Ottawa to release promised EV sales regulations


ev charging

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Canada ZEV Availability Standard sets EV sales targets and zero-emission mandates, using compliance credits, early credits, and charging infrastructure investments under CEPA to accelerate affordable ZEV supply and meet 2035 net-zero goals.

 

Key Points

A federal ZEV policy setting 2026-2035 sales targets, using tradable credits and infrastructure incentives under CEPA.

✅ Applies to automakers; compliance via tradable ZEV credits under CEPA.

✅ Targets: 20% by 2026, 60% by 2030, 100% by 2035.

✅ Early credits up to 10% for 2026; charging investments earn credits.

 

Canadian Automobile manufacturers are on the brink of significant changes as Ottawa prepares to introduce its long-awaited electric vehicle regulations. A reliable source within the government says final regulations are aimed at ensuring that all new passenger vehicles sold in Canada by 2035 are zero-emission vehicles, a goal some critics question through analyses of the 2035 EV mandate in Canada.

These regulations, known as the Electric Vehicle Availability Standard, are designed to encourage automakers to produce more affordable zero-emission vehicles to meet the increasing demand. One of the key concerns for Canada is the potential dominance of zero-emission vehicle supply by other countries, particularly the United States, where several states have already implemented sales targets for such vehicles, and new EPA emission limits are expected to boost EV sales nationwide as well.

It's important to note that these regulations will apply primarily to automakers, rather than dealerships. Under this legislation, manufacturers will be required to accumulate sufficient credits to demonstrate their compliance with the established targets.

Automakers will be able to earn credits based on their sales of low- and no-emissions vehicles. The number of credits earned will depend on how close these vehicles come to meeting a zero-emissions standard. Additionally, manufacturers could earn early credits, amounting to a maximum of 10 percent of their total compliance requirements for 2026, by introducing more electric vehicles to the market ahead of schedule, even amid recent EV shortages and wait times reported across Canada.

Automakers can also increase their credit balance by contributing to the development of electric vehicle charging infrastructure, recognizing that fossil fuels still powered part of Canada's grid in 2019 and that charging availability remains a key enabler. In cases where companies exceed or fall short of their compliance targets, they will have the option to buy or sell credits to other manufacturers or use previously accumulated credits.

Further details regarding these regulations, which will be enacted under the Canadian Environmental Protection Act, are set to be unveiled soon and will intersect with provincial approaches such as Quebec's, where experts have questioned the push for EV dominance as policies evolve.

These regulations will become effective starting with the model year 2026, and sales targets will progressively rise each year until 2035. The federal government's ambitious EV goals are to have 20 percent of all vehicles sold in Canada be zero-emission vehicles by 2026, with that figure increasing to 60 percent by 2030 and reaching 100 percent by 2035.

According to a government analysis conducted in 2022, the anticipated total cost to consumers for zero-emission vehicles and chargers over 25 years is estimated at $24.5 billion, though cost remains a primary barrier for many Canadians considering an EV. However, it is projected that Canadians will save approximately $33.9 billion in net energy costs over the same period. Please note that these estimates are part of a draft and may be subject to change upon the government's release of its final analysis.

In terms of environmental impact, these regulations are expected to prevent the release of an estimated 430 million tonnes of greenhouse gas emissions, according to regulatory analysis. Environmental Defence, a Canadian environmental think-tank, has estimated that the policy would also result in a substantial reduction in gasoline consumption, equivalent to filling approximately 73,000 Olympic-sized swimming pools with gasoline.

Nate Wallace, the program manager for clean transportation at Environmental Defence, emphasized the significance of these regulations, stating, "2035 really needs to be the last year that we are selling gasoline cars in Canada brand new if we're going to have any chance of actually, by 2050, reaching net-zero carbon emissions."

 

Related News

Related News

Electric car charging networks jostle for pole position amid Biden's push to electrify

EV Charging Infrastructure Expansion accelerates as DC fast charging, Level 2 stations, and 150-350 kW networks grow nationwide, driven by Biden's plan, ChargePoint, EVgo, and Electrify America partnerships at retailers like Walmart and 7-Eleven.

