Ukraine sees new virtue in wind power: It's harder to destroy


wind power

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Ukraine Wind Energy Resilience shields the grid with wind power along the Black Sea, dispersing turbines to withstand missile attacks, accelerate clean energy transition, aid EU integration, and strengthen energy security and rapid recovery.

 

Key Points

A strategy in Ukraine using wind farms to harden the grid, ensure clean power, and speed recovery from missile strikes.

✅ Distributed turbines reduce single-point-of-failure risk

✅ Faster repair of substations and lines than power plants

✅ Supports EU-aligned clean energy and grid security goals

 

The giants catch the wind with their huge arms, helping to keep the lights on in Ukraine — newly built windmills, on plains along the Black Sea.

In 15 months of war, Russia has launched countless missiles and exploding drones at power plants, hydroelectric dams and substations, trying to black out as much of Ukraine as it can, as often as it can, even amid talk of limiting attacks on energy sites that has surfaced, in its campaign to pound the country into submission.

The new Tyligulska wind farm stands only a few dozen miles from Russian artillery, but Ukrainians say it has a crucial advantage over most of the country’s grid, helping stabilize the system even as electricity exports have occasionally resumed under fire.

A single, well-placed missile can damage a power plant severely enough to take it out of action, but Ukrainian officials say that doing the same to a set of windmills — each one tens of meters apart from any other — would require dozens of missiles. A wind farm can be temporarily disabled by striking a transformer substation or transmission lines, but these are much easier to repair than power plants.

“It is our response to Russians,” said Maksym Timchenko, CEO of DTEK Group, the company that built the turbines in the southern Mykolaiv region — the first phase of what is planned as Eastern Europe’s largest wind farm. “It is the most profitable and, as we know now, most secure form of energy.”

Ukraine has had laws in place since 2014 to promote a transition to renewable energy, both to lower dependence on Russian energy imports, with periods when electricity exports resumed to neighbors, and because it was profitable. But that transition still has a long way to go, and the war makes its prospects, like everything else about Ukraine’s future, murky.

In 2020, 12% of Ukraine’s electricity came from renewable sources — barely half the percentage for the European Union. Plans for the Tyligulska project call for 85 turbines producing up to 500 megawatts of electricity. That’s enough for 500,000 apartments — an impressive output for a wind farm, but less than 1% of the country’s prewar generating capacity.

After the Kremlin began its full-scale invasion of Ukraine in February 2022, the need for new power sources became acute, prompting deliveries such as a mobile gas turbine power plant to bolster capacity. Russia has bombarded Ukraine’s power plants and cut off delivery of the natural gas that fueled some of them.

Russian occupation forces have seized a large part of the country’s power supply, and Russia has built power lines to reactivate the Zaporizhzhia plant in occupied territory, ensuring that its output does not reach territory still held by Ukraine. They hold the single largest generator, the 5,700-megawatt Zaporizhzhia Nuclear Power Plant, which has been damaged repeatedly in fighting and has stopped transmitting energy to the grid, with UN inspectors warning of mines at the site during recent visits. They also control 90% of Ukraine’s renewable energy plants, which are concentrated in the southeast.

The postwar recovery plans Ukraine has presented to supporters including the European Union, which it hopes to join, feature a major new commitment to clean energy, even as a controversial proposal on Ukraine’s nuclear plants continues to stir debate.

 

Related News

Related News

UK Renewable energy projects worth billions stuck on hold

UK Renewable Grid Connection Delays threaten the 2035 zero-carbon electricity target as National Grid queues stall wind and solar projects, investors, and infrastructure, slowing clean energy deployment, curtailing capacity build-out, and risking net-zero progress.

 

Key Points

Prolonged National Grid queues delaying wind and solar connections, jeopardizing the UK's 2035 clean power target.

✅ Up to 15-year waits for grid connections

✅ Over £200bn projects stuck in the queue

✅ Threatens zero-carbon electricity by 2035

 

The UK currently has a 2035 target for 100% of its electricity to be produced without carbon emissions, while Ireland's green electricity progress offers a nearby benchmark within the next four years.

But meeting the target will require a big increase in the number of renewable projects across the country. It is estimated as much as five times more solar and four times as much wind is needed, with growth in UK offshore wind expected to play a key role here.

The government and private investors have spent £198bn on renewable power infrastructure since 2010, alongside European wind investments recorded last year. But now energy companies are warning that significant delays to connect their green energy projects to the system will threaten their ability to bring more green power online.

A new wind farm or solar site can only start supplying energy to people's homes once it has been plugged into the grid.

Energy companies like Octopus Energy, one of Europe's largest investors in renewable energy, say they have been told by National Grid that they need to wait up to 15 years for some connections, even as a new 10 GW contract aims to speed UK grid additions - far beyond the government's 2035 target.

'Longest grid queues in Europe'
There are currently more than £200bn worth of projects sitting in the connections queue, the BBC has calculated.

Around 40% of them face a connection wait of at least a year, according to National Grid's own figures. That represents delayed investments worth tens of billions of pounds, reflecting stalled grid spending that slows renewable rollouts.

"We currently have one of the longest grid queues in Europe," according to Zoisa North-Bond, chief executive of Octopus Energy Generation.

The problem is so many new renewable projects are applying for connections, the grid cannot keep up with required network expansion such as new pylons in Scotland being discussed nationwide.

The system was built when just a few fossil fuel power plants were requesting a connection each year, but now there are 1,100 projects in the queue, a challenge mirrored by U.S. grid hurdles in moving toward 100% renewables today.

 

Related News

View more

Will EV Supply Miss the Demand Mark in the Short and Medium Term?

EV Carpocalypse signals potential mismatch between electric vehicle production and demand, as charging infrastructure, utility coordination, and plug-in hybrid strategies lag forecasts, while state mandates and market-share plays drive cautious, data-informed scaling.

 

Key Points

EV Carpocalypse describes overbuilt EV supply versus demand amid charging rollout, mandates, and risk-managed scaling.

✅ Forecasts vs actual EV demand may diverge in near term

✅ Charging infrastructure and utilities lag vehicle output

✅ Mandates and PHEVs cushion adoption while data guides scaling

 

According to Forbes contributor David Kiley, and Wards Automotive columnist John McElroy, there may be an impending “carpocalypse” of electric vehicles on the way. Sounds very damning and it’s certainly not the upbeat tone I’ve taken on nearly every piece of EV demand content I’ve authored but the author, Kiley does bring up some interesting points worth considering. EV Adoption is happening, and it’s certainly doing so at ever faster rates as the market nears an EV inflection point today. The infrastructure (charging stations, utility cooperation) is being built out more slowly than vehicle manufacturers are producing cars but, as the GM president on EV hurdles has noted, the issue seems to be just that, maybe even the short and medium term plans for EV manufacturing are too aggressive.

#google#

With new EV and plug-in hybrid vehicle sales representing a mere .6% of new car cales in the US, a sign that EV sales remain behind gas cars even as new models proliferate, car makers are are going to be spending more than $100 billion to come out with more than a hundred models of battery electric vheicles which also includes PHEVs and the fear is these vehicles aren’t going to sell in the numbers that automakers and industry analysts may have expected. But forecasts are just that, forecasts, even as U.S. EV sales surge into 2024 suggest momentum. So there’s a valid argument to be made that they’ll either overshoot the true mark or come in way below the actual amount. With nine U.S. states mandating that 15% of new cars sold be EVs by 2025, you could say that at least automakers have supporters in state government helping to push the new technology into the hands of more drivers.

Still, it’s anyone’s guess as to what true adoption will be, and a brief Q1 2024 market share dip underscores lingering volatility. The use of big data and just in time manufacturing will ensure that manufacturers will miss the mark on EVs by less than they have in the past, and will able to cope with breaking even on these vehicles for the sake of gobbling up precious early stage market share. After all, many vendors have up to this point been very willing to break even or make a loss on their lease-only EVs or on EV or hybrid financing in order to gain that share and build out their brand awareness and technical prowess. With some stops and starts, demand will meet supply or supply may need to meet demand but either way, the EV adoption wave is coming to a driveway near you. 

 

Related News

View more

Wind Turbine Operations and Maintenance Industry Detailed Analysis and Forecast by 2025

Wind Turbine Operations and Maintenance Market is expanding as offshore and onshore renewables scale, driven by aging turbines, investment, UAV inspections, and predictive O&M services, despite skills shortages and rising logistics costs.

 

Key Points

Sector delivering inspection, repair, and predictive services to keep wind assets reliable onshore and offshore.

✅ Aging turbines and investor funding drive service demand

✅ UAV inspections and predictive analytics cut downtime

✅ Offshore growth offsets skills and logistics constraints

 

Wind turbines are capable of producing vast amounts of electricity at competitive prices, provided they are efficiently maintained and operated. Being a cleaner, greener source of energy, wind energy is also more reliable than other sources of power generation, with growth despite COVID-19 recorded across markets. Therefore, the demand for wind energy is slated to soar over the next few years, fuelling the growth of the global market for wind turbine operations and maintenance. By application, offshore and onshore wind turbine operations and maintenance are the two major segments of the market.

 

Global Wind Turbine Operations and Maintenance Market: Key Trends

The rising number of aging wind turbines emerges as a considerable potential for the growth of the market. The increasing downpour of funds from financial institutions and public and private investors has also been playing a significant role in the expansion of the market, with interest also flowing toward wave and tidal energy technologies that inform O&M practices. On the other hand, insufficient number of skilled personnel, coupled with increasing costs of logistics, remains a key concern restricting the growth of the market. However, the growing demand for offshore wind turbines across the globe is likely to materialize into fresh opportunities.

 

Global Wind Turbine Operations and Maintenance Market: Market Potential

A number of market players have been offering diverse services with a view to make a mark in the global market for wind turbine operations and maintenance. For instance, Scotland-based SgurrEnergy announced the provision of unmanned aerial vehicles (UAVs), commonly known as drones, as a part of its inspection services. Detailed and accurate assessments of wind turbines can be obtained through these drones, which are fitted with cameras, with four times quicker inspections than traditional methods, claims the company. This new approach has not only reduced downtime, but also has prevented the risks faced by inspection personnel.

The increasing number of approvals and new projects is preparing the ground for a rising demand for wind turbine operations and maintenance. In March 2017, for example, the Scottish government approved the installation of eight 6-megawatt wind turbines off the coast of Aberdeen, towards the northeast. The state of Maryland in the U.S. will witness the installation of a new offshore wind plant, encouraging greater adoption of wind energy in the country. The U.K., a leader in UK offshore wind deployment, has also been keeping pace with the developments, with the installation of a 400-MW offshore wind farm, off the Sussex coast throughout 2017. The Rampion project will be developed by E.on, who has partnered with Canada-based Enbridge Inc. and the UK Green Investment Bank plc.

 

Global Wind Turbine Operations and Maintenance Market: Regional Outlook

Based on geography, the global market for wind turbine operations and maintenance has been segmented into Asia Pacific, Europe, North America, and Rest of the World (RoW). Countries such as India, China, Spain, France, Germany, Scotland, and Brazil are some of the prominent users of wind energy and are therefore likely to account for a considerable share in the market. In the U.S., favorable government policies are backing the growth of the market, though analyses note that a prolonged solar ITC extension could pressure wind competitiveness. For instance, in 2013, a legislation that permits energy companies to transfer the costs of offshore wind credits to ratepayers was approved. Asia Pacific is a market with vast potential, with India and China being major contributors aiding the expansion of the market.

 

Global Wind Turbine Operations and Maintenance Market: Competitive Analysis

Some of the major companies operating in the global market for wind turbine operations and maintenance are Gamesa Corporacion Tecnologica, Xinjiang Goldwind Science & Technologies, Vestas Wind Systems A/S, Upwind Solutions, Inc, GE Wind Turbine, Guodian United Power Technology Company Ltd., Nordex SE, Enercon GmbH, Siemens Wind Power GmbH, and Suzlon Group. A number of firms have been focusing on mergers and acquisitions to extend their presence across new regions.

 

Related News

View more

Tesla’s Solar Installations Hit New Low, but Musk Predicts Huge Future for Energy Business

Tesla Q2 2020 earnings highlight resilient electric vehicles as production and deliveries outpace legacy automakers, while Gigafactory Austin advances, solar installations slump, and energy storage, Megapack, and free cash flow expand despite COVID-19 disruptions.

 

Key Points

Tesla posted a fourth consecutive profit, strong cash, EV resilience, solar slump, and rising energy storage.

✅ Fourth straight profit and $418M free cash flow

✅ EV output and deliveries fell just 5% year over year

✅ Solar hit record low; storage rose 61% to 419 MWh

 

Tesla survived the throes of the coronavirus pandemic relatively unscathed, chalking up its fourth sequential quarterly profit for the first time on Wednesday.

On the energy front, however, things were much more complicated: Tesla reported its worst-ever quarter for solar installations but huge growth in its battery business, amid expectations for cheaper, more powerful batteries expected in coming years. CEO Elon Musk nevertheless predicted the energy business will one day rival its car division in scale.

But today, Tesla's bottom line is all about electric vehicles, and the temporary halt of activity at Tesla's Fremont factory due to local health orders didn’t put much of a dent in vehicle production and delivery. Both figures declined 5 percent compared to the same quarter in 2019. In contrast, Q2 vehicle sales at legacy carmakers Ford, GM and Fiat Chrysler declined by one-third or more year-over-year, even as the U.S. EV market share dipped in early 2024 for context.

The costs of factory closures and a $101 million CEO award milestone for Elon Musk didn’t stop Tesla from achieving $418 million in free cash flow, a major improvement over the prior quarter. Cash and cash equivalents grew by $535 million to $8.6 billion during the quarter.


Musk praised his employees for “exceptional execution.” 

“There were so many challenges, too numerous to name, but they got it done,” he said on an investor call Wednesday.

Musk also confirmed that Tesla will build a new Gigafactory in Austin, Texas, five minutes from the airport. The 2,000-acre campus will abut the Colorado River and is “basically going to be an ecological paradise,” he said. The new Texas factory will build the Cybertruck, Semi, Model 3 and Model Y for the Eastern half of North America. Fremont, California will produce the S and X, and make Model 3 and Model Y for the West, in a state where EVs exceed 20% of sales according to recent data.

 

Return of the Tesla solar slump

This was the first entire quarter affected by the coronavirus response, which threw the rooftop solar industry into turmoil by cutting off in-person sales. Other installers scrambled to shift to digital-first sales strategies, but Tesla had already done so months before lockdowns were imposed.

Q2, then, offers a test case on whether Tesla’s pivot to passive online sales made it better able to deal with stay-at-home orders than its peers. The other publicly traded solar installers have not yet reported their Q2 performance, but Tesla delivered its worst-ever quarterly solar figures: Installations totaled just 27 megawatts. That’s a 7 percent decline from Q2 2019, its previous worst quarter ever for solar.

Musk did not address that weak performance in his remarks to investors, opting instead to highlight the company’s late-June decision to offer the cheapest solar pricing in the country. “We’re the company to go to,” he said of rooftop solar. “It’s only going to get better later this year.”

But the sales slump indicates Tesla’s online sales model could not withstand a historically tough season for residential solar.

"Every single residential installer in the country is going to have a bad Q2 because of the initial impacts of COVID on the market," said Austin Perea, senior solar analyst at Wood Mackenzie. "It's hard to disaggregate the impacts of COVID from their own individual strategies."

Tesla's 23 percent decline in quarter-over-quarter solar installations was not as bad as the expected Q2 decline across the rooftop solar industry, Perea added.

On the vehicle side, Tesla’s sales declined less than did those of major automakers. It’s possible that the same pattern will hold for solar; a less severe drop than those seen by Sunrun or Vivint could be claimed as a victory of sorts. But this quarter made clear that Q2 2019 was not the bottom for Tesla’s solar operation, which once led the residential market as SolarCity but significantly diminished since Tesla acquired it in 2016.


Tesla currently stands in third place for residential solar installers. But No. 1 installer Sunrun said this month that it will acquire No. 2 installer Vivint Solar, making Tesla the second-largest installer by default. That major consolidation in the rooftop solar market went unremarked upon in Tesla's investor call.

Solar and energy storage revenue currently equate to just 7 percent of the company's automotive revenue. But Musk reiterated his prediction that this won’t always be the case. “Long term, Tesla Energy will be roughly the same size as Tesla Automotive,” he said on Wednesday's call.

The grid storage business offered more reason for optimism: Capacity deployed grew 61 percent from the first quarter, rising to 419 megawatt-hours. The prepackaged, large-format Megapack product turned its first profit that quarter.

 

"Difficult to predict" performance in the second half of 2020
Tesla withdrew its financial guidance last quarter in light of the upheaval across the global economy. It refrained from setting new guidance now.

“Although we have successfully ramped vehicle production back to prior levels, it remains difficult to predict whether there will be further operational interruptions or how global consumer sentiment will evolve, given risks to the EV boom noted by analysts, in the second half of 2020,” the earnings report notes.

The company asserted it will still deliver 500,000 vehicles this year regardless of externalities, a goal that aligns with broader EV sales momentum in 2024 trends. It already has sufficient production capacity installed to reach that, Tesla said. But with 179,387 cars delivered so far, Tesla faces an uphill climb to ship more cars in the second half.

Wall Street maintained its buoyant confidence in Tesla's share price, despite rising competition in China noted by rivals. It closed at $1,592 before the earnings announcement, rising to $1,661 in after-hours trading.

 

Related News

View more

California Takes the Lead in Electric Vehicle and Charging Station Adoption

California EV Adoption leads the U.S., with 37% of registered electric vehicles and 27% of charging locations, spanning Level 1, Level 2, and DC Fast stations, aligned with OCPI and boosted by CALeVIP funding.

 

Key Points

California EV adoption reflects the state's leading EV registrations and growth in private charging infrastructure.

✅ 37% of U.S. EVs, 27% of charging locations in 2022

✅ CALeVIP funding boosts public charging deployment

✅ OCPI-aligned data; EVs per charger rose to 75 in CA

 

California has consistently been at the forefront of electric vehicle (EV) adoption, with EV sales topping 20% in California underscoring this trend, and the proliferation of EV charging stations in the United States, maintaining this position since 2016. According to recent estimates from our State Energy Data System (SEDS), California accounts for 37% of registered light-duty EVs in the U.S. and 27% of EV charging locations as of the end of 2022.

The vehicle stock data encompass all registered on-road, light-duty vehicles and exclude any previous vehicle sales no longer in operation. The data on EV charging locations include both private and public access stations for Legacy, Level 1, Level 2, and DC Fast charging ports, excluding EV chargers in single-family residences. There is a data series break between 2020 and 2021, when the U.S. Department of Energy updated its data to align with the Open Charge Point Interface (OCPI) international standard, reflecting changes in the U.S. charging infrastructure landscape.

In 2022, the number of registered EVs in the United States, with U.S. EV sales soaring into 2024 nationwide, surged to six times its 2016 figure, growing from 511,600 to 3.1 million, while the number of U.S. charging locations nearly tripled, rising from 19,178 to 55,015. Over the same period, California saw its registered EVs more than quadruple, jumping from 247,400 to 1.1 million, and its charging locations tripled, increasing from 5,486 to 14,822.

California's share of U.S. EV registrations has slightly decreased in recent years as EV adoption has spread across the country, with Arizona EV ownership relatively high as well. In 2016, California accounted for approximately 48% of light-duty EVs in the United States, which was approximately 12 times more than the state with the second-highest number of EVs, Georgia. By 2022, California's share had decreased to around 37%, which was still approximately six times more than the state with the second-most EVs, Florida.

On the other hand, California's share of U.S. EV charging locations has risen slightly in recent years, as charging networks compete amid federal electrification efforts and partly due to the California Electric Vehicle Infrastructure Project (CALeVIP), which provides funding for the installation of publicly available EV charging stations. In 2016, approximately 25% of U.S. EV charging locations were in California, over four times as many as the state with the second-highest number, Texas. In 2022, California maintained its position with over four times as many EV charging locations as the state with the second-most, New York.

The growth in the number of registered EVs has outpaced the growth of EV charging locations in the United States, and in 2021 plug-in vehicles traveled 19 billion electric miles nationwide, underscoring utilization. In 2016, there were approximately 27 EVs per charging location on average in the country. Alaska had the highest ratio, with 67 EVs per charging location, followed by California with 52 vehicles per location.

In 2022, the average ratio was 55 EVs per charging location in the United States, raising questions about whether the grid can power an ongoing American EV boom ahead. New Jersey had the highest ratio, with 100 EVs per charging location, followed by California with 75 EVs per location.

 

Related News

View more

EV charging to solar panels: How connected tech is changing the homes we live in

Connected Home Energy Technologies integrate solar panels, smart meters, EV charging, battery storage, and IoT energy management to cut costs, optimize demand response, and monitor usage in real time for safer, lower-carbon homes.

 

Key Points

Devices and systems managing home energy: solar PV, smart meters, EV chargers, and storage to cut costs and emissions.

✅ Real-time visibility via apps, smart meters, and IoT sensors

✅ Integrates solar PV, batteries, and EV charging with the grid

✅ Enables demand response, lower bills, and lower carbon

 

Driven by advances in tech and the advent of high-speed internet connections, many of us now have easy access to a raft of information about the buildings we live in.

Thanks to the proliferation of hardware and software within the home, this trend shows no sign of letting up and comes in many different forms, from indoor air quality monitors to “smart” doorbells which provide us with visual, real-time notifications when someone is attempting to access our property.

Residential renewable electricity generation is also starting to gain traction, with a growing number of people installing solar panels in the hope of reducing bills and their environmental footprint.

In the U.S. alone, the residential solar market installed 738 megawatts of capacity in the third quarter of 2020, a 14% jump compared to the second quarter, according to a recent report from the Solar Energy Industries Association and Wood Mackenzie.

Earlier this month, California-headquartered SunPower — which specializes in the design, production and delivery of solar panels and systems — announced it was rolling out an app which will enable homeowners to assess and manage their energy generation, usage and battery storage settings with their mobile, as California looks to EVs for grid stability amid broader electrification.

The service will be available to customers using its SunPower Eqiunox system and represents yet another instance of how connected technologies can provide us with valuable information about how buildings operate.

Similar offerings in this increasingly crowded marketplace include so-called “smart” meters, which allow consumers to see how much energy they are using and money they are spending in real time.

Elsewhere products such as Hive, from Centrica, enable users to install a range of connected kit — from plugs and lighting to thermostats and indoor cameras — that can be controlled via an app on their cellphone and, in some cases, their voice. 

Connected car charging
Solar panels represent one way that sustainable tech can be integrated into homes. Other examples include the installation of charging points for electric vehicles, as EV growth challenges state grids in many markets.

With governments around the world looking to phase-out the sale of diesel and gasoline vehicles and encourage consumers to buy electric, and Model 3's utility impact underscoring likely shifts in demand, residential charging systems could become an integral part of the built environment in the years ahead.

Firms offering home-based, connected, charging include Pod Point and BP Pulse. Both of these services include apps which provide data such as how much energy has been used, the cost of charging and charge history.  

Another firm, Wallbox, recently announced it was launching its first electric vehicle charger for North American homes.

The company, which is based in Spain, said the system was compatible with all types of electric vehicles, would allow customers to schedule charges, and could be voice-controlled through Google Assistant and Amazon Alexa, while mobile energy storage promises added flexibility for strained grids.

Away from the private sector, governments are also making efforts to encourage the development of home charging infrastructure.

Over the weekend, U.K. authorities said the Electric Vehicle Homecharge Scheme — which gives drivers as much as £350 (around $487) toward a charging system — would be extended and expanded, targeting those who live in leasehold and rented properties, even as UK grid capacity for EVs remains under scrutiny.

Mike Hawes, chief executive of the Society of Motor Manufacturers and Traders, described the government’s announcement as “welcome and a step in the right direction.”

“As we race towards the phase out of sales of new petrol and diesel cars and vans by 2030, we need to accelerate the expansion of the electric vehicle charging network, and proper grid management can ensure EVs are accommodated at scale,” he added.

“An electric vehicle revolution will need the home and workplace installations this announcement will encourage, but also a massive increase in on-street public charging and rapid charge points on our strategic road network.”

Change afoot, but challenges ahead
As attempts to decarbonize buildings and society ramp up, the way our homes look and function could be on the cusp of quite a big shift.

“Grid-connected home generation technologies such as solar electric panels will be important in the shift to a 100% renewable electricity grid, but decarbonising the electricity supply is only one part of the transition,” Peter Tyldesley, chief executive of the Centre for Alternative Technology, told CNBC via email.

With reference to Britain, Tyldesley went on to explain how his organization envisaged “just under 10% of electricity in a future zero carbon society coming from solar PV, utilising 15-20% of … U.K. roof area.” This, he said, compared to over 75% of electricity coming from wind power. 

Heating, Tyldesley went on to state, represented “the bigger challenge.”

“To decarbonise the U.K.’s housing stock at the scale and speed needed to get to zero carbon, we’ll need to refurbish possibly a million houses every year for the next few decades to improve their insulation and airtightness and to install heat pumps or other non-fossil fuel heating,” he said.

“To do this, we urgently need a co-ordinated national programme with a commitment to multi-year government investment,” he added.

On the subject of buildings becoming increasingly connected, providing us with a huge amount of data about how they function, Tyldesley sought to highlight some of the opportunities this could create. 

“Studies of the roll out of smart metering technology have shown that consumers use less energy when they are able to monitor their consumption in real time, so this kind of technology can be a useful part of behaviour change programmes when combined with other forms of support for home efficiency improvements,” he said.

“The roll out of smart appliances can go one step further — responding to signals from the grid and, through vehicle-to-grid power, helping to shift consumption away from peak times towards periods when more renewable energy is available,” he added.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.