Ukraine sees new virtue in wind power: It's harder to destroy


wind power

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Ukraine Wind Energy Resilience shields the grid with wind power along the Black Sea, dispersing turbines to withstand missile attacks, accelerate clean energy transition, aid EU integration, and strengthen energy security and rapid recovery.

 

Key Points

A strategy in Ukraine using wind farms to harden the grid, ensure clean power, and speed recovery from missile strikes.

✅ Distributed turbines reduce single-point-of-failure risk

✅ Faster repair of substations and lines than power plants

✅ Supports EU-aligned clean energy and grid security goals

 

The giants catch the wind with their huge arms, helping to keep the lights on in Ukraine — newly built windmills, on plains along the Black Sea.

In 15 months of war, Russia has launched countless missiles and exploding drones at power plants, hydroelectric dams and substations, trying to black out as much of Ukraine as it can, as often as it can, even amid talk of limiting attacks on energy sites that has surfaced, in its campaign to pound the country into submission.

The new Tyligulska wind farm stands only a few dozen miles from Russian artillery, but Ukrainians say it has a crucial advantage over most of the country’s grid, helping stabilize the system even as electricity exports have occasionally resumed under fire.

A single, well-placed missile can damage a power plant severely enough to take it out of action, but Ukrainian officials say that doing the same to a set of windmills — each one tens of meters apart from any other — would require dozens of missiles. A wind farm can be temporarily disabled by striking a transformer substation or transmission lines, but these are much easier to repair than power plants.

“It is our response to Russians,” said Maksym Timchenko, CEO of DTEK Group, the company that built the turbines in the southern Mykolaiv region — the first phase of what is planned as Eastern Europe’s largest wind farm. “It is the most profitable and, as we know now, most secure form of energy.”

Ukraine has had laws in place since 2014 to promote a transition to renewable energy, both to lower dependence on Russian energy imports, with periods when electricity exports resumed to neighbors, and because it was profitable. But that transition still has a long way to go, and the war makes its prospects, like everything else about Ukraine’s future, murky.

In 2020, 12% of Ukraine’s electricity came from renewable sources — barely half the percentage for the European Union. Plans for the Tyligulska project call for 85 turbines producing up to 500 megawatts of electricity. That’s enough for 500,000 apartments — an impressive output for a wind farm, but less than 1% of the country’s prewar generating capacity.

After the Kremlin began its full-scale invasion of Ukraine in February 2022, the need for new power sources became acute, prompting deliveries such as a mobile gas turbine power plant to bolster capacity. Russia has bombarded Ukraine’s power plants and cut off delivery of the natural gas that fueled some of them.

Russian occupation forces have seized a large part of the country’s power supply, and Russia has built power lines to reactivate the Zaporizhzhia plant in occupied territory, ensuring that its output does not reach territory still held by Ukraine. They hold the single largest generator, the 5,700-megawatt Zaporizhzhia Nuclear Power Plant, which has been damaged repeatedly in fighting and has stopped transmitting energy to the grid, with UN inspectors warning of mines at the site during recent visits. They also control 90% of Ukraine’s renewable energy plants, which are concentrated in the southeast.

The postwar recovery plans Ukraine has presented to supporters including the European Union, which it hopes to join, feature a major new commitment to clean energy, even as a controversial proposal on Ukraine’s nuclear plants continues to stir debate.

 

Related News

Related News

Toronto to start trial run of 'driverless' electric vehicle shuttles

Toronto Olli 2.0 Self-Driving Shuttle connects West Rouge to Rouge Hill GO with autonomous micro-transit. Electric shuttle pilot by Local Motors and Pacific Western Transportation, funded by Transport Canada, features accessibility, TTC and Metrolinx support.

 

Key Points

An autonomous micro-transit pilot linking West Rouge to Rouge Hill GO, with accessibility and onboard staff.

✅ Last-mile link: West Rouge to Rouge Hill GO

✅ Accessible: ramp, wheelchair securement, A/V announcements

✅ Operated with attendants; funded by Transport Canada

 

The city of Toronto, which recently opened an EV education centre to support adoption, has approved the use of a small, self-driving electric shuttle vehicle that will connect its West Rouge neighbourhood to the Rouge Hill GO station, a short span of a few kilometres.

It’s called the Olli 2.0, and it’s a micro-shuttle with service provided by Local Motors, in partnership with Pacific Western Transportation, as the province makes it easier to build EV charging stations to support growing demand.

The vehicle is designed to hold only eight people, and has an accessibility ramp, a wheelchair securement system, audio and visual announcements, and other features for providing rider information, aligning with transit safety policies such as the TTC’s winter lithium-ion device restrictions across the system.

“We are continuing to move our city forward on many fronts including micro-transit as we manage the effects of COVID-19,” said Mayor John Tory. “This innovative project will provide valuable insight, while embracing innovation that could help us build a better, more sustainable and equitable transportation network.”

At the provincial level, the public EV charging network has faced delays, underscoring infrastructure challenges.


Although the vehicle is “self-driving,” it will still require two people onboard for every trip during the six- to 12-month trial; those people will be a certified operator from Pacific Western Transportation, and either a TTC ambassador from an agency introducing battery electric buses across its fleet, or a Metrolinx customer service ambassador.

Funding for the program comes from Transport Canada, as part of a ten-year pilot program to test automated vehicles on Ontario’s roads that was approved in 2016, and it complements lessons from the TTC’s largest battery-electric bus fleet as well as emerging vehicle-to-grid programs that engage EV owners.

 

Related News

View more

Olympus to Use 100% Renewable Electricity

Olympus Renewable Energy Initiative reduces CO2 emissions by sourcing 100% clean electricity at major Japan R&D and manufacturing sites, accelerating ESG goals toward net zero, decarbonization, and TCFD-aligned sustainability across global operations.

 

Key Points

Olympus's program to source renewable power, cut CO2, and reach net-zero site operations by 2030.

✅ 100% renewable electricity at major Japan R&D and manufacturing sites

✅ Expected 70% renewable share of electricity in FY2023

✅ Net-zero site operations targeted company-wide by 2030

 

Olympus Corporation announces that from April 2022, the company has begun to exclusively source 100% of the electricity used at its major R&D and manufacturing sites in Japan from renewable sources. As a result, CO2 emissions from Olympus Group facilities in Japan will be reduced by approximately 40,000 tons per year. The percentage of the Olympus Group's total electricity use in fiscal 2023 (ending March 2023) from renewable energy sources, including green hydrogen applications, is expected to substantially increase from approximately 14% in the previous fiscal year to approximately 70%.

Olympus has set a goal of achieving net zero CO2 emissions from its site operations by 2030, as part of its commitment to achieving environmentally responsible business growth and creating a sustainable society, aligning with Europe's push for electrification to address climate goals. This is a key goal in line with Olympus Corporation's ESG materiality targets focused on the theme of a "carbon neutral society and circular economy."

The company has already introduced a wide range of initiatives to reduce CO2 emissions. This includes the use of 100% renewable energy at some manufacturing sites in Europe, despite electricity price volatility in the region, and the United States, the installation of solar power generation facilities at some manufacturing sites in Japan, and support of the recommendations made by the Task Force on Climate-related Financial Disclosures (TCFD), alongside developments such as Honda's Ontario battery investment that signal rapid electrification.

To achieve its carbon neutral goal, Olympus will continue to optimize manufacturing processes and promote energy-saving measures, and notes that policy momentum from Canada's EV sales regulations and EPA emissions limits is accelerating complementary electrification trends, is committed to further accelerate the shift to renewable energy sources across the company, thereby contributing to the decarbonization of society on a global level, as reflected in regional labor markets like Ontario's EV jobs boom that accompany the transition.

 

Related News

View more

Solar Is Now 33% Cheaper Than Gas Power in US, Guggenheim Says

US Renewable Energy Cost Advantage signals cheaper utility-scale solar and onshore wind versus natural gas, with LCOE declines, tax credits, and climate policy cutting electricity costs for utilities and grids across the United States.

 

Key Points

Cheaper solar and wind than natural gas, driven by LCOE drops, tax credits, and policy, lowering US electricity costs.

✅ Utility-scale solar is about one-third cheaper than gas

✅ Onshore wind costs roughly 44 percent less than natural gas

✅ Policy and tax credits accelerate renewables and cut power prices

 

Natural gas’s dominance as power-plant fuel in the US is fading fast as the cost of electricity generated by US wind and solar projects tumbles and as wind and solar surpass coal in the generation mix, according to Guggenheim Securities.

Utility-scale solar is now about a third cheaper than gas-fired power, while onshore wind is about 44% less expensive, Guggenheim analysts led by Shahriar Pourreza said Monday in a note to clients, a dynamic consistent with falling wholesale power prices in several markets today. 

“Solar and wind now present a deflationary opportunity for electric supply costs,” the analysts said, which “supports the case for economic deployment of renewables across the US,” as the country moves toward 30% wind and solar and one-fourth of total generation in the near term.

Gas prices have surged amid a global supply crunch after Russia’s invasion of Ukraine, while tax-credit extensions and sweeping US climate legislation have brought down the cost of wind and solar, even as renewables surpassed coal in 2022 nationwide. Renewables-heavy utilities like NextEra Energy Inc. and Allete Inc. stand to benefit, and companies that can boost spending on wind and solar, as wind, solar and batteries dominate the 2023 pipeline, will also see faster growth, Guggenheim said.
 

 

Related News

View more

Will EV Supply Miss the Demand Mark in the Short and Medium Term?

EV Carpocalypse signals potential mismatch between electric vehicle production and demand, as charging infrastructure, utility coordination, and plug-in hybrid strategies lag forecasts, while state mandates and market-share plays drive cautious, data-informed scaling.

 

Key Points

EV Carpocalypse describes overbuilt EV supply versus demand amid charging rollout, mandates, and risk-managed scaling.

✅ Forecasts vs actual EV demand may diverge in near term

✅ Charging infrastructure and utilities lag vehicle output

✅ Mandates and PHEVs cushion adoption while data guides scaling

 

According to Forbes contributor David Kiley, and Wards Automotive columnist John McElroy, there may be an impending “carpocalypse” of electric vehicles on the way. Sounds very damning and it’s certainly not the upbeat tone I’ve taken on nearly every piece of EV demand content I’ve authored but the author, Kiley does bring up some interesting points worth considering. EV Adoption is happening, and it’s certainly doing so at ever faster rates as the market nears an EV inflection point today. The infrastructure (charging stations, utility cooperation) is being built out more slowly than vehicle manufacturers are producing cars but, as the GM president on EV hurdles has noted, the issue seems to be just that, maybe even the short and medium term plans for EV manufacturing are too aggressive.

#google#

With new EV and plug-in hybrid vehicle sales representing a mere .6% of new car cales in the US, a sign that EV sales remain behind gas cars even as new models proliferate, car makers are are going to be spending more than $100 billion to come out with more than a hundred models of battery electric vheicles which also includes PHEVs and the fear is these vehicles aren’t going to sell in the numbers that automakers and industry analysts may have expected. But forecasts are just that, forecasts, even as U.S. EV sales surge into 2024 suggest momentum. So there’s a valid argument to be made that they’ll either overshoot the true mark or come in way below the actual amount. With nine U.S. states mandating that 15% of new cars sold be EVs by 2025, you could say that at least automakers have supporters in state government helping to push the new technology into the hands of more drivers.

Still, it’s anyone’s guess as to what true adoption will be, and a brief Q1 2024 market share dip underscores lingering volatility. The use of big data and just in time manufacturing will ensure that manufacturers will miss the mark on EVs by less than they have in the past, and will able to cope with breaking even on these vehicles for the sake of gobbling up precious early stage market share. After all, many vendors have up to this point been very willing to break even or make a loss on their lease-only EVs or on EV or hybrid financing in order to gain that share and build out their brand awareness and technical prowess. With some stops and starts, demand will meet supply or supply may need to meet demand but either way, the EV adoption wave is coming to a driveway near you. 

 

Related News

View more

Germany gets solar power boost amid energy crisis

Germany Solar Boom is accelerating amid energy security pressures, with photovoltaic capacity surging as renewables displace gas. Policy incentives, grid upgrades, and storage, plus agrivoltaics and rooftop systems, position solar as cornerstone of decarbonization.

 

Key Points

Germany Solar Boom is rapid PV growth enhancing energy security, cutting emissions, and expanding domestic, low-carbon electricity.

✅ Targets 250 GW PV by 2032 to meet rising electricity demand.

✅ Rooftop, agrivoltaics, and BIPV reduce land use and grid stress.

✅ Diversifies supply chains beyond China; boosts storage and flexibility.

 


Europe is in crisis mode. Climate change, increasing demand for energy, the war in Ukraine and Russia's subsequent throttling of oil and gas deliveries have pushed the continent into a new era.

Germany has been trapped in a corner. The country relies heavily on cheap imported natural gas to run its industries. Some power plants also use gas to produce electricity. Finding enough substitutes quickly is nearly impossible.

Ideas to prevent a looming power crisis in Germany have ranged from reducing demand to keeping nuclear power plants online past their official closing date at the end of the year. Large wind turbines are doing their part, but many people don't want them in their backyard.

Green activists have long believed renewable energies are the answer to keeping the lights on. But building up these capabilities takes time. Now many experts once again see solar power as a shining light at the end of the tunnel, as global renewables set fresh records worldwide. Some say a solar boom is in the making.

Before the war in Ukraine put energy security at the forefront, the new German government had already pledged that renewable sources — wind and solar — would make up 80% of electricity production by 2030 instead of 42% today. By 2035, electricity generation should be carbon neutral.

It is an ambitious plan, but the country seems to be on its way. July was the third month in a row when solar power output soared to a record level, trade publication pv magazine reported, and clean energy's share reached about 50% in Germany according to recent assessments. For the month, photovoltaic (PV) systems generated 8.23 ​​terawatt hours of power, around a fifth of net electricity production. They were only behind lignite-fired power plants, which brought in nearly 22% of net production. 

Solar cells hanging on a modular solar house during the Solar Decathlon Europe in Wuppertal, Germany
Solar panels can come in many different shapes and sizes, and be used in many different ways

Last year, Germany added more than 5 gigawatts of solar power capacity, 10% more than in 2020. That took the total solar power capacity to 59 gigawatts, overtaking installed onshore wind power capacity in Germany, pv magazine said in January. Last year's solar production was about 9% of gross electricity consumption, according to Harry Wirth, who is head of photovoltaic modules and power plant research at the Fraunhofer Institute for Solar Energy Systems in Freiburg.

"For 2032, the government target is around 250 gigawatts of solar energy. According to their estimates, electricity consumption will increase to 715 terawatt hours by 2030," Wirth told DW. A different study by consultancy McKinsey says this is the lower limit. "So if we assume 730 terawatt hours for 2032, we would be at around 30% photovoltaic electricity in gross electricity consumption," he added. 

The energy expert also envisions great potential to install more solar panels without taking up valuable land. Besides adding them on top of parking garages or buildings, photovoltaic parts can be integrated into the exterior of buildings or even on the outside of e-vehicles. This would "not only produce electricity on surfaces already in use, but it would also create synergies in its own application," said Wirth.

Foreign investment in German solar
It is not just researchers that are taking note. Big businesses are stepping in too. In July, Portuguese clean energy firm EDP Renovaveis (EDPR) announced it had agreed to take a 70% interest in Germany's Kronos Solar Projects, a solar developer, for €250 million ($254 million).

The Munich-based company has a portfolio of 9.4 gigawatts of solar projects in different stages of development in Germany, France, the Netherlands and the UK, according to the press release announcing the purchase. Germany represents close to 50% of the acquired solar portfolio.

EDPR, which claims to be the fourth-largest renewable energy producer worldwide, said it generated 17.8 terawatt hours of clean energy in the first half of 2022.

Miguel Stilwell d'Andrade, chief executive of EDPR and its parent EDP, said they have great expectations from Germany in particular as "it is a key market in Europe with reinforced renewable growth targets." 

Fabian Karthaus is one of the first farmers in Germany to grow raspberries and blueberries under photovoltaic panels. His solar field near the city of Paderborn in northwestern Germany is 0.4 hectares (about 1 acre), but he would like to expand it to 10. He could then generate enough electricity for around 4,000 households — and provide more berries for supermarkets.

Germany was once a leader in solar power. For many years the country enjoyed a large share of the world's total solar capacities. A lot of that early success had to do with innovative government support. That support, however, proved too successful for some as a fall in wholesale electricity prices in Northern Europe hurt the profits of power companies, leading to calls for a change in the rules.

Updated regulations, and changes to the Renewable Energy Sources Act that reduced feed-in tariffs slowed things down. Feed-in tariffs usually grant long-term grid access and above-market price guarantees in an effort to support fledgling industries.

With less direct financial incentives, the industry was neglected leaving it open for competitors. The pace of solar infrastructure growth has also been hampered by issues of red tape, supply chain backlogs, a lack of skilled technicians and, despite solar-plus-storage now undercutting conventional power in Germany, a shortage of storage for electricity produced when it is not needed.

Now the war in Ukraine and Europe's dependency on Russia is refocusing efforts and "will strengthen the determination for an ambitious PV expansion," said Wirth. But the biggest challenge to the region's solar industry remains China.

Public buildings can play a big role, not just because of their size, but because the government is in charge of them

An overreliance on China
China took an early interest in photovoltaic technology and soon galloped past countries like the US, Japan and Germany thanks to huge state subsidies that manufacturers enjoyed. Today, it has become the place to go for all things solar, even as Europe turns to US solar equipment suppliers to diversify procurement.

A new report from the International Energy Agency puts it into numbers. "China has invested over $50 billion in new PV supply capacity — 10 times more than Europe — and created more than 300,000 manufacturing jobs across the solar PV value chain since 2011."

Today China has over 80% of all solar panel manufacturing capacity and is home to the top-10 suppliers of photovoltaic manufacturing equipment. Such a high concentration has led to some incredible realities, like the fact that "one out of every seven panels produced worldwide is manufactured by a single facility," according to the report.

These economies of scale have brought down costs, and the country can make solar components 35% cheaper than in Europe. This gives China outsized power and makes the industry susceptible to supply chain bottlenecks. To diversify the industry and get back some of this market, Europe needs to invest in innovation and make solar growth a top priority.

Germany has several high-tech photovoltaic manufacturers and research institutes. But it only has one manufacturer of solar cells specializing in high-performance heterojunction technology, says Wirth. Yet even though the European photovoltaic industry is fragmented and not what it once was, he is still counting on big demand for solar technology in the foreseeable future, with markets like Poland accelerating adoption across the region. 

 

Related News

View more

Michigan solar supporters make new push to eliminate rooftop solar caps

Michigan Distributed Energy Cap Repeal advances a bipartisan bill to boost rooftop solar and net metering, countering DTE and Consumers Energy claims, expanding energy freedom, jobs, and climate resilience across investor-owned utility territories.

 

Key Points

A Michigan bill to remove the 1% distributed energy cap, expanding rooftop solar, net metering, and clean energy jobs.

✅ Removes 1% distributed generation cap statewide

✅ Supports rooftop solar, net metering, and job growth

✅ Counters utility cost-shift claims with updated tariffs

 

A bipartisan group of Michigan lawmakers has introduced legislation to eliminate a 1% cap on distributed energy in the state’s investor-owned utility territories.

It’s the third time in recent years that such legislation has been introduced. Though utilities and their political allies have successfully blocked it to date, through tactics some critics say reflect utilities tilting the solar market by incumbents, advocates see an opportunity with a change in state Republican caucus leadership and Michigan’s burgeoning solar industry approaching the cap in some utility territories.

The bill also has support from a broad swath of legislators for reasons having to do with job creation, energy freedom and the environment, amid broader debates over states' push for renewables and affordability. Already the bill has received multiple hearings, even as DTE Energy and Consumers Energy, Michigan’s largest private utilities, are ramping up attacks in an effort to block the bill. 

“It’s going to be vehemently opposed by the utilities but there are only benefits to this if you are anybody but DTE,” said Democratic state Rep. Yousef Rabhi, who cosigned HB 4236 and has helped draft language in previous bills. “If we remove the cap, then we’re putting the public’s interest first, and we’re putting DTE’s interest first if we keep the cap in place.” 

The Michigan Legislature enacted the cap as part of a sweeping 2016 energy bill that clean energy advocates say included a number of provisions that have kneecapped the small-scale distributed energy industry, particularly home solar. The law caps distributed energy production at 1% of a utility’s average in-state peak load for the past five years. 

Republicans have controlled the Legislature and committees since the law was enacted, amid parallel moves such as the Wyoming clean energy bill in another state, and previous attempts to cut the language haven’t received House committee hearings. However, former Republican House leader Lee Chatfield has been replaced, and already the new bill, introduced by Republican state Rep. Gregory Markkanen, the energy committee’s vice chair, has had two hearings. 

Previous attempts to cut the language were also a part of a larger package of bills, and this time around the bill is a standalone. The legislation is also moving as Consumers and Upper Peninsula Power Co. have voluntarily doubled their cap to two percent, which advocates say highlights the need to repeal the cap . 

Rabhi said there’s bipartisan support because many conservatives and progressives view it as an infringement on customers’ energy freedom since the cap will eventually effectively prohibit new distributed energy generation. Legislators say the existing law kills jobs because it severely limits the clean energy industry’s growth, and Rabhi said he’s also strongly motivated by increasing renewable energy production to address climate change. 

In February, Michigan Public Service Commission Chairman Dan Scripps testified to the House committee, with observers also pointing to FERC action on aggregated DERs as relevant context, that the commission is “supportive in taking steps to ensure solar developers in Michigan are able to continue operating and thus support in concept the idea of lifting or eliminating the cap” in order to protect the home solar industry. 

The state’s solar industry has long criticized the cap, and removing it is a “no brainer,” said Dave Strenski, executive director of Solar Ypsi, which promotes rooftop solar in Ypsilanti. 

“If they have a cap and we reach that cap, then rooftop solar is shut down in Michigan,” he said. “The utilities don’t mind solar as long as they own it, and that’s what it boils down to.”  

The state’s utilities see the situation differently. Spokespeople for DTE and Consumers told the Energy News Network that lifting the cap would shift the cost burden of maintaining their territory-wide infrastructure from all customers to low income customers who can’t afford to install solar panels, often invoking reliability examples such as California's reliance on fossil generation to justify caution.

The bill “doesn’t address the subsidy certain customers are paid at the expense of those who cannot afford to put solar panels on their homes,” said Katie Carey, Consumers Energy’s spokesperson. 

However, clean energy advocates argue that studies have found that to be untrue. And even if it were true, Rabhi said, the utilities told lawmakers in 2016 that a new inflow/outflow tariff that the companies successfully pushed for to replace net metering dramatically reduced compensation for home solar users and would address that inequality. 

“DTE’s and Consumers’ own argument is that by making that change, distributed generation is no longer a ‘burden’ on low income customers, so now we have inflow/outflow and the problem should be solved,” Rabhi said. 

He added that claims that DTE and Consumers are looking out for low-income customers are disingenuous because they have repeatedly fought larger allowances for programs that help those customers, and refuse to “dip into their massive corporate profits and make sure poor people don’t have to pay as much for electricity.”

“I don’t want to hear a sob story from DTE about how putting solar panels on the house is going to hurt poor people,” he said. “That is entirely the definition of hypocrisy — that’s the utilities using poor people as a pawn and that’s why people are sick of these corporations.” 

The companies have already begun their public relations attack designed to help thwart the bill. DTE and Consumers spread money generously among Republicans and Democrats in the Legislature each cycle, and the two companies’ dark money nonprofits launched a round of ads targeting Democratic lawmakers, reflecting the broader solar wars playing out nationally. Several sit on the House Energy Committee, which must approve the bill before it can go in front of the full Legislature. 

The DTE-backed Alliance For Michigan Power and Consumers Energy-funded Citizens Energizing Michigan’s Economy have purchased dozens of Facebook ads alluding to action by the legislators, though there hasn’t been a vote. 

Facebook ads aren’t uncommon as they get “bang for their buck,” said Matt Kasper, research director with utility industry watchdog Energy And Policy Institute. Already hundreds of thousands of people have potentially viewed the ads and the groups have only spent thousands of dollars. The ads are likely designed to get Facebook users to interact with the legislators on the issue, Kasper said, even if there’s little information in the ad, and the info in the ad that does exist is highly misleading.

DTE and Consumers spokespersons declined to comment on the spending and directed questions to the dark money nonprofits. No one there could be reached for comment.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified