Ottawa to release promised EV sales regulations


ev charging

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Canada ZEV Availability Standard sets EV sales targets and zero-emission mandates, using compliance credits, early credits, and charging infrastructure investments under CEPA to accelerate affordable ZEV supply and meet 2035 net-zero goals.

 

Key Points

A federal ZEV policy setting 2026-2035 sales targets, using tradable credits and infrastructure incentives under CEPA.

✅ Applies to automakers; compliance via tradable ZEV credits under CEPA.

✅ Targets: 20% by 2026, 60% by 2030, 100% by 2035.

✅ Early credits up to 10% for 2026; charging investments earn credits.

 

Canadian Automobile manufacturers are on the brink of significant changes as Ottawa prepares to introduce its long-awaited electric vehicle regulations. A reliable source within the government says final regulations are aimed at ensuring that all new passenger vehicles sold in Canada by 2035 are zero-emission vehicles, a goal some critics question through analyses of the 2035 EV mandate in Canada.

These regulations, known as the Electric Vehicle Availability Standard, are designed to encourage automakers to produce more affordable zero-emission vehicles to meet the increasing demand. One of the key concerns for Canada is the potential dominance of zero-emission vehicle supply by other countries, particularly the United States, where several states have already implemented sales targets for such vehicles, and new EPA emission limits are expected to boost EV sales nationwide as well.

It's important to note that these regulations will apply primarily to automakers, rather than dealerships. Under this legislation, manufacturers will be required to accumulate sufficient credits to demonstrate their compliance with the established targets.

Automakers will be able to earn credits based on their sales of low- and no-emissions vehicles. The number of credits earned will depend on how close these vehicles come to meeting a zero-emissions standard. Additionally, manufacturers could earn early credits, amounting to a maximum of 10 percent of their total compliance requirements for 2026, by introducing more electric vehicles to the market ahead of schedule, even amid recent EV shortages and wait times reported across Canada.

Automakers can also increase their credit balance by contributing to the development of electric vehicle charging infrastructure, recognizing that fossil fuels still powered part of Canada's grid in 2019 and that charging availability remains a key enabler. In cases where companies exceed or fall short of their compliance targets, they will have the option to buy or sell credits to other manufacturers or use previously accumulated credits.

Further details regarding these regulations, which will be enacted under the Canadian Environmental Protection Act, are set to be unveiled soon and will intersect with provincial approaches such as Quebec's, where experts have questioned the push for EV dominance as policies evolve.

These regulations will become effective starting with the model year 2026, and sales targets will progressively rise each year until 2035. The federal government's ambitious EV goals are to have 20 percent of all vehicles sold in Canada be zero-emission vehicles by 2026, with that figure increasing to 60 percent by 2030 and reaching 100 percent by 2035.

According to a government analysis conducted in 2022, the anticipated total cost to consumers for zero-emission vehicles and chargers over 25 years is estimated at $24.5 billion, though cost remains a primary barrier for many Canadians considering an EV. However, it is projected that Canadians will save approximately $33.9 billion in net energy costs over the same period. Please note that these estimates are part of a draft and may be subject to change upon the government's release of its final analysis.

In terms of environmental impact, these regulations are expected to prevent the release of an estimated 430 million tonnes of greenhouse gas emissions, according to regulatory analysis. Environmental Defence, a Canadian environmental think-tank, has estimated that the policy would also result in a substantial reduction in gasoline consumption, equivalent to filling approximately 73,000 Olympic-sized swimming pools with gasoline.

Nate Wallace, the program manager for clean transportation at Environmental Defence, emphasized the significance of these regulations, stating, "2035 really needs to be the last year that we are selling gasoline cars in Canada brand new if we're going to have any chance of actually, by 2050, reaching net-zero carbon emissions."

 

Related News

Related News

The Spanish inventor creating electricity from plants

Bioo Soil-Generated Electricity turns biological batteries and photosynthesis into renewable energy, powering IoT sensors for smart farming and lighting, using microbe-powered soil electrochemistry to cut battery waste, reduce costs, and scale sustainable agritech infrastructure.

 

Key Points

Bioo Soil-Generated Electricity powers IoT sensors and lighting using soil microbes, delivering clean renewable energy.

✅ Microbe-driven soil batteries replace disposable chemical cells

✅ Powers IoT agritech sensors for moisture, pH, and temperature

✅ Cuts maintenance and costs while enabling sustainable farming

 

SCENES shines a spotlight on youth around the world that are breaking down barriers and creating change. The character-driven short films will inspire and amaze, as these young change-makers tell their remarkable stories.

Pablo Vidarte is a born inventor. At the age of eight, he was programming video games. By 16, he was challenging NASA and competing with the Spanish army to enhance the efficiency of external combustion engines. "I wanted to perfect a system that NASA did in 2002 oriented to powering cars. I was able to increase that efficiency by 60 per cent, which was pretty cool," Pablo explained. Aged 18, he created his first company specialising in artificial intelligence. A year later, he founded Bioo, a revolutionary startup that generates electricity from plants' photosynthesis.

"Imagine, being in the middle of a park or a street and being able to touch a plant and turn on the lights of that specific area," Pablo told Scenes. "Imagine storing the memories of humanity itself in nature. Imagine storing voice messages in a library that is an open field where you can go and touch the plants and communicate and interact with them. That's what we do at Bioo," he added.

The creation of Bioo, however, was not a walk in the park. Pablo relied on nanotechnology engineers and biologists volunteering their time to turn his idea of biological batteries, inspired by biological design, into a reality. It took a year for a prototype to be created and an investor to come on board. Today, Bioo is turning plants into biological switches, generating renewable energy from nature, and transforming the environment.

"We realised that we were basically killing the planet, and then we invented things like solar panels and solutions like peer-to-peer energy that we're able to prevent things from getting worse, but the next step is to be able to reverse the whole equation to revive that planet that we're starting to lose," the 25-year-old explained.

Batteries creating electricity from soil
Bioo has designed biological batteries that generate electricity from the energy released when organic soil decomposes. Like traditional batteries, they have an anode and a cathode, but instead of using materials like lithium to power them, organic matter is used as fuel. When microorganisms break down the organic soil, electrons are released. These electrons are then transported from the anode to the cathode, and a current of electricity is created. The batteries come in the shape of a rectangular box and can be dug into any fertile soil. They produce up to 200Wh a year per square metre, and just as some tidal projects use underwater kites to harvest energy, these systems tap natural processes.

Bioo's batteries are limited to low-power applications, but they have grown in popularity and are set to transform the agriculture industry.

Cost savings for farmers
Farmers can monitor their crops using a large network of sensors. The sensors allow them to analyse growing conditions, such as soil moisture, PH levels and air temperature. Almost 90 per cent of the power used to run the sensors come from chemical batteries, which deplete, underscoring the renewable energy storage problem that new solutions target.

"The huge issue is that chemical batteries need to be replaced every single year. But the problem is that you literally need an army of people replacing batteries and recalibrating them," Pablo explains. "What we do, it's literally a solution that is hidden, and that's nourishing from the soil itself and has the same cost as using chemical batteries. So the investment is basically returned in the first year," Pablo added.

Bioo has partnered with Bayer, a leading agricultural producer, to trial their soil-powered sensors on 50 million hectares of agricultural land. If successful, the corporation could save €1.5 billion each year. Making it a game-changer for farmers around the world.

A BioTech World
In addition to agriculture, Bioo's batteries are now being installed in shopping centres, offices and hospitals to generate clean power for lighting, while other companies are using ocean and river power to diversify clean generation portfolios.

Pablo's goal is to create a more environmentally efficient world, so shares his technology with international tech companies as green hydrogen projects scale globally. "I wanted to do something that could really mean a change for our world. Our ambition right now is to create a biotech world, a world that is totally interconnected with nature," he said.

As Bioo continues to develop its technology, Pablo believes that soil-generated electricity will become a leader in the global energy market, aligning with progress toward cheap, abundant electricity becoming a reality worldwide.

 

Related News

View more

Invenergy and GE Renewable Energy complete largest wind project constructed in North America

North Central Energy Facilities deliver 1,484 MW of renewable power in Oklahoma, uniting Invenergy, GE Renewable Energy, and AEP with the Traverse, Maverick, and Sundance wind farms, 531 turbines, grid-scale clean energy, and regional decarbonization.

 

Key Points

A 1,484 MW trio of Oklahoma wind farms by Invenergy with GE turbines, owned by AEP to supply regional customers.

✅ 1,484 MW capacity from 531 GE 2 MW platform turbines

✅ Largest single-phase wind farm: 998 MW Traverse

✅ Owned by AEP subsidiaries SWEPCO and PSO

 

Invenergy, the largest privately held global developer, owner and operator of sustainable energy solutions and GE Renewable Energy, today announced commercial operations for the 998-megawatt Traverse Wind Energy Center, the largest wind farm constructed in a single phase in North America, reflecting broader growth such as Enel's 450 MW project announced recently.

Located in north central Oklahoma, Traverse joins the operational 199-megawatt Sundance Wind Energy Center and the 287-megawatt Maverick Wind Energy Center, as the last of three projects developed by Invenergy for American Electric Power (AEP) to reach commercial operation, amid investor activity like WEC Energy's Illinois stake in wind assets this year. These projects make up the North Central Energy Facilities and have 531 GE turbines with a combined capacity of 1,484 megawatts, making them collectively among the largest wind energy facilities globally, even as new capacity comes online such as TransAlta's 119 MW addition in the US.

"This is a moment that Invenergy and our valued partners at AEP, GE Renewable Energy, and the gracious members of our home communities in Oklahoma have been looking forward to," said Jim Shield, Senior Executive Vice President and Development Business Leader at Invenergy, reflecting broader momentum as projects like Building Energy project begin operations nationwide. "With the completion of Traverse and with it the North Central Energy Facilities, we're proud to further our commitment to responsible, clean energy development and to advance our mission to build a sustainable world."

The North Central Energy Facilities represent a $2 billion capital investment in north central Oklahoma, mirroring Iowa wind investments that spur growth, directly investing in the local economy through new tax revenues and lease payments to participating landowners and will generate enough electricity to power 440,000 American homes.

"GE was honored to work with Invenergy on this milestone wind project, continuing our long-standing partnership," said Steve Swift, Global Commercial Leader for GE's Onshore Wind business, a view reinforced by projects like North Carolina's first wind farm coming online. "Wind power is a key element of driving decarbonization, and a dependable and affordable energy option here in the US and around the world. GE's 2 MW platform turbines are ideally suited to bring reliable and sustainable renewable energy to the region for many years to come."

AEP's subsidiaries Southwestern Electric Power Company (SWEPCO) and Public Service Company of Oklahoma (PSO) assumed ownership of the three wind farms upon start of commercial operations, alongside emerging interstate delivery efforts like Wyoming-to-California wind plans, to serve their customers in Arkansas, Louisiana and Oklahoma.

 

Related News

View more

New Kind of 'Solar' Cell Shows We Can Generate Electricity Even at Night

Thermoradiative Diode Power leverages infrared radiation and night-sky cooling to harvest waste heat. Using MCT (mercury cadmium telluride) detectors with photovoltaics, it extends renewable energy generation after sunset, exploiting radiative cooling and low-power density.

 

Key Points

Technology using MCT infrared diodes to turn radiative Earth-to-space heat loss into electricity, aiding solar at night.

✅ MCT diodes radiate to cold sky, generating tiny current at 20 C

✅ Complements photovoltaics by harvesting post-sunset infrared flux

✅ Potential up to one-tenth solar output with further efficiency gains

 

Conventional solar technology soaks up rays of incoming sunlight to bump out a voltage. Strange as it seems, some materials are capable of running in reverse, producing power as they radiate heat back into the cold night sky environment.

A team of engineers in Australia has now demonstrated the theory in action, using the kind of technology commonly found in night-vision goggles to generate power, while other research explores electricity from thin air concepts under ambient humidity.

So far, the prototype only generates a small amount of power, and is probably unlikely to become a competitive source of renewable power on its own – but coupled with existing photovoltaics technology and thermal energy into electricity approaches, it could harness the small amount of energy provided by solar cells cooling after a long, hot day's work.

"Photovoltaics, the direct conversion of sunlight into electricity, is an artificial process that humans have developed in order to convert the solar energy into power," says Phoebe Pearce, a physicist from the University of New South Wales.

"In that sense, the thermoradiative process is similar; we are diverting energy flowing in the infrared from a warm Earth into the cold Universe."

By setting atoms in any material jiggling with heat, you're forcing their electrons to generate low-energy ripples of electromagnetic radiation in the form of infrared light, a principle also explored with carbon nanotube energy harvesters in ambient conditions.

As lackluster as this electron-shimmy might be, it still has the potential to kick off a slow current of electricity. All that's needed is a one-way electron traffic signal called a diode.

Made of the right combination of elements, a diode can shuffle electrons down the street as it slowly loses its heat to a cooler environment.

In this case, the diode is made of mercury cadmium telluride (MCT). Already used in devices that detect infrared light, MCT's ability to absorb mid-and long-range infrared light and turn it into a current is well understood.

What hasn't been entirely clear is how this particular trick might be used efficiently as an actual power source.

Warmed to around 20 degrees Celsius (nearly 70 degrees Fahrenheit), one of the tested MCT photovoltaic detectors generated a power density of 2.26 milliwatts per square meter.

Granted, it's not exactly enough to boil a jug of water for your morning coffee. You'd probably need enough MCT panels to cover a few city blocks for that small task.

But that's not really the point, either, given it's still very early days in the field, and there's potential for the technology to develop significantly further in the future.

"Right now, the demonstration we have with the thermoradiative diode is relatively very low power. One of the challenges was actually detecting it," says the study's lead researcher, Ned Ekins-Daukes.

"But the theory says it is possible for this technology to ultimately produce about 1/10th of the power of a solar cell."

At those kinds of efficiencies, it might be worth the effort weaving MCT diodes into more typical photovoltaic networks alongside thin-film waste heat solutions so that they continue to top up batteries long after the Sun sets.

To be clear, the idea of using the planet's cooling as a source of low-energy radiation is one engineers have been entertaining for a while now. Different methods have seen different results, all with their own costs and benefits, with low-cost heat-to-electricity materials also advancing in parallel.

Yet by testing the limits of each and fine-tuning their abilities to soak up more of the infrared bandwidth, we can come up with a suite of technologies and thermoelectric materials capable of wringing every drop of power out of just about any kind of waste heat.

"Down the line, this technology could potentially harvest that energy and remove the need for batteries in certain devices – or help to recharge them," says Ekins-Daukes.

"That isn't something where conventional solar power would necessarily be a viable option."

 

Related News

View more

Harbour Air eyes 2023 for first electric passenger flights

Harbour Air Electric Seaplanes pioneer zero-emission aviation with battery-powered de Havilland Beaver flights, pursuing Transport Canada certification for safe, fossil fuel-free service across Vancouver Island routes connecting Vancouver, Victoria, Nanaimo, and beyond.

 

Key Points

Battery-powered, zero-emission floatplanes by Harbour Air pursuing Transport Canada certification to carry passengers.

✅ 29-minute test flight on battery power alone

✅ New lighter, longer-lasting battery supplier partnership

✅ Aiming to electrify entire 42-aircraft Beaver/Otter fleet

 

Float plane operator Harbour Air is getting closer to achieving its goal of flying to and from Vancouver Island without fossil fuels, following its first point-to-point electric flight milestone.

A recent flight of the company’s electric de Havilland Beaver test plane saw the aircraft remain aloft for 29 minutes on battery power alone, a sign of an emerging aviation revolution underway.

Harbour Air president Randy Wright says the company has joined with a new battery supplier to provide a lighter and longer-lasting power source, a high-flying example of research investment in the sector.

The company hopes to get Transport Canada certification to start carrying passengers on electric seaplanes by 2023, as projects like the electric-ready Kootenay Lake ferry come online.

"This is all new to Transport, so they've got to make sure it's safe just like our aircraft that are running today,” Wright said Wednesday. “They're working very hard at this to get this certified because it's a first in the world."

Parallel advances in marine electrification, such as electric ships on the B.C. coast, are informing clean-transport goals across the province.

Before the pandemic, Harbour Air flew approximately 30,000 commercial flights annually, along corridors also served by BC Ferries hybrid ships today, between Vancouver, Victoria, Nanaimo, Whistler, Seattle, Tofino, Salt Spring Island, the Sunshine Coast and Comox.

Wright says the company plans to eventually electrify its entire fleet of 42 de Havilland Beaver and Otter aircraft, reflecting a broader shift that includes CIB-backed electric ferries in B.C.

 

Related News

View more

These companies are using oceans and rivers to generate electricity

Tidal Energy harnesses ocean currents with tidal turbines to deliver predictable, renewable power. From Scotland's Orkney to New York's East River, clean baseload electricity complements wind and solar in decarbonizing grids.

 

Key Points

Tidal energy uses underwater turbines to capture predictable ocean currents, delivering reliable, low-carbon power.

✅ Predictable 2-way flows enable forecastable baseload

✅ Higher energy density than wind, slower flow speeds

✅ Costs remain high; scaling and deployment are challenging

 

As the world looks to curb climate change and reduce fossil fuel emissions, some companies are focusing on a relatively untapped but vast and abundant source of energy — tidal waves.

On opposite sides of the Atlantic, two firms are working to harness ocean currents in different ways to try to generate reliable clean energy.

Off the coast of Scotland, Orbital Marine Power operates what it says is the "most powerful tidal turbine in the world." The turbine is approximately the size of a passenger airplane and even looks similar, with its central platform floating on the water and two wings extending downwards on either side. At the ends of each wing, about 60 feet below the surface, are large rotors whose movement is dictated by the waves.

"The energy itself of tidal streams is familiar to people, it's kinetic energy, so it's not too dissimilar to something like wind," Andrew Scott, Orbital's CEO, told CNN Business. "The bits of technology that generate power look not too different to a wind turbine."

But there are some key differences to wind energy, primarily that waves are far more predictable than winds. The ebb and flow of tides rarely differs significantly and can be timed far more precisely.

Orbital Marine Power's floating turbines off the Scottish coast produce enough energy to power 2,000 homes a year, while another Scottish tidal project recently produced enough for nearly 4,000 homes.

Orbital Marine Power's floating turbines off the Scottish coast produce enough energy to power 2,000 homes a year.

"You can predict those motions years and decades [in] advance," Scott said. "But also from a direction perspective, they only really come from two directions and they're almost 180 degrees," he added, unlike wind turbines that must account for wind from several different directions at once.

Tidal waves are also capable of generating more energy than wind, Scott says.

"Seawater is 800 times the density of wind," he said. "So the flow speeds are far slower, but they generate far more energy."

The Orbital turbine, which is connected to the electricity grid in Scotland's Orkney, can produce up to two megawatts — enough to power 2,000 homes a year — according to the company.

Scott acknowledges that the technology isn't fully mainstream yet and some challenges remain including the high cost of the technology, but the reliability and potential of tidal energy could make it a useful tool in the fight against climate change, as projects like Sustainable Marine in Nova Scotia begin delivering power to the grid.

"It is becoming increasingly apparent that ... climate change is not going to be solved with one silver bullet," he said.


'Could be 24/7 power'
Around 3,000 miles away from Orbital's turbines, Verdant Power is using similar technology to generate power near Roosevelt Island in New York City's East River. Although not on the market yet, Verdant's turbines set up as part of a pilot project help supply electricity to New York's grid. But rather than float near the surface, they're mounted on a frame that's lowered to the bottom of the river.

"The best way to envision what Verdant Power's technology is, is to think of wind turbines underwater," the company's founder, Trey Taylor, told CNN Business. And river currents tend to provide the same advantages for energy generation as ocean currents, he explained (though the East River is also connected to the Atlantic).

"What's nice about our rivers and systems is that could be 24/7 power," he said, even as U.S. offshore wind aims to compete with gas. "Not to ding wind or solar, but the wind doesn't always blow and the sun doesn't always shine. But river currents, depending on the river, could be 24/7."

Verdant Power helps supply electricity to New York City
Over the course of eight months, Verdant has generated enough electricity to power roughly 60 homes — though Taylor says a full-fledged power plant built on its technology could generate enough for 6,000 homes. And by his estimate, the global capacity for tidal energy is enormous, with regions like the Bay of Fundy pursuing new attempts around Nova Scotia.


A costly technology
The biggest obstacle to reaching that goal at the moment is how expensive it is to set up and scale up tidal power systems.

"Generating electricity from ocean waves is not the challenge, the challenge is doing it in a cost-effective way that people are willing to pay for that competes with ... other sources of energy," said Jesse Roberts, Environmental Analysis Lead at the US government-affiliated Sandia National Laboratories. "The added cost of going out into the ocean and deploying in the ocean... that's very expensive to do," he added. According to 2019 figures from the US Department of Energy, the average commercial tidal energy project costs as much as $280 per megawatt hour. Wind energy, by comparison, currently costs roughly $20 per megawatt hour and is "one of the lowest-priced energy sources available today," with major additions like the UK's biggest offshore wind farm starting to supply the grid, according to the agency.

When operational, the Orbital turbine's wing blades drop below the surface of the water and generate power from ocean currents.

When operational, the Orbital turbine's wing blades drop below the surface of the water and generate power from ocean currents.

Roberts estimates that tidal energy is two or three decades behind wind energy in terms of adoption and scale.

The costs and challenges of operating underwater are something both Scott and Taylor acknowledge.
"Solar and wind are above ground. It's easy to work with stuff that you can see," Taylor said. "We're underwater, and it's probably easier to get a rocket to the moon than to get these to work underwater."
But the goal of tidal power is not so much to compete with those two energy sources as it is to grow the overall pie, alongside innovations such as gravity power that can help decarbonize grids.

"The low hanging fruit of solar and wind were quite obvious," Scott said. "But do they have to be the only solution? Is there room for other solutions? I think when the energy source is there, and you can develop technologies that can harness it, then absolutely."
 

 

Related News

View more

Ford Motor Co. details plans to spend $1.8B to produce EVs

Ford Oakville Electric Vehicle Complex will anchor EV production in Ontario, adding a battery plant, retooling lines, and assembly capacity for passenger models targeting the North American market and Canada's zero-emission mandates.

 

Key Points

A retooled Ontario hub for passenger EV production, featuring on-site battery assembly and modernized lines.

✅ Retooling begins Q2 2024; EV production slated for 2025.

✅ New 407,000 sq ft battery plant for pack assembly.

✅ First full-line passenger EV production in Canada.

 

Ford Motor Co. has revealed some details of its plan to spend $1.8 billion on its Oakville Assembly Complex to turn it into an electric vehicle production hub, a government-backed Oakville EV deal, in the latest commitment by an automaker transitioning towards an electric future.

The automaker said Tuesday that it will start retooling the Ontario complex in the second quarter of 2024, bolstering Ontario's EV jobs boom, and begin producing electric vehicles in 2025.

The transformation of the Oakville site, to be renamed the Oakville Electric Vehicle Complex, will include a new 407,000 square-foot battery plant, similar to Honda's Ontario battery investment efforts, where parts produced at Ford's U.S. operations will be assembled into battery packs.

General Motors is already producing electric delivery vans in Canada, and its Ontario EV plant plans continue to expand, but Ford says this is the first time a full-line automaker has announced plans to produce passenger EVs in Canada for the North American market.

GM said in February it plans to build motors for electric vehicles at its St. Catharines, Ont. propulsion plant, aligning with the Niagara Region battery investment now underway. The motors will go into its BrightDrop electric delivery vans, which it produces in part at its Ingersoll, Ont. plant, as well as its electric pickup trucks, producing enough at the plant for 400,000 vehicles a year.

Ford's announcement is the latest commitment by an automaker transitioning towards an electric future, part of Canada's EV assembly push that is accelerating.

"Canada and the Oakville complex will play a vital role in our Ford Plus transformation," said chief executive Jim Farley in a statement.

The company has committed to invest over US$50 billion in electric vehicles globally and has a target of producing two million EVs a year by the end of 2026 as part of its Ford Plus growth plan, reflecting an EV market inflection point worldwide.

Ford didn't specify in the release which models it planned to build at the Oakville complex, which currently produces the Ford Edge and Lincoln Nautilus.

The company's spending plans were first announced in 2020 as part of union negotiations, with workers seeking long-term production commitments and the Detroit Three automakers eventually agreeing to invest in Canadian operations in concert with spending agreements with the Ontario and federal governments.

The two governments agreed to provide $295 million each in funding to secure the Ford investment.

"The partnership between Ford and Canada helps to position us as a global leader in the EV supply chain for decades to come," said Industry Minister Francois-Philippe Champagne in Ford's news release.

Funding help comes as the federal government moves to require that at least 20 percent of new vehicles sold in Canada will be zero-emission by 2026, at least 60 per cent by 2030, and 100 per cent by 2035.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified