.'

'We're giving Canadians cleaner transportation options to get to where they need to go by making zero-emission charging and alternative-fuels refueling infrastructure more accessible, as seen with new fast-charging stations in N.B. announced recently. Investments like the ones announced today in Ontario will put Canadians in the driver's seat on the road to a net-zero future and help achieve our climate goals,' said the Honourable Jonathan Wilkinson, Minister of Natural Resources.

'Ontario is putting shovels in the ground to build critical infrastructure that will boost EV ownership, support Ontario's growing EV manufacturing industry and reduce emissions, complementing progress such as the first fast-charging network in N.L. now in place,' said Todd Smith, Minister of Energy. 'With EV fast chargers now available at ten ONroute stations along our province's business highways it's even more convenient than ever for workers and families to grab a coffee or a meal while charging their car.'

 

Related News

View more

UK leads G20 for share of electricity sourced from wind

UK Wind Power Leadership in 2020 highlights record renewable energy growth, G20-leading wind share, rapid coal phase-out, and rising solar integration, advancing decarbonization targets under the Paris Agreement and momentum ahead of COP26.

 

Key Points

The UK led the G20 in wind power share in 2020, displacing coal, expanding solar, and cutting power-sector emissions.

✅ G20-leading wind share; second for combined wind and solar

✅ Fastest coal decline among G20 from 2015 to 2020

✅ Emissions risk rising as post-pandemic demand returns

 

Nearly a quarter of the UK’s electricity came from wind turbines in 2020 – making the country the leader among the G20 for share of power sourced from the renewable energy, a new analysis finds.

The UK also moved away from coal power at a faster rate than any other G20 country from 2015 to 2020, according to the results.

And it ranked second in the G20, behind Germany, for the proportion of electricity sourced from both wind and solar in 2020, after first surpassing coal in 2016.

“It’s crazy how much wind power has grown in the UK and how much it has offset coal, and how it’s starting to eat at gas,” Dave Jones, Ember’s global lead analyst, told The Independent.

But it is important to bear in mind that “we’re only doing a great job by the standards of the rest of the world”, he added, noting that low-carbon generation stalled in 2019 in the UK.

Ember’s Global Electricity Review notes that the world’s power sector emissions were two per cent higher in 2020 than in 2015 – the year that countries agreed to slash their greenhouse gas pollution as part of the Paris Agreement.

Power generated from coal fell by a record amount from 2019 to 2020, the analysis finds. However, this decline was greatly facilitated by lockdowns introduced to stop the spread of Covid-19, as global electricity demand was temporarily stifled before rebounding, the analysts say.

Coal is the most polluting of the fossil fuels. The UK government hopes to convince all countries to stop building new coal-fired power stations at Cop26, a climate conference that is to be held in Glasgow later this year.

UN chief Antonio Guterres has also called for all countries to end their “deadly addiction to coal”.

At a summit held earlier this month, he described ending the use of coal in electricity generation as the “single most important step” to meeting the Paris Agreement’s goal of limiting global warming to well below 2C above pre-industrial levels by 2100.

“There is definitely a concern that, in the pandemic year of 2020, coal hasn’t fallen as fast as it needed to,” said Mr Jones, even as the UK set coal-free power records recently.

“There is concern that, once electricity demand returns, we won’t be seeing that decline in coal anymore.”

 

Related News

View more

Germany to Exempt Electric Cars from Vehicle Tax Until 2035

Germany is extending its vehicle tax exemption for electric cars until 2035, a federal move aimed at boosting EV sales, supporting the auto industry, and advancing the country’s transition to cleaner, more sustainable transportation.

 

Why is Germany Exempting EVs from Vehicle Tax Until 2035?

Germany is exempting electric vehicles from vehicle tax until 2035 to boost EV adoption, support its auto industry, and meet national climate targets.

✅ Encourages consumers to buy zero-emission cars

✅ Protects jobs in the automotive sector

✅ Advances Germany’s clean energy transition

Germany’s federal government has confirmed plans to extend the country’s vehicle tax exemption for electric cars until 2035, as part of a renewed push to accelerate the nation’s e-mobility transition and support its struggling automotive industry. The move, announced by Finance Minister Lars Klingbeil, comes just weeks before the existing exemption was set to expire.

“In order to get many more electric cars on the road in the coming years, we need to provide the right incentives now,” Klingbeil told the German Press Agency (DPA). “That is why we will continue to exempt electric cars from vehicle tax.”

Under the proposed law, the exemption will apply to new fully electric vehicles registered until December 31, 2030, with benefits lasting until the end of 2035. According to the Finance Ministry, the measure aims to “provide an incentive for the early purchase of a purely electric vehicle.” While popular among consumers and automakers, the plan is expected to cost the federal budget several hundred million euros in lost revenue.

Without the extension, the tax relief for new battery-electric vehicles (BEVs) would have ended on January 1, 2026, creating uncertainty for automakers and potential buyers. The urgency to pass the new legislation reflects the government’s goal to maintain Germany’s momentum toward electrification, even as the age of electric cars accelerates amid economic headwinds and fierce international competition.

The exemption’s renewal was originally included in the coalition agreement between the Christian Democratic Union (CDU), the Christian Social Union (CSU), and the Social Democratic Party (SPD). It follows two other measures from the government’s “investment booster” package—raising the maximum gross price for EV tax incentives to €100,000 and allowing special depreciation for electric vehicles. However, the vehicle tax measure was previously in jeopardy due to Germany’s tight fiscal situation. The Finance Ministry had cautioned that every proposal in the coalition deal was “subject to financing,” and a plan to end EV subsidies led to speculation that the EV tax break could be dropped altogether.

Klingbeil’s announcement coincides with an upcoming “automotive dialogue” summit at the Chancellery, hosted by Chancellor Friedrich Merz. The meeting will bring together representatives from federal ministries, regional governments, automakers advancing initiatives such as Daimler’s electrification plan across their portfolios, and trade unions to address both domestic and international challenges facing Germany’s car industry. Topics will include slowing EV sales growth in China, the ongoing tariff dispute with the United States, where EPA emissions rules are expected to boost EV sales, and strategies for strengthening Germany’s global competitiveness.

“We must now put together a strong package to lead the German automotive industry into the future and secure jobs,” Klingbeil said. “We want the best cars to continue to be built in Germany. Everyone knows that the future is electric.”

The government is also expected to revisit a proposed program to help low- and middle-income households access electric cars, addressing affordability concerns that persist across markets, modelled on France’s “social leasing” initiative. Though included in the coalition agreement, progress on that program has stalled, and few details have emerged since its announcement.

Germany’s latest tax policy move signals renewed confidence in its electric vehicle transition, despite budget constraints and a turbulent global market, as the 10-year EV outlook points to most cars being electric worldwide. Extending the exemption until 2035 sends a clear message to consumers and manufacturers alike: the country remains committed to building its clean transport future—one electric car at a time.

 

Related Articles

 

View more

Unprecedented Growth in Solar and Storage Anticipated with Record Installations and Investments

U.S. Clean Energy Transition accelerates with IRA and BIL, boosting renewable energy, solar PV, battery storage, EV adoption, manufacturing, grid resilience, and jobs while targeting carbon-free electricity by 2035 and net-zero emissions by 2050.

 

Key Points

U.S. shift to renewables under IRA and BIL scales solar, storage, and EVs toward carbon-free power by 2035.

✅ Renewables reached ~22% of U.S. electricity generation in 2022.

✅ Nearly $13b in PV manufacturing; 94 plants; 25k jobs announced.

✅ Battery storage grew from 3% in 2017 to 36% by H1 2023.

 

In recent years, the United States has made remarkable strides in embracing renewable energy, with notable solar and wind growth helping to position itself for a more sustainable future. This transition has been driven by a combination of factors, including environmental concerns, economic opportunities, and technological advancements.

With the introduction of the Inflation Reduction Act (IRA) and the Bipartisan Infrastructure Law (BIL), the United States is rapidly advancing its journey towards clean energy solutions.

To underscore the extent of this progress, consider the following vital statistics: In 2022, renewable energy sources (including hydroelectric power) accounted for approximately 22% of the nation's electricity generation, and renewables surpassed coal in the mix that year, while the share of renewables in total electricity generation capacity had risen to around 30% and the nation is moving toward 30% electricity from wind and solar as well.

Notably, in the transportation sector, consumers are increasingly embracing zero-emission fuels, such as electric vehicles. In 2022, battery electric vehicles (BEVs) represented 5.6% of new vehicle registrations, surging to 7.1% by the first half of 2023, according to estimates from EUPD Research.

The United States has set ambitious targets, including achieving 100% carbon pollution-free electricity by 2035 and aiming for economy-wide net-zero greenhouse gas emissions by no later than 2050, and policy proposals such as Biden's solar plan reinforce these goals for the power sector. These targets are poised to provide a significant boost to the clean energy sector in the country, reaffirming its commitment to a sustainable and environmentally responsible future.

 

IRA and BIL: Catalysts for Growth

The IRA and BIL represent a transformative shift in the landscape of clean energy policy, heralding a new era for the solar and energy storage sectors in the United States. The IRA allocates substantial resources to address the climate crisis, fortify domestic clean energy production, and solidify the U.S. as a global leader in clean energy manufacturing.

According to the U.S. Department of Energy (DOE), an impressive investment exceeding $120 billion has been announced for the U.S. battery manufacturing and supply chain sector since the introduction of IRA and BIL. Additionally, plans have been unveiled for over 200 new or expanded facilities dedicated to minerals, materials processing, and manufacturing. This move is expected to create more than 75,000 potential job opportunities, strengthening the nation's workforce.

Following the introduction of IRA and BIL, solar photovoltaic (PV) manufacturing in the U.S. has also witnessed a substantial surge in planned investments, totaling nearly $13 billion, as reported by the DOE. Furthermore, a total of 94 new and expanded PV manufacturing plants have been announced, potentially generating over 25,000 jobs in the country.

 

Booming Solar Sector

In recent years, the U.S. solar sector has outpaced other energy sources, including a surging wind sector and natural gas, in terms of capacity growth. EUPD Research estimates reveal a notable upward trend in the contribution of solar capacity to annual power capacity additions, as 82% of the 2023 pipeline consists of wind, solar, and batteries across utility-scale projects. This trajectory has risen from 37% in 2019 to 38% in 2020, further increasing to 44% in 2021 and an impressive 45% in 2022.

Although the country experienced a temporary setback in 2022 due to pandemic-related delays, trade law enforcement, supply chain disruptions, and rising costs, it is now on track to make a historic addition to its PV capacity in 2023. According to EUPD Research's 2023 forecast, the U.S. is poised to achieve its largest-ever expansion in PV capacity, estimated at 32 to 35 GWdc, assuming the installation of all planned utility-scale capacity, and solar generation rose 25% in 2022 as a supportive indicator. Additionally, from 2023 to 2028, the U.S. is projected to add approximately 233 GWdc of PV capacity.

In terms of cumulative installed PV capacity (including utility-scale, commercial and industrial, and residential) on a state-by-state basis, California holds the top position, followed by Texas, Florida, North Carolina, and Arizona. Remarkably, Texas is rapidly expanding its utility-scale PV capacity and may potentially surpass California in the next two years.

 

Rapid Growth in Battery Storage

Battery energy storage has emerged as the dominant and rapidly expanding source of energy storage in the U.S. in recent years. The proportion of battery storage in the country's energy storage capacity has surged dramatically, increasing from a mere 3% in 2017 to a substantial 36% in the first half of 2023.

 

Related News

View more

The Spanish inventor creating electricity from plants

Bioo Soil-Generated Electricity turns biological batteries and photosynthesis into renewable energy, powering IoT sensors for smart farming and lighting, using microbe-powered soil electrochemistry to cut battery waste, reduce costs, and scale sustainable agritech infrastructure.

 

Key Points

Bioo Soil-Generated Electricity powers IoT sensors and lighting using soil microbes, delivering clean renewable energy.

✅ Microbe-driven soil batteries replace disposable chemical cells

✅ Powers IoT agritech sensors for moisture, pH, and temperature

✅ Cuts maintenance and costs while enabling sustainable farming

 

SCENES shines a spotlight on youth around the world that are breaking down barriers and creating change. The character-driven short films will inspire and amaze, as these young change-makers tell their remarkable stories.

Pablo Vidarte is a born inventor. At the age of eight, he was programming video games. By 16, he was challenging NASA and competing with the Spanish army to enhance the efficiency of external combustion engines. "I wanted to perfect a system that NASA did in 2002 oriented to powering cars. I was able to increase that efficiency by 60 per cent, which was pretty cool," Pablo explained. Aged 18, he created his first company specialising in artificial intelligence. A year later, he founded Bioo, a revolutionary startup that generates electricity from plants' photosynthesis.

"Imagine, being in the middle of a park or a street and being able to touch a plant and turn on the lights of that specific area," Pablo told Scenes. "Imagine storing the memories of humanity itself in nature. Imagine storing voice messages in a library that is an open field where you can go and touch the plants and communicate and interact with them. That's what we do at Bioo," he added.

The creation of Bioo, however, was not a walk in the park. Pablo relied on nanotechnology engineers and biologists volunteering their time to turn his idea of biological batteries, inspired by biological design, into a reality. It took a year for a prototype to be created and an investor to come on board. Today, Bioo is turning plants into biological switches, generating renewable energy from nature, and transforming the environment.

"We realised that we were basically killing the planet, and then we invented things like solar panels and solutions like peer-to-peer energy that we're able to prevent things from getting worse, but the next step is to be able to reverse the whole equation to revive that planet that we're starting to lose," the 25-year-old explained.

Batteries creating electricity from soil
Bioo has designed biological batteries that generate electricity from the energy released when organic soil decomposes. Like traditional batteries, they have an anode and a cathode, but instead of using materials like lithium to power them, organic matter is used as fuel. When microorganisms break down the organic soil, electrons are released. These electrons are then transported from the anode to the cathode, and a current of electricity is created. The batteries come in the shape of a rectangular box and can be dug into any fertile soil. They produce up to 200Wh a year per square metre, and just as some tidal projects use underwater kites to harvest energy, these systems tap natural processes.

Bioo's batteries are limited to low-power applications, but they have grown in popularity and are set to transform the agriculture industry.

Cost savings for farmers
Farmers can monitor their crops using a large network of sensors. The sensors allow them to analyse growing conditions, such as soil moisture, PH levels and air temperature. Almost 90 per cent of the power used to run the sensors come from chemical batteries, which deplete, underscoring the renewable energy storage problem that new solutions target.

"The huge issue is that chemical batteries need to be replaced every single year. But the problem is that you literally need an army of people replacing batteries and recalibrating them," Pablo explains. "What we do, it's literally a solution that is hidden, and that's nourishing from the soil itself and has the same cost as using chemical batteries. So the investment is basically returned in the first year," Pablo added.

Bioo has partnered with Bayer, a leading agricultural producer, to trial their soil-powered sensors on 50 million hectares of agricultural land. If successful, the corporation could save €1.5 billion each year. Making it a game-changer for farmers around the world.

A BioTech World
In addition to agriculture, Bioo's batteries are now being installed in shopping centres, offices and hospitals to generate clean power for lighting, while other companies are using ocean and river power to diversify clean generation portfolios.

Pablo's goal is to create a more environmentally efficient world, so shares his technology with international tech companies as green hydrogen projects scale globally. "I wanted to do something that could really mean a change for our world. Our ambition right now is to create a biotech world, a world that is totally interconnected with nature," he said.

As Bioo continues to develop its technology, Pablo believes that soil-generated electricity will become a leader in the global energy market, aligning with progress toward cheap, abundant electricity becoming a reality worldwide.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified