U.S. to work with allies to secure electric vehicle metals


gm ev workers

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

US EV Battery Minerals Strategy prioritizes critical minerals with allies, lithium and copper sourcing, battery recycling, and domestic processing, leveraging the Development Finance Corporation to strengthen EV supply chains and reduce reliance on China.

 

Key Points

A US plan to secure critical minerals with allies, boost recycling, and expand domestic processing for EV batteries.

✅ DFC financing for allied lithium and copper projects

✅ Battery recycling to diversify critical mineral supply

✅ Domestic processing with strong environmental standards

 

The United States must work with allies to secure the minerals needed for electric vehicle batteries, addressing pressures on cobalt reserves that could influence supply, and process them domestically in light of environmental and other competing interests, the White House said on Tuesday.

The strategy, first reported by Reuters in late May, will include new funding to expand international investments in electric vehicles (EV) metal projects through the U.S. Development Finance Corporation, as well as new efforts to boost supply from EV battery recycling initiatives.

The U.S. has been working to secure minerals from allied countries, including Canada and Finland, with projects such as Alberta lithium development showing potential. The 250-page report outlining policy recommendations mentioned large lithium supplies in Chile and Australia, the world's two largest producers of the white battery metal.

President Joe Biden's administration will also launch a working group to identify where minerals used in EV batteries and other technologies can be produced and processed domestically.

Securing enough copper, lithium and other raw materials to make EV batteries, amid lithium supply concerns heightened by recent disruptions, is a major obstacle to Biden’s aggressive EV adoption plans, with domestic mines facing extensive regulatory hurdles and environmental opposition.

The White House acknowledged China's role as the world's largest processor of EV metals and said it would expand efforts, including a 100% EV tariff on certain imports, to lessen that dependency.

"The United States cannot and does not need to mine and process all critical battery inputs at home. It can and should work with allies and partners to expand global production and to ensure secure global supplies," it said in the report.

The White House also said the Department of the Interior and others agencies will work to identify gaps in mine permitting laws to ensure any new production "meets strong standards" in terms of both the environment and community input.

The report noted Native American opposition to Lithium Americas Corp's (LAC.TO) Thacker Pass lithium project in Nevada, as well as plans by automaker Tesla Inc (TSLA.O) to produce its own lithium.

The steps come after Biden, who has made fighting climate change and competing with China centerpieces of his agenda, ordered a 100-day review of gaps in supply chains in key areas, including EVs.

Democrats are pushing aggressive climate goals, as Canada EV manufacturing accelerates in parallel, to have a majority of U.S.-manufactured cars be electric by 2030 and every car on the road to be electric by 2040.

As part of the recommendations from four executive branch agencies, Biden is being advised to take steps to restore the country's strategic mineral stockpile and expand funding to map the mineral resources available domestically.

Some of those steps would require the support of Congress, where Biden's fellow Democrats have only slim majorities.

The Energy Department already has $17 billion in authority through its Advanced Technology Vehicles Manufacturing Loan program to fund some investments, and is also launching a lithium-battery workforce initiative to build critical skills.

The program’s administrators will focus on financing battery manufacturers and companies that refine, recycle and process critical minerals, the White House said.

 

Related News

Related News

Tesla’s Solar Installations Hit New Low, but Musk Predicts Huge Future for Energy Business

Tesla Q2 2020 earnings highlight resilient electric vehicles as production and deliveries outpace legacy automakers, while Gigafactory Austin advances, solar installations slump, and energy storage, Megapack, and free cash flow expand despite COVID-19 disruptions.

 

Key Points

Tesla posted a fourth consecutive profit, strong cash, EV resilience, solar slump, and rising energy storage.

✅ Fourth straight profit and $418M free cash flow

✅ EV output and deliveries fell just 5% year over year

✅ Solar hit record low; storage rose 61% to 419 MWh

 

Tesla survived the throes of the coronavirus pandemic relatively unscathed, chalking up its fourth sequential quarterly profit for the first time on Wednesday.

On the energy front, however, things were much more complicated: Tesla reported its worst-ever quarter for solar installations but huge growth in its battery business, amid expectations for cheaper, more powerful batteries expected in coming years. CEO Elon Musk nevertheless predicted the energy business will one day rival its car division in scale.

But today, Tesla's bottom line is all about electric vehicles, and the temporary halt of activity at Tesla's Fremont factory due to local health orders didn’t put much of a dent in vehicle production and delivery. Both figures declined 5 percent compared to the same quarter in 2019. In contrast, Q2 vehicle sales at legacy carmakers Ford, GM and Fiat Chrysler declined by one-third or more year-over-year, even as the U.S. EV market share dipped in early 2024 for context.

The costs of factory closures and a $101 million CEO award milestone for Elon Musk didn’t stop Tesla from achieving $418 million in free cash flow, a major improvement over the prior quarter. Cash and cash equivalents grew by $535 million to $8.6 billion during the quarter.


Musk praised his employees for “exceptional execution.” 

“There were so many challenges, too numerous to name, but they got it done,” he said on an investor call Wednesday.

Musk also confirmed that Tesla will build a new Gigafactory in Austin, Texas, five minutes from the airport. The 2,000-acre campus will abut the Colorado River and is “basically going to be an ecological paradise,” he said. The new Texas factory will build the Cybertruck, Semi, Model 3 and Model Y for the Eastern half of North America. Fremont, California will produce the S and X, and make Model 3 and Model Y for the West, in a state where EVs exceed 20% of sales according to recent data.

 

Return of the Tesla solar slump

This was the first entire quarter affected by the coronavirus response, which threw the rooftop solar industry into turmoil by cutting off in-person sales. Other installers scrambled to shift to digital-first sales strategies, but Tesla had already done so months before lockdowns were imposed.

Q2, then, offers a test case on whether Tesla’s pivot to passive online sales made it better able to deal with stay-at-home orders than its peers. The other publicly traded solar installers have not yet reported their Q2 performance, but Tesla delivered its worst-ever quarterly solar figures: Installations totaled just 27 megawatts. That’s a 7 percent decline from Q2 2019, its previous worst quarter ever for solar.

Musk did not address that weak performance in his remarks to investors, opting instead to highlight the company’s late-June decision to offer the cheapest solar pricing in the country. “We’re the company to go to,” he said of rooftop solar. “It’s only going to get better later this year.”

But the sales slump indicates Tesla’s online sales model could not withstand a historically tough season for residential solar.

"Every single residential installer in the country is going to have a bad Q2 because of the initial impacts of COVID on the market," said Austin Perea, senior solar analyst at Wood Mackenzie. "It's hard to disaggregate the impacts of COVID from their own individual strategies."

Tesla's 23 percent decline in quarter-over-quarter solar installations was not as bad as the expected Q2 decline across the rooftop solar industry, Perea added.

On the vehicle side, Tesla’s sales declined less than did those of major automakers. It’s possible that the same pattern will hold for solar; a less severe drop than those seen by Sunrun or Vivint could be claimed as a victory of sorts. But this quarter made clear that Q2 2019 was not the bottom for Tesla’s solar operation, which once led the residential market as SolarCity but significantly diminished since Tesla acquired it in 2016.


Tesla currently stands in third place for residential solar installers. But No. 1 installer Sunrun said this month that it will acquire No. 2 installer Vivint Solar, making Tesla the second-largest installer by default. That major consolidation in the rooftop solar market went unremarked upon in Tesla's investor call.

Solar and energy storage revenue currently equate to just 7 percent of the company's automotive revenue. But Musk reiterated his prediction that this won’t always be the case. “Long term, Tesla Energy will be roughly the same size as Tesla Automotive,” he said on Wednesday's call.

The grid storage business offered more reason for optimism: Capacity deployed grew 61 percent from the first quarter, rising to 419 megawatt-hours. The prepackaged, large-format Megapack product turned its first profit that quarter.

 

"Difficult to predict" performance in the second half of 2020
Tesla withdrew its financial guidance last quarter in light of the upheaval across the global economy. It refrained from setting new guidance now.

“Although we have successfully ramped vehicle production back to prior levels, it remains difficult to predict whether there will be further operational interruptions or how global consumer sentiment will evolve, given risks to the EV boom noted by analysts, in the second half of 2020,” the earnings report notes.

The company asserted it will still deliver 500,000 vehicles this year regardless of externalities, a goal that aligns with broader EV sales momentum in 2024 trends. It already has sufficient production capacity installed to reach that, Tesla said. But with 179,387 cars delivered so far, Tesla faces an uphill climb to ship more cars in the second half.

Wall Street maintained its buoyant confidence in Tesla's share price, despite rising competition in China noted by rivals. It closed at $1,592 before the earnings announcement, rising to $1,661 in after-hours trading.

 

Related News

View more

UK Electric cars will cost more if Sunak fails to strike Brexit deal

UK-EU EV Tariffs 2024 threaten a 10% levy under Brexit rules of origin, raising electric vehicle prices, straining battery supply chains, and risking a price war for manufacturers, consumers, and climate targets across automotive market.

 

Key Points

Tariffs from Brexit rules of origin imposing 10% duties on EVs, raising UK prices amid battery and supply chain gaps.

✅ 10% tariffs if rules of origin thresholds are unmet

✅ Price hikes on UK EVs, led by Tesla Model Y

✅ Battery supply gaps strain UK and EU manufacturers

 

Electric cars will cost British motorists an extra £6,000 if Rishi Sunak fails to strike a post-Brexit deal with the EU on tariffs, industry bosses have told The Independent.

UK manufacturers warned of a “devastating price war” on consumers, echoing UK concern over higher EV prices across the market – threatening both the electric vehicle (EV) market and the UK’s climate change commitments – if tariffs are enforced in January 2024.

In the latest major Brexit row, the Sunak government is pushing the European Commission to agree to delay the costly new rules, even as the UK readies for rising EV adoption across the economy, set to come in at the start of next year as part of Boris Johnson’s Brexit trade deal.

But Brussels has shown no sign it is willing to budge – even as Washington has announced a 100% tariff on Chinese-made EVs this year – leaving business leaders in despair about the impact of 10 per cent tariffs on exports on Britain’s car industry.

The tariffs would increase the price of a new Tesla Model Y – the UK’s most popular electric vehicle – by £6,000 or more, according to a new report by the Independent Commission on UK-EU Relations.

“For the sake of our economy and our planet, the government has a responsibility to get round the table with the EU, fix this and fix the raft of other issues with the Brexit deal,” said commission director Mike Buckley.

The new rules of origin agreed in the Brexit trade and cooperation agreement (TCA) require 45 per cent of an electric car’s value, as the age of electric cars accelerates, to originate in the UK or EU to qualify for trade without tariffs.

The British auto industry has warned the 2024 rules pose an “existential threat” to sales because of the lack of domestic batteries to meet the rules, even as EV adoption within the decade is widely expected to surge – pleading for a delay until 2027.

The VDA – the lobby group for Germany’s car industry – has also called for an “urgent” move to delay, warning that the rules create a “significant competitive disadvantage” for European carmarkers in relation to China, where tariffs on Chinese EVs are reshaping global trade, and other Asian competitors.

The new report by the Independent Commission on UK-EU Relations – backed by the manufacturers’ body Make UK and the British Chamber of Commerce – warns that the January tariffs will immediately push up costs and hit electric vehicle sales, despite UK EV inquiries surging during the fuel supply crisis in recent years.

 

Related News

View more

Whooping cranes steer clear of wind turbines when selecting stopover sites

Whooping crane migration near wind turbines shows strong avoidance of stopover habitat within 5 km, reshaping Great Plains siting decisions, reducing collision risk, and altering routes across croplands, grasslands, and wetlands.

 

Key Points

It examines cranes avoiding stopovers within 5 km of turbines, reshaping habitat use and routing across the Great Plains.

✅ Cranes 20x likelier to rest >5 km from turbines.

✅ About 5% of high-quality stopover habitat is impacted.

✅ Findings guide wind farm siting across Great Plains wetlands.

 

As gatherings to observe whooping cranes join the ranks of online-only events this year, a new study offers insight into how the endangered bird is faring on a landscape increasingly dotted with wind turbines across regions. The paper, published this week in Ecological Applications, reports that whooping cranes migrating through the U.S. Great Plains avoid “rest stop” sites that are within 5 km of wind-energy infrastructure.

Avoidance of wind turbines can decrease collision mortality for birds, but can also make it more difficult and time-consuming for migrating flocks to find safe and suitable rest and refueling locations. The study’s insights into migratory behavior could improve future siting decisions as wind energy infrastructure continues to expand, despite pandemic-related investment risks for developers.

“In the past, federal agencies had thought of impacts related to wind energy primarily associated with collision risks,” said Aaron Pearse, the paper’s first author and a research wildlife biologist for the U.S. Geological Survey’s Northern Prairie Wildlife Research Center in Jamestown, N.D. “I think this research changes that paradigm to a greater focus on potential impacts to important migration habitats.”

Some policymakers have also rejected false health claims about wind turbines and cancer in public debate, underscoring the need for evidence-based decisions.

The study tracked whooping cranes migrating across the Great Plains, a region that encompasses a mosaic of croplands, grasslands and wetlands. The region has seen a rapid proliferation of wind energy infrastructure in recent years: in 2010, there were 2,215 wind towers within the whooping crane migration corridor that the study focused on; by 2016, when the study ended, there were 7,622 wind towers within the same area.

Pearse and his colleagues found that whooping cranes migrating across the study area in 2010 and 2016 were 20 times more likely to select “rest stop” locations at least 5 km away from wind turbines than those closer to turbines, a pattern with implications for developers as solar incentive changes reshape wind market dynamics according to industry analyses.

The authors estimated that 5% of high-quality stopover habitat in the study area was affected by presence of wind towers. Siting wind infrastructure outside of whooping cranes’ migration corridor would reduce the risk of further habitat loss not only for whooping cranes, but also for millions of other birds that use the same land for breeding, migration, and wintering habitat, and real-world siting controversies, such as an Alberta wind farm cancellation, illustrate how local factors shape outcomes for wildlife.

 

Related News

View more

Wind is main source of UK electricity for first time

UK Renewable Energy Milestones: wind outpacing gas, record solar output, offshore wind growth, National Grid data, and a net-zero grid by 2035, despite planning reforms, connection queues, and grid capacity constraints.

 

Key Points

Key UK advances where wind beat gas, solar set records, and policies target a 2035 net-zero electricity grid.

✅ Wind generated one-third of electricity, outpacing gas

✅ Record solar output reported by National Grid in April

✅ Onshore wind easing via planning reforms; grid delays persist

 

In the first three months of this year a third of the country's electricity came from wind farms, with the UK leading the G20 for wind power according to research from Imperial College London has shown.

National Grid has also confirmed that April saw a record period of solar energy generation, and wind generation set new records earlier in the year.

By 2035 the UK aims for all of its electricity to have net zero emissions, though progress stalled in 2019 in some areas.

"There are still many hurdles to reaching a completely fossil fuel-free grid, but wind out-supplying gas for the first time, a sign of wind leading the power mix, is a genuine milestone event," said Iain Staffell, energy researcher at Imperial College and lead author of the report.

The research was commissioned by Drax Electrical Insights, which is funded by Drax energy company.

The majority of the UK's wind power has come from offshore wind farms, and wind generated more electricity than coal in 2016 marking an early shift. Installing new onshore wind turbines has effectively been banned since 2015 in England.

Under current planning rules, companies can only apply to build onshore wind turbines on land specifically identified for development in the land-use plans drawn up by local councils. Prime Minister Rishi Sunak agreed in December to relax these planning restrictions to speed up development.

Scientists say switching to renewable power is crucial to curb the impacts of climate change, with milestones like wind and solar topping nuclear underscoring the shift, which are already being felt, including in the UK, which last year recorded its hottest year since records began.

Solar and wind have seen significant growth in the UK. In the first quarter of 2023, 42% of the UK's electricity came from renewable energy, with 33% coming from fossil fuels like gas and record-low coal shares.

Some new solar and wind sites are waiting up to 10 to 15 years to be connected because of a lack of capacity in the electricity system.

And electricity only accounts for 18% of the UK's total power needs. There are many demands for energy which electricity is not meeting, such as heating our homes, manufacturing and transport.

Currently the majority of UK homes use gas for their heating - the government is seeking to move households away from gas boilers and on to heat pumps which use electricity.

 

Related News

View more

UK firm plans to operate Vietnam mega wind power project by 2025

ThangLong Wind Project Vietnam targets $12b, 3,400 MW offshore wind in Binh Thuan, aligned with PDP8, 2025-2028 timeline, EVN grid integration, and private transmission lines to support renewable energy growth and local industry.

 

Key Points

A $12b, 3,400 MW offshore wind farm off Binh Thuan, aiming first power by 2025 and full capacity by 2028.

✅ 20-60 km offshore; 30-55 m water depth site

✅ Seeks licenses for private transmission lines, beyond EVN

✅ 50% local spend; boosts supply chain and jobs

 

U.K. energy firm Enterprize Energy, reflecting momentum in UK offshore wind, wants to begin operating its $12-billion offshore wind power project in central Vietnam by the end of 2025.
Company chairman Ian Hatton proposed the company’s ThangLong Wind Project in the central province of Binh Thuan be included in Vietnam’s 8th National Power Development Plan, which is being drafted at present, so that at least part of the project can begin operations by the end of 2025 and all of it by 2028.

Renewable energy is a priority in the development plan that the Ministry of Industry and Trade will submit to the government next month. About 37.5 percent of new energy supply in the next decade will come from renewable energy, aligning with wind leading the power mix trends globally, it envisages.

However, due to concerns of overload to the national grid, and as build-outs like North Sea wind farms show similar coordination needs, Hatton, at a Wednesday meeting with Prime Minister Nguyen Xuan Phuc and U.K. Minister of State for Trade Policy Greg Hands, proposed the government gives Enterprize Energy licenses to develop transmission lines to handle future output.

Developing transmission lines in Vietnam has been the exclusive preserve of the national utility Vietnam Electricity (EVN), and large domestic projects such as the Hoa Binh hydropower expansion have typically aligned with this framework.

The 3,400-megawatt ThangLong Wind Project is to be located between 20 and 60 kilometers off the coast of Binh Thuan, mirroring international interest where Japanese utilities in UK offshore wind have scaled similar assets, at a depth of 30-55 meters. Enterprize Energy had said wind resources in this area exceed its expectations.

The project’s construction is expected to stimulate Vietnam’s economic growth, and experiences from U.S. offshore wind competitiveness suggest improving economics, with 50 percent of construction and operational expenses made locally.

Vietnam needs $133.3 billion over the next decade for building new power plants and expanding the grid to meet the growing demand for electricity, while regional agreements like a Bangladesh power supply deal illustrate rising demand, the ministry has estimated.

 

Related News

View more

California introduces new net metering regime

California NEM-3 Tariff ushers a successor Net Energy Metering framework, revising export compensation, TOU rates, and non-bypassable charges to balance ratepayer impacts, rooftop solar growth, and energy storage adoption across diverse communities.

 

Key Points

The CPUC's successor NEM policy redefining export credits and rates to sustain customer-sited solar and storage.

✅ Sets export compensation methodology beyond NEM 2.0

✅ Aligns TOU rates and non-bypassable charges with costs

✅ Encourages solar-plus-storage adoption and equity access

 

The California Public Utilities Commission (CPUC) has officially commenced its “NEM-3” proceeding, which will establish the successor Net Energy Metering (NEM) tariff to the “NEM 2.0” program in California. This is a highly anticipated, high-stakes proceeding that will effectively modify the rules for the NEM tariff in California, amid ongoing electricity pricing changes that affect residential rooftop solar – arguably the single most important policy mechanism for customer-sited solar over the last decade.

The CPUC’s recent order instituting rule-making (OIR) filing stated that “the major focus of this proceeding will be on the development of a successor to existing NEM 2.0 tariffs. This successor will be a mechanism for providing customer-generators with credit or compensation for electricity generated by their renewable facilities that a) balances the costs and benefits of the renewable electrical generation facility and b) allows customer-sited renewable generation to grow sustainably among different types of customers and throughout California’s diverse communities.”

This successor tariff proceeding was initiated by Assembly Bill 327, which was signed into law in October of 2013. AB 327 is best known as the legislation that directed the CPUC to create the “NEM 2.0” successor tariff, which was adopted by the CPUC in January of 2016.

The original Net Energy Metering program in California (“NEM 1.0”) effectively enabled full-retail value net metering “allowing NEM customers to be compensated for the electricity generated by an eligible customer-sited renewable resource and fed back to the utility over an entire billing period.” Under the NEM 2.0 tariff, customers were required to pay charges that aligned them more closely with non-NEM customer costs than under the original structure. The main changes adopted when the NEM 2.0 was implemented were that NEM 2.0 customer-generators must: (i) pay a one-time interconnection fee; (ii) pay non-bypassable charges on each kilowatt-hour of electricity they consume from the grid; and (iii) customers were required to transfer to a time-of-use (TOU) rate, with potential changes to electric bills for many customers.

NEM 2.0

The commencement of the NEM-3 OIR was preceded by the publishing of a 318-page Net Energy Metering 2.0 Lookback Study, which was published by Itron, Verdant Associates, and Energy and Environmental Economics. The CPUC-commissioned study had been widely anticipated and was expected to act as the starting reference point for the successor tariff proceeding. Verdant also hosted a webinar, which summarized the study’s inputs, assumptions, draft findings and results.

The study utilized several different tests to study the impact of NEM 2.0. The cost effectiveness analysis tests, which estimate costs and benefits attributed to NEM 2.0 include: (i) total resource cost test, (ii) participant cost test, (iii) ratepayer impact measure test, and (iv) program administrator test. The evaluation also included a cost of service analysis, which estimates the marginal cost borne by the utility to serve a NEM 2.0 customer.

The opening paragraph of the report’s executive summary stated that “overall, we found that NEM 2.0 participants benefit from the structure, while ratepayers see increased rates.” In every test that the author’s conducted the results generally supported this conclusion for residential customers. There were some exceptions in their findings. For example, in the cost of service analysis the report stated that “residential customers that install customer-sited renewable resources on average pay lower bills than the utility’s cost to serve them. On the other hand, nonresidential customers pay bills that are slightly higher than their cost of service after installing customer-sited renewable resources. This is largely due to nonresidential customer rates having demand charges (and other fixed fees), and the lower ratio of PV system size to customer load when compared to residential customers.”

Similar debates over solar rate design, including Massachusetts solar demand charges, highlight how demand charges and TOU decisions can affect customer economics.

NEM-3 timeline

Popular content
The preliminary schedule that the CPUC laid out in its OIR estimates that the proceeding will take roughly 15 months in total, starting with a November 2020 pre-hearing conference.

The real meat of the proceeding, where parties will present their proposals for what they believe the successor tariff should be, as the state considers revamping electricity rates to clean the grid, and really show their hand will not begin until the Spring of 2021. So we’re still a little ways away from seeing the proposals that the key parties to this proceeding, like the Investor Owned Utilities (PG&E, SCE, SDG&E), solar and storage advocates such as SEIA, CALSSA, Vote Solar, and ratepayer advocates like TURN) will submit.

While the outcome for the new successor NEM tariff is anyone’s guess at this point, some industry policy folks are starting to speculate. We think it is safe to assume that the value of exported energy will get reduced, with debates over income-based utility charges also influencing rate design. How much and the mechanism for how exports get valued remains to be seen. Based on the findings from the lookback study, it seems like the reduction in export value will be more severe than what happened when NEM 2.0 got implemented. In NEM 2.0, non-bypassable charges, which are volumetric charges that must be paid on all imported energy and cannot be netted-out by exports, only equated to roughly $0.02 to $0.03/kWh.

Given that the value of exports will almost certainly get reduced, we expect that to be bullish for energy storage as America goes electric and load shapes evolve. Energy storage attachment rates with solar are already steadily rising in California. By the time NEM-3 starts getting implemented, likely in 2022, we think storage attachment rates will likely escalate further.

We would not be surprised to see future storage attachment rates in California look like the Hawaiian market today, which are upwards of 80% for certain types of customers and applications. Two big questions on our mind are: (i) will the NEM 3.0 rules be different for different customer class: residential, CARE (e.g., low-income or disadvantaged communities), and commercial & industrial; (ii) will the CPUC introduce some sort of glidepath or phased in implementation approach?

The outcome of this proceeding will have far reaching implications on the future of customer-sited solar and energy storage in California. The NEM-3 outcome in California may likely serve as precedent for other states, as California exports its energy policies across the West, and utility territories that are expected to redesign their Net Energy Metering tariffs in the coming years.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.