Ukraine sees new virtue in wind power: It's harder to destroy


wind power

Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Ukraine Wind Energy Resilience shields the grid with wind power along the Black Sea, dispersing turbines to withstand missile attacks, accelerate clean energy transition, aid EU integration, and strengthen energy security and rapid recovery.

 

Key Points

A strategy in Ukraine using wind farms to harden the grid, ensure clean power, and speed recovery from missile strikes.

✅ Distributed turbines reduce single-point-of-failure risk

✅ Faster repair of substations and lines than power plants

✅ Supports EU-aligned clean energy and grid security goals

 

The giants catch the wind with their huge arms, helping to keep the lights on in Ukraine — newly built windmills, on plains along the Black Sea.

In 15 months of war, Russia has launched countless missiles and exploding drones at power plants, hydroelectric dams and substations, trying to black out as much of Ukraine as it can, as often as it can, even amid talk of limiting attacks on energy sites that has surfaced, in its campaign to pound the country into submission.

The new Tyligulska wind farm stands only a few dozen miles from Russian artillery, but Ukrainians say it has a crucial advantage over most of the country’s grid, helping stabilize the system even as electricity exports have occasionally resumed under fire.

A single, well-placed missile can damage a power plant severely enough to take it out of action, but Ukrainian officials say that doing the same to a set of windmills — each one tens of meters apart from any other — would require dozens of missiles. A wind farm can be temporarily disabled by striking a transformer substation or transmission lines, but these are much easier to repair than power plants.

“It is our response to Russians,” said Maksym Timchenko, CEO of DTEK Group, the company that built the turbines in the southern Mykolaiv region — the first phase of what is planned as Eastern Europe’s largest wind farm. “It is the most profitable and, as we know now, most secure form of energy.”

Ukraine has had laws in place since 2014 to promote a transition to renewable energy, both to lower dependence on Russian energy imports, with periods when electricity exports resumed to neighbors, and because it was profitable. But that transition still has a long way to go, and the war makes its prospects, like everything else about Ukraine’s future, murky.

In 2020, 12% of Ukraine’s electricity came from renewable sources — barely half the percentage for the European Union. Plans for the Tyligulska project call for 85 turbines producing up to 500 megawatts of electricity. That’s enough for 500,000 apartments — an impressive output for a wind farm, but less than 1% of the country’s prewar generating capacity.

After the Kremlin began its full-scale invasion of Ukraine in February 2022, the need for new power sources became acute, prompting deliveries such as a mobile gas turbine power plant to bolster capacity. Russia has bombarded Ukraine’s power plants and cut off delivery of the natural gas that fueled some of them.

Russian occupation forces have seized a large part of the country’s power supply, and Russia has built power lines to reactivate the Zaporizhzhia plant in occupied territory, ensuring that its output does not reach territory still held by Ukraine. They hold the single largest generator, the 5,700-megawatt Zaporizhzhia Nuclear Power Plant, which has been damaged repeatedly in fighting and has stopped transmitting energy to the grid, with UN inspectors warning of mines at the site during recent visits. They also control 90% of Ukraine’s renewable energy plants, which are concentrated in the southeast.

The postwar recovery plans Ukraine has presented to supporters including the European Union, which it hopes to join, feature a major new commitment to clean energy, even as a controversial proposal on Ukraine’s nuclear plants continues to stir debate.

 

Related News

Related News

Spain Breaks Gas Link with Wind and Solar

Spain has broken its reliance on fossil gas as soaring wind and solar energy drive Europe’s lowest wholesale electricity prices, reducing emissions, stabilizing the grid, and advancing renewable power, energy independence, and clean transition goals across the EU.

 

How Has Spain Broken the Gas Link with Wind and Solar??

Spain has broken the link between gas and power prices by rapidly expanding wind and solar generation, which now supplies nearly half its electricity, cutting fossil fuel influence by 75% since 2019 and reducing power costs 32% below the EU average.

✅ Wind and solar cut fossil influence by 75% since 2019

✅ Power prices 32% below EU average in 2025

✅ Renewables meet nearly half of national electricity demand

 

Spain has emerged as one of Europe’s most affordable electricity markets, largely due to its rapid expansion of wind and solar power. By decoupling its wholesale electricity prices from volatile fossil gas and coal, Spain has achieved a 32 percent lower average wholesale price than the EU average in the first half of 2025. This remarkable shift marks a dramatic turnaround from 2019, when Spain had some of the highest power prices in Europe.

According to new data, the influence of fossil fuels on Spain’s electricity prices has fallen by 75 percent since 2019, mirroring how renewables have surpassed fossil fuels in Europe over the same period, dropping from 75 percent of hours tied to gas costs to just 19 percent in early 2025. “Spain has broken the ruinous link between power prices and volatile fossil fuels, something its European neighbours are desperate to do,” said Dr. Chris Rosslowe, Senior Energy Analyst at Ember.

The change is driven by a surge in renewable generation. Between 2019 and mid-2025, Spain added more than 40 gigawatts of new solar and wind capacity—second only to Germany, whose power market is twice the size. Wind and solar now meet nearly half (46 percent) of Spain’s electricity demand, compared with 27 percent six years ago. As a result, fossil generation has fallen to 20 percent of total demand, well below the levels seen in other major economies such as Germany (41 percent) and Italy (43 percent).

This renewable growth has also cut Spain’s dependence on imported fuels. In the past five years, new solar and wind plants have avoided 26 billion cubic metres of gas imports, saving €13.5 billion—five times the amount the country invested in transmission infrastructure over the same period. The Central Bank of Spain estimated that wholesale electricity prices would have been 40 percent higher in 2024 if renewables had not displaced fossil generation, and neighboring France has seen negative prices during periods of renewable surplus.

August 2025 marked a historic milestone: Spain recorded a full month without coal-fired generation for the first time. A decade earlier, coal accounted for a quarter of the nation’s electricity supply. Gas use has also declined steadily, from 26% of demand in 2019 to 19% this year.

However, the system still faces challenges. Following the April 28th Iberian blackout, Spain has relied more heavily on gas-fired plants to stabilize the grid. These services—such as voltage control and balancing—have proven to be expensive, with costs doubling since the blackout and accounting for 57 percent of the average electricity price in May 2025, up from 14 percent the previous year. Curtailment of renewables has also tripled, reaching 7.2 percent of generation between May and July.

Despite being Europe’s fourth-largest electricity market, Spain ranks only 13th in battery storage capacity, underscoring the need for further investment in clean flexibility solutions, such as grid-scale batteries to provide flexibility and stronger interconnections. Post-blackout reforms aim to address this weakness and ensure the gains from renewable integration are not lost.

“Spain risks sliding back into costly gas reliance amid post-blackout fears,” warned Rosslowe. “Boosting grids and batteries will help Spain break free from fossil dependency for good.”

With record-low electricity prices and one of the fastest decoupling rates in Europe, Spain’s experience demonstrates how large-scale wind and solar adoption can reshape energy economics—and offers a roadmap for other nations seeking to escape the volatility of fossil fuels.

View more

US Moving Towards 30% Electricity From Wind & Solar

US Wind and Solar Outlook 2026 projects cheap renewables displacing coal and gas, with utility-scale additions, rooftop solar growth, improved grid reliability, and EV V2G integration accelerating decarbonization across the electricity market.

 

Key Points

An analysis forecasting wind and solar growth, displacing coal and gas as utility-scale and rooftop solar expand.

✅ Utility-scale solar installs avg 21 GW/yr through 2026.

✅ 37.7 GW wind in pipeline; 127.8 GW already online.

✅ Small-scale solar could near 100 TWh in 2026.

 

A recent report from the Institute for Energy Economics and Financial Analysis (IEEFA) predicts that cheap renewables in the form of wind and solar will push coal and gas out of the energy market space. Already at 9% of US generation, the report predicts that wind and solar will supply almost 30% of US electricity demand by 2026, consistent with renewables nearing one-fourth of U.S. generation projections for the near term.

“The Solar Energy Industries Association now expects utility-scale installations to average more than 21,000MW a year through 2026, following a year when U.S. solar generation rose 25% and with a peak of 25,000MW in 2023,” IEEFA writes. “Continued growth is also expected in U.S. wind generation, mirroring global trends where China's solar PV expansion outpaced all other fuels in 2016, with 37.7GW of new capacity already under construction or in advanced development, which would be added to 127.8GW in existing installed capacity.”

Meanwhile, with wind and solar growth booming, fossil fuels are declining, as renewables surpassed coal in 2022 nationwide. “Coal and natural gas are now locked into an essentially zero-sum game where increases in one fuel’s generation comes at the expense of the other. Together, they are not gaining market share, rather they are trading it back and forth, and the rapid growth in renewable generation will cut even deeper into the market share of both.”

And what of rooftop solar? Some states in Australia now have periods where the entire state grid is powered just by solar on the roofs of private citizens. As this revolution progresses in the USA, especially if a tenfold national solar push moves forward, what impact will it make on fossil fuel generators — which are expensive to build, expensive to maintain, expensive to fuel, and rely on an expensive distribution network.

“EIA estimates that this ‘small-scale solar’ produced 41.7 million MWh of power in 2020, when solar accounted for about 3% of U.S. electricity, a 19 percent increase from 2019. This growth will likely continue in the years ahead as costs continue to fall and concerns about grid reliability rise. Assuming a conservative 15 percent annual increase in small-scale solar going forward would push the sector’s generation to almost 100 million MWh in 2026.”

The Joker in the story might be the impact from electric vehicle adoption. Sales are set to surge and there’s more and more interest in V2G technology, even as wind and solar could provide 50% by 2050 in broader forecasts.

 

Related News

View more

Subsea project to bring renewable power from Scotland to England awarded $1.8bn

Eastern Green Link 1 is a 190km HVDC subsea electricity superhighway linking Scotland to northern England, delivering renewable energy, boosting grid capacity, and enhancing energy security for National Grid and Scottish Power.

 

Key Points

A 190km HVDC subsea link sending Scottish renewables to northern England, boosting grid capacity and UK energy security.

✅ 190km HVDC subsea route from East Lothian to County Durham

✅ Cables by Prysmian; converter stations by GE Vernova, Mytilineos

✅ Powers the equivalent of 2 million UK households

 

One of Britain’s biggest power grid projects has awarded contracts worth £1.8bn for a 190km subsea electricity superhighway, akin to a hydropower line to New York in scale, to bring renewable power from Scotland to the north of England.

National Grid and Scottish Power, following a recent 2GW substation commissioning, plan to begin building the “transformative” £2.5bn high-voltage power line along the east coast of the country from East Lothian to County Durham from 2025.

The Eastern Green Link 1 (EGL1) project is one of Britain’s largest grid upgrade projects in generations and has been designed to carry enough clean electricity to power the equivalent of 2 million households.

The UK is under pressure to deliver a power grid overhaul, including moves to fast-track grid connections nationwide, as it prepares to double its demand for electricity by 2040 as part of a plan to cut the use of gas and other fossil fuels.

The International Energy Agency has forecast that 600,000km of electric lines will need to be either added or upgraded across the UK by the end of the next decade to meet its climate targets, amid a global race to secure supplies of high voltage cabling and other electrical infrastructure components and to explore superconducting cables to cut losses.

The EGL1 project has awarded Prysmian Group, an international cable maker, the contract to deliver nearly 400km of power cable. The contract to supply two HVDC technology converter stations, one at each end of the cable, has been awarded to GE Vernova and Mytilineos.

The upgrades are expected to cost tens of billions of pounds, according to National Grid, which faces plans for an independent system operator overseeing Great Britain’s electricity market. The FTSE 100 energy company has warned that five times as many pylons and underground lines need to be constructed by the end of the decade than in the past 30 years, and four times more undersea cables laid than there are at present.

Britain’s power grid upgrades are also expected to emerge as an important battleground in the general election. The next government will need to balance the strong local opposition to new grid infrastructure across rural areas of the UK against the climate and economic benefits of the work.

Research undertaken by National Grid has found there will be an estimated 400,000 jobs created by 2050 due to the work needed to rewire Britain’s grid, a trend mirrored by recent cross-border transmission approvals in North America, including about 150,000 jobs anticipated in Scotland and the north of England.

Peter Roper, the project director for EGL1, said the super-cable would be “a transformative project for the UK, enhancing security of supply and helping to connect and transport green power for all customers”.

He added: “These contract announcements are big wins for the supply chain and another important milestone as we build the new network infrastructure to help the UK meet its net zero and energy security ambitions.

 

Related News

View more

Wind Turbine Operations and Maintenance Industry Detailed Analysis and Forecast by 2025

Wind Turbine Operations and Maintenance Market is expanding as offshore and onshore renewables scale, driven by aging turbines, investment, UAV inspections, and predictive O&M services, despite skills shortages and rising logistics costs.

 

Key Points

Sector delivering inspection, repair, and predictive services to keep wind assets reliable onshore and offshore.

✅ Aging turbines and investor funding drive service demand

✅ UAV inspections and predictive analytics cut downtime

✅ Offshore growth offsets skills and logistics constraints

 

Wind turbines are capable of producing vast amounts of electricity at competitive prices, provided they are efficiently maintained and operated. Being a cleaner, greener source of energy, wind energy is also more reliable than other sources of power generation, with growth despite COVID-19 recorded across markets. Therefore, the demand for wind energy is slated to soar over the next few years, fuelling the growth of the global market for wind turbine operations and maintenance. By application, offshore and onshore wind turbine operations and maintenance are the two major segments of the market.

 

Global Wind Turbine Operations and Maintenance Market: Key Trends

The rising number of aging wind turbines emerges as a considerable potential for the growth of the market. The increasing downpour of funds from financial institutions and public and private investors has also been playing a significant role in the expansion of the market, with interest also flowing toward wave and tidal energy technologies that inform O&M practices. On the other hand, insufficient number of skilled personnel, coupled with increasing costs of logistics, remains a key concern restricting the growth of the market. However, the growing demand for offshore wind turbines across the globe is likely to materialize into fresh opportunities.

 

Global Wind Turbine Operations and Maintenance Market: Market Potential

A number of market players have been offering diverse services with a view to make a mark in the global market for wind turbine operations and maintenance. For instance, Scotland-based SgurrEnergy announced the provision of unmanned aerial vehicles (UAVs), commonly known as drones, as a part of its inspection services. Detailed and accurate assessments of wind turbines can be obtained through these drones, which are fitted with cameras, with four times quicker inspections than traditional methods, claims the company. This new approach has not only reduced downtime, but also has prevented the risks faced by inspection personnel.

The increasing number of approvals and new projects is preparing the ground for a rising demand for wind turbine operations and maintenance. In March 2017, for example, the Scottish government approved the installation of eight 6-megawatt wind turbines off the coast of Aberdeen, towards the northeast. The state of Maryland in the U.S. will witness the installation of a new offshore wind plant, encouraging greater adoption of wind energy in the country. The U.K., a leader in UK offshore wind deployment, has also been keeping pace with the developments, with the installation of a 400-MW offshore wind farm, off the Sussex coast throughout 2017. The Rampion project will be developed by E.on, who has partnered with Canada-based Enbridge Inc. and the UK Green Investment Bank plc.

 

Global Wind Turbine Operations and Maintenance Market: Regional Outlook

Based on geography, the global market for wind turbine operations and maintenance has been segmented into Asia Pacific, Europe, North America, and Rest of the World (RoW). Countries such as India, China, Spain, France, Germany, Scotland, and Brazil are some of the prominent users of wind energy and are therefore likely to account for a considerable share in the market. In the U.S., favorable government policies are backing the growth of the market, though analyses note that a prolonged solar ITC extension could pressure wind competitiveness. For instance, in 2013, a legislation that permits energy companies to transfer the costs of offshore wind credits to ratepayers was approved. Asia Pacific is a market with vast potential, with India and China being major contributors aiding the expansion of the market.

 

Global Wind Turbine Operations and Maintenance Market: Competitive Analysis

Some of the major companies operating in the global market for wind turbine operations and maintenance are Gamesa Corporacion Tecnologica, Xinjiang Goldwind Science & Technologies, Vestas Wind Systems A/S, Upwind Solutions, Inc, GE Wind Turbine, Guodian United Power Technology Company Ltd., Nordex SE, Enercon GmbH, Siemens Wind Power GmbH, and Suzlon Group. A number of firms have been focusing on mergers and acquisitions to extend their presence across new regions.

 

Related News

View more

Zero-emissions electricity by 2035 is possible

Canada Net-Zero Electricity 2035 aligns policy and investments with renewables, wind, solar, hydro, storage, and transmission to power electrification of EVs and heat pumps, guided by a stringent clean electricity standard and carbon pricing.

 

Key Points

A 2035 plan for a zero-emissions grid using renewables, storage and transmission to electrify transport and homes.

✅ Wind, solar, and hydro backed by battery storage and reservoirs

✅ Interprovincial transmission expands reliability and lowers costs

✅ Stringent clean electricity standard and full carbon pricing

 

By Tom Green
Senior Climate Policy Advisor
David Suzuki Foundation

Electric vehicles are making inroads in some areas of Canada. But as their numbers grow, will there be enough electrical power for them, and for all the buildings and the industries that are also switching to electricity?

Canada – along with the United States, the European Union and the United Kingdom – is committed to a “net-zero electricity grid by 2035 policy goal”. This target is consistent with the Paris Agreement’s ambition of staying below 1.5 C of global warming, compared with pre-industrial levels.

This target also gives countries their best chance of energy security, as laid out in landmark reports over the past year from the International Energy Agency and the Intergovernmental Panel on Climate Change. A new federal regulation in the form of a clean electricity standard is being developed, but will it be stringent enough to set us up for climate success and avoid dead ends?

Canada starts this work from a relatively low emissions-intensity grid, powered largely by hydroelectricity. However, some provinces such as Alberta, Saskatchewan, Nova Scotia and New Brunswick still have predominantly fossil fuel-powered electricity. Plus, there is a risk of more natural gas generation of electricity in the coming years in most provinces without new federal and provincial regulations.

This means the transition of Canada’s electricity system must solve two problems at once. It must first clean up the existing electricity system, but it must also meet future electricity needs from zero-emissions sources while overall electricity capacity doubles or even triples by 2050.

Canada has enormous potential for renewable generation, even though it remains a solar power laggard in deployment to date. Wind, solar and energy storage are proven, affordable technologies that can be produced here in Canada, while avoiding the volatility of global fossil fuel markets.

As wind and solar have become the cheapest forms of electricity generation in history, we’re already seeing foreign governments and utilities ramp up renewable projects at the pace and scale that would be needed here in Canada, highlighting a significant global electricity market opportunity for Canadian firms at home. In 2020, 280 gigawatts of new capacity was added globally – a 45 per cent increase over the previous year. In Canada, since 2010, annual growth in renewables has so far averaged less than three per cent.

So why aren’t we moving full steam – or electron – ahead? With countries around the world bringing in wind and solar for new generation, why is there so much delay and doubt in Canada, even as analyses explore why the U.S. grid isn’t 100% renewable and remaining barriers?

The modelling team drew on a dataset that accounts for how wind and solar potential varies across the country, through the weeks of the year and the hours of each day. The models provide solutions for the most cost-effective new generation, storage and transmission to add to the grid while ensuring electricity generation meets demand reliably every hour of the year.

The David Suzuki Foundation partnered with the University of Victoria to model the electricity grid of the future.

To better understand future electricity demand, a second modelling team was asked to explore a future when homes and businesses are aggressively electrified; fossil fuel furnaces and boilers are retired and replaced with electric heat pumps; and gasoline and diesel cars are replaced by electric vehicles and public transit. It also dialed up investments in energy efficiency to further reduce the need for energy. These hourly electricity-demand projections were fed back to the models developed at the University of Victoria.

The results? It is possible to meet Canada’s needs for clean electricity reliably and affordably through a focus on expanding wind and solar generation capacity, complemented with new transmission connections between provinces, and other grid improvements.

How is it that such high levels of variable wind and solar can be added to the grid while keeping the lights on 24/7? The model took full advantage of the country’s existing hydroelectric reservoirs, using them as giant batteries, storing water behind the dams when wind and solar generation was high to be used later when renewable generation is low, or when demand is particularly high. The model also invested in more transmission to enable expanded electricity trade between provinces and energy storage in the form of batteries to smooth out the supply of electricity.

Not only is it possible, but the renewable pathway is the safe bet.

There’s no doubt it will take unprecedented effort and scale to transform Canada’s electricity systems. The high electrification pathway would require an 18-fold increase over today’s renewable electricity capacity, deploying an unprecedented amount of new wind, solar and energy storage projects every year from now to 2050. Although the scale seems daunting, countries such as Germany are demonstrating that this pace and scale is possible.

The modelling also showed that small modular nuclear reactors (SMRs) are neither necessary nor cost-effective, making them a poor candidate for continued government subsidies. Likewise, we presented pathways with no need for continued fossil fuel generation with carbon capture and storage (CCS) – an expensive technology with a global track record of burning through public funds while allowing fossil fuel use to expand and while capturing a smaller proportion of the smokestack carbon than promised. We believe that Canada should terminate the significant subsidies and supports it is giving to fossil fuel companies and redirect this support to renewable electricity, energy efficiency and energy affordability programming.

The transition to clean electricity would come with new employment for people living in Canada. Building tomorrow’s grid will support more than 75,000 full-time jobs each year in construction, operation and maintenance of wind, solar and transmission facilities alone.

Regardless of the path chosen, all energy projects in Canada take place on unceded Indigenous territories or treaty land. Decolonizing power structures with benefits to Indigenous communities is imperative. Upholding Indigenous rights and title, ensuring ownership opportunities and decision-making and direct support for Indigenous communities are all essential in how this transition takes place.

Wind, solar, storage and smart grid technologies are evolving rapidly, but our understanding of the possibilities they offer for a zero-emissions future, including debates over clean energy’s dirty secret in some supply chains, appears to be lagging behind reality. As the Institut de L’énergie Trottier observed, decarbonization costs have fallen faster than modellers anticipated.

The shape of tomorrow’s grid will largely depend on policy decisions made today. It’s now up to people living in Canada and their elected representatives to create the right conditions for a renewable revolution that could make the country electric, connected and clean in the years ahead.

To avoid a costly dash-to-gas that will strand assets and to secure early emissions reductions, the electricity sector needs to be fully exposed to the carbon price. The federal government’s announcement that it will move forward with a clean electricity standard – requiring net-zero emissions in the electricity sector by 2035 – will help if the standard is stringent.

Federal funding to encourage provinces to expand interprovincial transmission, including recent grid modernization investments now underway will also move us ahead. At the provincial level, electricity system governance – from utility commission mandates to electricity markets design – needs to be reformed quickly to encourage investments in renewable generation. As fossil fuels are swapped out across the economy, more and more of a household’s total energy bill will come from a local electric utility, so a national energy poverty strategy focused on low-income and equity-seeking households must be a priority.

The payoff from this policy package? Plentiful, reliable, affordable electricity that brings better outcomes for community health and resilience while helping to avoid the worst impacts of climate change.

 

Related News

View more

Netherlands' Renewables Drive Putting Pressure On Grid

The Netherlands grid crisis exposes how rapid renewable energy growth is straining transmission capacity. Solar, wind, and electric vehicle demand are overloading networks, forcing officials to urge reduced peak-time power use and accelerate national grid modernization plans.

 

Main Points

The Netherlands grid crisis refers to national electricity congestion caused by surging renewable energy generation and rising consumer demand.

✅ Grid congestion from rapid solar and wind expansion

✅ Strained transmission and distribution capacity

✅ National investment in smart grid upgrades

 

The Dutch government is urging households to reduce electricity consumption between 16:00 and 21:00 — a signal that the country’s once-stable power grid is under serious stress. The call comes amid an accelerating shift to wind and solar power that is overwhelming transmission infrastructure and creating “grid congestion” across regions, as seen in Nordic grid constraints this year.

In a government television campaign, a narrator warns: “When everyone uses electricity at the same time, our power grid can become overloaded. That could lead to failures — so please try to use less electricity between 4 pm and 9 pm.” The plea reflects a system where supply occasionally outpaces the grid’s ability to distribute it, with some regions abroad issuing summer blackout warnings already.

According to Dutch energy firm Eneco’s CEO, Kys-Jan Lamo, the root of the problem lies in the mismatch between modern renewable generation and a grid built for centralized fossil fuel plants. He notes that 70% of Eneco’s output already comes from solar and wind, and this “grid congestion is like traffic on the power lines.” Lamo explains:

“The grid congestion is caused by too much demand in some areas of the network, or by too much supply being pushed into the grid beyond what the network can carry.”

He adds that many of the transmission lines in residential areas are narrow — a legacy of when fewer and larger power plants fed electricity through major feeder lines, underscoring grid vulnerabilities seen elsewhere today. Under the new model, renewable generation occurs everywhere: “This means that electricity is now fed into the grid even in peripheral areas with relatively fine lines — and those lines cannot always cope.”

Experts warn that resolving these issues will demand years of planning and immense investment in smarter grid infrastructure over the coming years. Damien Ernst, an electrical engineering professor at Liège University and respected voice on European grids, states that the Netherlands is experiencing a “grid crisis” brought on by “insufficient investment in distribution and transmission networks.” He emphasizes that the speed of renewable deployment has outpaced the grid’s capacity to absorb it.

Eneco operates a “virtual power plant” control system — described by Lamo as “the brain we run” — that dynamically balances supply and demand. During periods of oversupply, the system can curtail wind turbines or shut down solar panels. Conversely, during peak demand, the system can throttle back electricity provision to participating customers in exchange for lower tariffs. However, these techniques only mitigate strain — they cannot replace the need for physical upgrades or bolster resilience to extreme weather outages alone.

The bottleneck has begun limiting new connections: “Consumers often want to install heat pumps or charge electric vehicles, but they increasingly find it difficult to get the necessary network capacity,” Lamo warns. Businesses too are struggling. “Companies often want to expand operations, but cannot get additional capacity from grid operators. Even new housing developments are affected, since there’s insufficient infrastructure to connect whole communities.”

Currently, thousands of businesses are queuing for network access. TenneT, the national grid operator, estimates that 8,000 firms await initial connection approval, and another 12,000 seek to increase their capacity allocations. Stakeholders warn that unresolved congestion risks choking economic growth.

According to Kys-Jan Lamo: “Looking back, almost all of this could have been prevented.” He acknowledges that post-2015 climate commitments placed heavy emphasis on adding generation and on grid modernization costs more broadly, but “we somewhat underestimated the impact on grid capacity.”

In response, the government has introduced a national “Grid Congestion Action Plan,” aiming to accelerate approvals for infrastructure expansions and to refine regulations to promote smarter grid use. At the same time, feed-in incentives for solar power are being scaled back in some regions, and certain areas may even impose charges to integrate new solar systems into the grid.

The scale of what’s needed is vast. TenneT has proposed adding roughly 100,000 km of new power lines by 2050 and investing in doubling or tripling existing capacity in many areas. However, permit processes can take eight years before construction begins, and many projects require an additional two years to complete. As Lamo points out, “the pace of energy transition far exceeds the grid’s existing capacity — and every new connection request simply extends waiting lists.”

Unless grid expansion keeps up, and as climate pressures intensify, the very clean energy future the Netherlands is striving for may remain constrained by the physics of distribution.

 

Related Articles

 

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.