 

Key Points

The nationwide build-out of public EV chargers, focusing on DC fast charging, kW capacity, and retailer partnerships.

✅ DC fast chargers at 150-350 kW cut charge times

✅ Retailers add ports: Walmart and 7-Eleven expand access

✅ Investments surge via ChargePoint, EVgo, Electrify America

 

Today’s battery-electric vehicles deliver longer range at a lower cost, are faster and more feature-laden than earlier models. But there’s one particular challenge that still must be addressed: charging infrastructure across the U.S.

That’s a concern that President Joe Biden wants to address, with $174 billion of his proposed infrastructure bill to be used to promote the EV boom while expanding access. About 10 percent of that would help fund a nationwide network of 500,000 chargers.

However, even before a formal bill is delivered to Congress, the pace at which public charging stations are switching on is rapidly accelerating.

From Walmart to 7-Eleven, electric car owners can expect to find more and more charging stations available, as automakers strike deals with regulators, charger companies and other businesses, even as control of charging remains contested.

7-Eleven convenience chain already operates 22 charging stations and plans to grow that to 500 by the end of 2022. Walmart now lets customers charge up at 365 stores around the country and plans to more than double that over the next several years.

According to the Department of Energy, there were 20,178 public chargers available at the end of 2017. That surged to 41,400 during the first quarter of this year, as electric utilities pursue aggressive charging plans.

The vast majority of those available three years ago were “Level 2,” 240-volt AC chargers that would take as much as 12 hours to fully recharge today’s long-range BEVs, like the Tesla Model 3 or Ford Mustang Mach-E. Increasingly, new chargers are operating at 400 volts and even 800 volts, delivering anywhere from 50 to 350 kilowatts. The new Kia EV6 will be able to reach 80 percent of its full capacity in just 18 minutes.

“Going forward, unless there is a limit to the power we can access at a particular location, all our new chargers will have 150 to 350 kilowatt capacity,” Pat Romano, CEO of ChargePoint, one of the world’s largest providers of chargers, told NBC News.

ChargePoint saw its first-quarter revenues jump by 24 percent to $40.5 million this year, a surge largely driven by rapid growth in the EV market. Sales of battery cars were up 45 percent during the first quarter, compared to a year earlier. To take advantage of that growth, ChargePoint added another 6,000 active ports — the electric equivalent of a gas pump — during the quarter. It now has 112,000 active charge ports.

In March, ChargePoint became the world’s first publicly traded global EV charging network. It completed a SPAC-style merger with Switchback Energy Acquisition Corporation. Rival EVgo plans to go through a similar deal this month with the "blank check" company Climate Change Crisis Real Impact Acquisition Corporation (CRIS), which has valued the charge provider at $2.6 billion.

“We look forward to highlighting EVgo’s leadership position and its significant opportunity for long-term growth in the climate critical electrification of transport sector,” CRIS CEO David Crane said Tuesday, ahead of an investor meeting with EVgo.

Electrify America, another emerging giant, has its own deep-pocket backer. The suburban Washington, D.C.-based firm was created using $2 billion of the settlement Volkswagen agreed to pay to settle its diesel emissions scandal. It is doling that out in regular tranches and just announced $200 million in additional investments — much of that to set up new chargers.

Industry investments in BEVs will top $250 million this decade, and could even reach $500 billion. That's encouraging automakers like Volkswagen, Ford and General Motors to tie up with individual charger companies, including plans to build 30,000 chargers nationwide.

In 2019, GM set up a partnership with Bechtel to build a charger network that will stretch across the U.S.

Others are establishing networks of their own, as Tesla has done with its Supercharger network.

Each charging network is leveraging relationships to speed up installations. Ford is offering buyers of its Mustang Mach-E 250 kilowatt-hours of free energy through Electrify America stations and is also partnering with Bank of America to “let you charge where you bank,” the automaker said.

Even if Biden gets his infrastructure plan through Congress quickly, other government agencies are already getting in to the charger business, even as state power grids brace for increased loads. That includes New York State which, in May, announced plans to put 150 new ports into place by year-end.

"Expanding high-speed charging in local markets across the state is a crucial step in encouraging more drivers to choose EVs,” said Gov. Andrew Cuomo, adding that, "public-private partnerships enable New York to build a network of fast, affordable and reliable electric vehicle public charging stations in a nimble and affordable way."

One of the big questions is how many charging stations actually are needed. There are 168,000 gas stations in the U.S., according to the Dept. of Energy. But the goal is not a one-for-one match, stressed ChargePoint CEO Romano, because “80 percent of EV owners today charge at home, and energy storage promises added flexibility, … and we expect that to continue to be the case."

But there are still many potential owners who won’t be able to set up their own chargers, and a network will still be needed for those driving long distances. Until that happens, many motorists will be reluctant to switch.

 

Related News

View more

IEA: Clean energy investment significantly outpaces fossil fuels

Clean Energy Investment is surging as renewables, electric vehicles, grids, storage, and nuclear outpace fossil fuels, driven by energy security, affordability, and policies like the Inflation Reduction Act, the IEA's World Energy Investment report shows.

 

Key Points

Investment in renewables, EVs, grids, and storage now surpasses fossil fuels amid cost and security pressures.

✅ $1.7T to clean tech vs just over $1T to fossil fuels this year.

✅ For every $1 in fossil, about $1.7 goes to clean energy.

✅ Solar investment poised to overtake oil production spending.

 

Investment in clean energy technologies is significantly outpacing spending on fossil fuels as affordability and security concerns, underpinned by analyses showing renewables cheapest new power in many markets, triggered by the global energy crisis strengthen the momentum behind more sustainable options, according to the International Energy Agency's (IEA) latest World Energy Investment report.

About $2.8 trillion (€2.6 trillion) is set to be invested globally in energy this year, of which over $1.7 trillion (€1.59 trillion) is expected to go to clean technologies - including renewables, electric vehicles, nuclear power, grids, storage, low-emissions fuels, efficiency improvements and heat pumps – according to report.

The remainder, slightly more than $1 trillion (€937.7 billion), is going to coal, gas and oil, despite growing calls for a fossil fuel lockdown to meet climate goals.

Annual clean energy investment is expected to rise by 24% between 2021 and 2023, driven by renewables and electric vehicles, with renewables breaking records worldwide over the same period.

But more than 90% of this increase comes from advanced economies and China, which the IEA said presents a serious risk of new dividing lines in global energy if clean energy transitions don’t pick up elsewhere.

“Clean energy is moving fast – faster than many people realise. This is clear in the investment trends, where clean technologies are pulling away from fossil fuels,” said IEA executive director Fatih Birol. “For every dollar invested in fossil fuels, about 1.7 dollars are now going into clean energy. Five years ago, this ratio was one-to-one. One shining example is investment in solar, which is set to overtake the amount of investment going into oil production for the first time.”

Led by solar, low-emissions electricity technologies are expected to account for almost 90% of investment in power generation, reflecting the global renewables share above 30% in electricity markets.

Consumers are also investing in more electrified end-uses. Global heat pump sales have seen double-digit annual growth since 2021. Electric vehicle sales are expected to leap by a third this year after already surging in 2022.

Clean energy investments have been boosted by a variety of factors in recent years, including periods of strong economic growth and volatile fossil fuel prices that raised concerns about energy security, and insights from the IRENA decarbonisation report that underscore broader benefits, especially following Russia’s invasion of Ukraine.

Furthermore, enhanced policy support through major actions like the US Inflation Reduction Act and initiatives in Europe's green surge, Japan, China and elsewhere have played a role.

In Ireland, more than a third of electricity is expected to be green within four years, illustrating national progress.

The biggest shortfalls in clean energy investment are in emerging and developing economies, the IEA added. It pointed to some bright spots, such as dynamic investments in solar in India and in renewables in Brazil and parts of the Middle East. However, investment in many countries is being held back by factors including higher interest rates, unclear policy frameworks and market designs, weak grid infrastructure, financially strained utilities and a high cost of capital.

"Much more needs to be done by the international community, especially to drive investment in lower-income economies, where the private sector has been reluctant to venture," according to the IEA.

 

Related News

View more

Translation: Wind energy at sea in Europe

Nature-friendly offshore wind energy supports climate neutrality by reducing greenhouse gases while safeguarding marine biodiversity through EU marine spatial planning, ecosystem-based approaches, cross-border coordination, and zero-use zones for resilient seas.

 

Key Points

An approach to offshore wind that cuts emissions while respecting ecological limits and protecting marine biodiversity.

✅ Aligns buildout with ecological limits and marine spatial plans

✅ Minimizes noise, collision, and habitat loss for sensitive species

✅ Coordinates EU-wide monitoring, data, and cross-border siting

 

Offshore wind power can help reduce greenhouse gas emissions, but it poses risks for the seas. Germany will hold the EU Council Presidency and the North Sea Energy Cooperation Presidency in 2020. What must be done to contain the climate and species crises, as it were?

Offshore wind power is an important regenerative energy source with a $1 trillion market outlook in the coming decades. However, the construction, operation and maintenance of the systems put marine mammals, birds and fish at considerable risk. Photo: Siemens AG

In order to achieve the German and EU climate and energy goals by 2030 and climate neutrality by 2050, we need a nature-friendly energy transition. At present, the European energy system is largely based on fossil fuels. This is changing, as renewables surge across Europe for end consumers and industry and the large-scale electrification of the energy consumption sectors. Offshore wind energy is an element for future power generation.

A nature-friendly energy transition is only possible if energy consumption is reduced and energy efficiency is maximized in all applications and sectors. Emissions reductions through offshore wind energy In 2019, Europe had an installed offshore wind energy capacity of around 22 gigawatts from 5,047 grid-connected wind turbines in twelve countries. In Germany, the nominal output of the offshore wind turbines feeding into the German power grid was around 7.5 gigawatts, with clean energy accounting for about 50% of electricity nationwide. The wind blows much stronger and more steadily at sea than on land.

The power capacity of the turbines has also almost doubled in the last five years, which has led to a higher energy yield. Offshore wind energy is a building block for replacing fossil fuels, and markets like the U.S. offshore sector are about to soar as well. Wind turbines at sea provide electricity almost every hour of the year and have operating hours that are as high as conventional power plants. They can contribute to significant reductions in CO2 emissions and to mitigate the climate crisis.

It must be ensured that offshore wind turbines and parks as well as the grid infrastructure make a positive contribution to climate protection through their expansion and that the overall condition of marine ecosystems improves. The expansion of offshore wind energy is necessary from the point of view of climate science and must take place within the framework of the ecological load limits and under nature conservation aspects.

Seas and marine ecosystems suffer from years of overfishing, pollution and industrial use. The conservation status of sea birds, marine mammals and fish stocks is poor. Ecosystem services and productivity of the oceans are decreasing as a result of massive species extinction and unfavorable habitats. Changes in sea temperature, oxygen levels and acidification of the oceans reduce their resilience to the climate crisis.

The latest reports from the European Environment Agency show in black and white that the good environmental status and other goals of the Marine Strategy Framework Directive are not being achieved. The primary goal must therefore be to meet the obligations of the Marine Strategy Framework Directive and the EU nature conservation directives.

With the expansion of offshore wind energy, the pressure on the already polluted marine ecosystems is increasing. Offshore wind turbines also harbor risks for marine ecosystems, especially if they are built in unfavorable locations. Studies show harmful effects on marine mammals, birds, fish and the ocean floor. In Europe, where wind power investments hit $29.4 billion last year, a regulatory framework must be created for the expansion of offshore wind energy within the ecological limits and taking into account zero-use zones. The European Union urgently needs to take coherent measures for healthy and resilient seas.

New strategy of the European Commission The EU Commission plans to present a strategy for the expansion of renewable energies at sea on November 18, 2020.

The strategy will address the opportunities and challenges associated with the expansion of renewable energies at sea, such as effects on energy networks and markets, management of the maritime space, the technological transfer of research projects, regional and international cooperation and industrial policy dimensions, as well as political headwinds in some countries that can affect project pipelines. NABU welcomes the strategy, but worries about insufficient consideration of marine protection, ecological load-bearing capacity and the marine spatial planning that regulates interests in the use of the sea. All EU member states have to submit their marine spatial planning plans by March 2021.

Conclusions of the European Council Shortly before the end of 2020, the European Council plans to adopt conclusions for cooperation among European member states on the subject of offshore wind energy and other renewable energy sources at sea. It is important that the planning and development of offshore wind energy is coordinated across national borders, including alignment with the UK's offshore wind growth, also to protect marine ecosystems.

However, the ecosystem approach must not be left out. It must be ensured that the Council conclusions focus on the implementation of EU marine and nature conservation directives for the expansion of offshore wind energy within the load limits. EU-wide monitoring systems can help protect marine species and ecosystems. Germany holds the EU Council Presidency and the North Sea Energy Cooperation Presidency for 2020 and can make a decisive contribution.

NABU demands on offshore wind energy in Europe Expansion targets for offshore wind energy across Europe should be based on the ecological load limits of the seas. Development of concrete concepts for the ecological upgrading of areas in marine spatial planning and operationalization of the ecosystem-based approach.

For the nature-friendly expansion of offshore – Wind energy systems must take into account avoidance distances from seabirds to turbines, habitat loss, collision risks and cumulative effects. Implementation / obligation to sensitivity analyzes – they allow targeted conclusions about the best possible locations for offshore wind energy without conflicts with marine protection.

Targeted keeping of areas free for species and their Habitats of anthropogenic use – this increases planning security and can lower investment thresholds for EU funding programs. Ensuring regional cooperation between the European member states for nature Protection and with the involvement of nature conservation authorities – after all, the marine ecosystem does not stop at borders.

Adjustment of priorities: If offshore wind energy is prioritized over other renewable energy sources across Europe, other industrial forms of use of the seas must be given a lower priority.

 

Related News

View more

UK sets new record for wind power generation

Britain Wind Generation Record underscores onshore and offshore wind momentum, as National Grid ESO reported 20.91 GW, boosting zero-carbon electricity, renewables share, and grid stability amid milder weather, falling gas prices, and net zero goals.

 

Key Points

The Britain wind generation record is 20.91 GW, set on 30 Dec, driven by onshore and offshore turbines.

✅ Set on 30 Dec 2022 with peak output of 20.91 GW.

✅ Zero-carbon sources hit 87.2% of grid supply.

✅ Driven by onshore and offshore wind; ESO reported stability.

 

Britain has set a new record for wind generation as power from onshore and offshore turbines helped boost clean energy supplies late last year.

National Grid’s electricity system operator (ESO), which handles Great Britain’s grid operations, said that a new record for wind generation was set on 30 December, when 20.91 gigawatts (GW) were produced by turbines.

This represented the third time Britain’s fleet of wind turbines set new generation records in 2022. In May, National Grid had to ask some turbines in the west of Scotland to shut down, as the network was unable to store such a large amount of electricity when a then record 19.9GW of power was produced – enough to boil 3.5m kettles.

The ESO said a new record was also set for the share of electricity on the grid coming from zero-carbon sources – renewables and nuclear – which supplied 87.2% of total power. These sources have accounted for about 55% to 59% of power over the past couple of years.

The surge in wind generation represents a remarkable reversal in fortunes as a cold snap that enveloped Britain and Europe quickly turned to milder weather.

Power prices had soared as the freezing weather forced Britons to increase their heating use, pushing up demand for energy despite high bills.

The cold weather came with a period of low wind, reducing the production of Britain’s windfarms to close to zero.

Emergency coal-fired power units at Drax in North Yorkshire were put on standby but ultimately not used, while gas-fired generation accounted for nearly 60% of the UK’s power output at times.

However, milder weather in the UK and Europe in recent days has led to a reduction in demand from consumers and a fall in wholesale gas prices. It has also reduced the risk of power cuts this winter, which National Grid had warned could be a possibility.

Wind generation is increasingly leading the power mix in Britain and is seen as a crucial part of Britain’s move towards net zero. The prime minister, Rishi Sunak, is expected to overturn a moratorium on new onshore wind projects with a consultation on the matter due to run until March.

 

Related News

View more

Sales Of Electric Cars Top 20% In California, Led By Tesla

California EV Sales 2023 show rising BEV market share, strong Tesla Model Y and Model 3 demand, hybrid growth, and ICE decline, per CNCDA Q3 data, underscoring California auto trends and ZEV policy momentum.

 

Key Points

BEVs hit 21.5% YTD in 2023 (22.3% in Q3); 35.4% with hybrids, as ICE share fell and Tesla led the California market.

✅ BEVs 21.5% YTD; 22.3% in Q3 per CNCDA data

✅ Tesla Model Y, Model 3 dominate; 62.9% BEV share

✅ ICE share down to 64.6%; hybrids lift to 35.4% YTD

 

The California New Car Dealers Association (CNCDA) reported on November 1, 2023, that sales of battery electric cars accounted for 21.5% of new car sales in the Golden State during the first 9 months of the year and 22.3% in the third quarter. At the end of Q3 in 2022, sales of electric cars stood at 16.4%. In 2021, that number was 9.1%. So, despite all the weeping and wailing and gnashing of teeth lately about green new car wreck warnings in some coverage, the news is pretty good, at least in California.

When hybrid and hydrogen fuel cell vehicles are included in the calculations, the figure jumps up 35.4% for all vehicles sold year to date in California. Not surprisingly this means EVs still trail gas cars in the state, with the CNCDA reporting ICE market share (including gasoline and diesel vehicles) was 64.6% so far this year, down from 71.6% in 2022 and 88.4% in 2018.

California is known as the vanguard for automotive trends in the country, with shifts in preferences and government policy eventually spreading to the rest of the country. While the state’s share of electric cars exceeds one fifth of all vehicles sold year to date, the figure for the US as a whole stands at 7.4%, with EV sales momentum into 2024 continuing nationwide. California has banned the sale of gas-powered vehicles starting in 2035, and its push toward electrification will require a much bigger grid to support charging, although the steady increase in the sale of electric cars suggests that ban may never need to be implemented as people embrace the EV revolution.

Not surprisingly, when digging deeper into the sales data, the Tesla Model Y and Model 3 dominate sales in the state’s electric car market this year, at 103,398 and 66,698 respectively. Tesla’s overall market share of battery electric car sales is at 62.9%. In fact, the Tesla Model Y is the top selling vehicle overall in California, followed by the Model 3, the Toyota RAV4 (40,622), and the Toyota Camry (39,293).

While that is good news for Tesla, its overall market share has slipped from 71.8% year to date last year at this time. Competing models from brands like Chevrolet, BMW, Mercedes, Hyundai, Volkswagen, and Kia have been slowly eating into Tesla’s market share. Overall, in California, Toyota is the sales king with 15% of sales, even as the state leads in EV charging deployment statewide, followed by Tesla at 13.5%. In the second quarter, Tesla narrowly edged out Toyota for top sales in the state before sales swung back in Toyota’s favor in the third quarter.

That being said, Tesla’s sales in the state climbed by 38.5% year to date, while Toyota’s actually shrank by 0.7%. Time will tell if Tesla’s popularity with the state’s car buyers improves and it can overtake Toyota for the 2023 crown, even as U.S. EV market share dipped in early 2024, or if other EV makers can offer better products at better prices and lure California customers who want to purchase electric cars away from the Tesla brand. Certainly, no company can expect to have two thirds of the market to itself forever.

 

Related News

View more

Harbour Air's electric aircraft a high-flying example of research investment

Harbour Air Electric Aircraft Project advances zero-emission aviation with CleanBC Go Electric ARC funding, converting seaplanes to battery-electric power, cutting emissions, enabling commercial passenger service, and creating skilled clean-tech jobs through R&D and electrification.

 

Key Points

Harbour Air's project electrifies seaplanes with CleanBC ARC support to enable zero-emission flights and cut emissions.

✅ $1.6M CleanBC ARC funds seaplane electrification retrofit

✅ Target: passenger-ready, zero-emission commercial service

✅ Creates 21 full-time clean-tech jobs in British Columbia

 

B.C.’s Harbour Air Seaplanes is building on its work in clean technology to decarbonize aviation, part of an aviation revolution underway, and create new jobs with support from the CleanBC Go Electric Advanced Research and Commercialization (ARC) program.

”Harbour Air is decarbonizing aviation and elevating the company to new altitudes as a clean-technology leader in B.C.'s transportation sector,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “With support from our CleanBC Go Electric ARC program, Harbour Air's project not only supports our emission-reduction goals, but also creates good-paying clean-tech jobs, exemplifying the opportunities in the low-carbon economy.”

Harbour Air is receiving almost $1.6 million from the CleanBC Go Electric ARC program for its aircraft electrification project. The funding supports Harbour Air’s conversion of an existing aircraft to be fully electric-powered and builds on its successful December 2019 flight of the world’s first all-electric commercial aircraft, and subsequent first point-to-point electric flight milestones.

That flight marked the start of the third era in aviation: the electric age. Harbour Air is working on a new design of the electric motor installation and battery systems to gain efficiencies that will allow carrying commercial passengers, as it eyes first electric passenger flights in 2023. Approximately 21 full-time jobs will be created and sustained by the project.

“CleanBC is helping accelerate world-leading clean technology and innovation at Harbour Air that supports good jobs for people in our communities,” said George Heyman, Minister of Environment and Climate Change Strategy. “Once proven, the technology supports a switch from fossil fuels to advanced electric technology, and will provide a clean transportation option, such as electric ferries, that reduces pollution and shows the way forward for others in the sector.”

Harbour Air is a leader in clean-technology adoption. The company has also purchased a fully electric, zero-emission passenger shuttle bus to pick up and drop off passengers between Harbour Air’s downtown Vancouver and Richmond locations, and the Vancouver International Airport, where new EV chargers support travellers.

“It is great to see the Province stepping up to support innovation,” said Greg McDougall, Harbour Air CEO and ePlane test pilot. “This type of funding confirms the importance of encouraging companies in all sectors to focus on what they can be doing to look at more sustainable practices. We will use these resources to continue to develop and lead the transportation industry around the world in all-electric aviation.”

In total, $8.18 million is being distributed to 18 projects from the second round of CleanBC Go Electric ARC program funding. Recipients include Damon Motors and IRDI System, both based on the Lower Mainland. The 15 other successful projects will be announced this year.

The CleanBC Go Electric ARC program supports the electric vehicle (EV) sector in B.C., which leads the country in going electric, by providing reliable and targeted support for research and development, commercialization and demonstration of B.C.-based EV technologies, services and products.

“This project is a great example of the type of leading-edge innovation and tech advancements happening in our province,” said Brenda Bailey, Parliamentary Secretary for Technology and Innovation. “By further supporting the development of the first all-electric commercial aircraft, we are solidifying our position as world leaders in innovation and using technology to change what is possible.”

The CleanBC Roadmap to 2030 is B.C.’s plan to expand and accelerate climate action, including a major hydrogen project, building on the province’s natural advantages – abundant, clean electricity, high-value natural resources and a highly skilled workforce. It sets a path for increased collaboration to build a British Columbia that works for everyone.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.