Zero-emissions electricity by 2035 is possible


solar power panel

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Canada Net-Zero Electricity 2035 aligns policy and investments with renewables, wind, solar, hydro, storage, and transmission to power electrification of EVs and heat pumps, guided by a stringent clean electricity standard and carbon pricing.

 

Key Points

A 2035 plan for a zero-emissions grid using renewables, storage and transmission to electrify transport and homes.

✅ Wind, solar, and hydro backed by battery storage and reservoirs

✅ Interprovincial transmission expands reliability and lowers costs

✅ Stringent clean electricity standard and full carbon pricing

 

By Tom Green
Senior Climate Policy Advisor
David Suzuki Foundation

Electric vehicles are making inroads in some areas of Canada. But as their numbers grow, will there be enough electrical power for them, and for all the buildings and the industries that are also switching to electricity?

Canada – along with the United States, the European Union and the United Kingdom – is committed to a “net-zero electricity grid by 2035 policy goal”. This target is consistent with the Paris Agreement’s ambition of staying below 1.5 C of global warming, compared with pre-industrial levels.

This target also gives countries their best chance of energy security, as laid out in landmark reports over the past year from the International Energy Agency and the Intergovernmental Panel on Climate Change. A new federal regulation in the form of a clean electricity standard is being developed, but will it be stringent enough to set us up for climate success and avoid dead ends?

Canada starts this work from a relatively low emissions-intensity grid, powered largely by hydroelectricity. However, some provinces such as Alberta, Saskatchewan, Nova Scotia and New Brunswick still have predominantly fossil fuel-powered electricity. Plus, there is a risk of more natural gas generation of electricity in the coming years in most provinces without new federal and provincial regulations.

This means the transition of Canada’s electricity system must solve two problems at once. It must first clean up the existing electricity system, but it must also meet future electricity needs from zero-emissions sources while overall electricity capacity doubles or even triples by 2050.

Canada has enormous potential for renewable generation, even though it remains a solar power laggard in deployment to date. Wind, solar and energy storage are proven, affordable technologies that can be produced here in Canada, while avoiding the volatility of global fossil fuel markets.

As wind and solar have become the cheapest forms of electricity generation in history, we’re already seeing foreign governments and utilities ramp up renewable projects at the pace and scale that would be needed here in Canada, highlighting a significant global electricity market opportunity for Canadian firms at home. In 2020, 280 gigawatts of new capacity was added globally – a 45 per cent increase over the previous year. In Canada, since 2010, annual growth in renewables has so far averaged less than three per cent.

So why aren’t we moving full steam – or electron – ahead? With countries around the world bringing in wind and solar for new generation, why is there so much delay and doubt in Canada, even as analyses explore why the U.S. grid isn’t 100% renewable and remaining barriers?

The modelling team drew on a dataset that accounts for how wind and solar potential varies across the country, through the weeks of the year and the hours of each day. The models provide solutions for the most cost-effective new generation, storage and transmission to add to the grid while ensuring electricity generation meets demand reliably every hour of the year.

The David Suzuki Foundation partnered with the University of Victoria to model the electricity grid of the future.

To better understand future electricity demand, a second modelling team was asked to explore a future when homes and businesses are aggressively electrified; fossil fuel furnaces and boilers are retired and replaced with electric heat pumps; and gasoline and diesel cars are replaced by electric vehicles and public transit. It also dialed up investments in energy efficiency to further reduce the need for energy. These hourly electricity-demand projections were fed back to the models developed at the University of Victoria.

The results? It is possible to meet Canada’s needs for clean electricity reliably and affordably through a focus on expanding wind and solar generation capacity, complemented with new transmission connections between provinces, and other grid improvements.

How is it that such high levels of variable wind and solar can be added to the grid while keeping the lights on 24/7? The model took full advantage of the country’s existing hydroelectric reservoirs, using them as giant batteries, storing water behind the dams when wind and solar generation was high to be used later when renewable generation is low, or when demand is particularly high. The model also invested in more transmission to enable expanded electricity trade between provinces and energy storage in the form of batteries to smooth out the supply of electricity.

Not only is it possible, but the renewable pathway is the safe bet.

There’s no doubt it will take unprecedented effort and scale to transform Canada’s electricity systems. The high electrification pathway would require an 18-fold increase over today’s renewable electricity capacity, deploying an unprecedented amount of new wind, solar and energy storage projects every year from now to 2050. Although the scale seems daunting, countries such as Germany are demonstrating that this pace and scale is possible.

The modelling also showed that small modular nuclear reactors (SMRs) are neither necessary nor cost-effective, making them a poor candidate for continued government subsidies. Likewise, we presented pathways with no need for continued fossil fuel generation with carbon capture and storage (CCS) – an expensive technology with a global track record of burning through public funds while allowing fossil fuel use to expand and while capturing a smaller proportion of the smokestack carbon than promised. We believe that Canada should terminate the significant subsidies and supports it is giving to fossil fuel companies and redirect this support to renewable electricity, energy efficiency and energy affordability programming.

The transition to clean electricity would come with new employment for people living in Canada. Building tomorrow’s grid will support more than 75,000 full-time jobs each year in construction, operation and maintenance of wind, solar and transmission facilities alone.

Regardless of the path chosen, all energy projects in Canada take place on unceded Indigenous territories or treaty land. Decolonizing power structures with benefits to Indigenous communities is imperative. Upholding Indigenous rights and title, ensuring ownership opportunities and decision-making and direct support for Indigenous communities are all essential in how this transition takes place.

Wind, solar, storage and smart grid technologies are evolving rapidly, but our understanding of the possibilities they offer for a zero-emissions future, including debates over clean energy’s dirty secret in some supply chains, appears to be lagging behind reality. As the Institut de L’énergie Trottier observed, decarbonization costs have fallen faster than modellers anticipated.

The shape of tomorrow’s grid will largely depend on policy decisions made today. It’s now up to people living in Canada and their elected representatives to create the right conditions for a renewable revolution that could make the country electric, connected and clean in the years ahead.

To avoid a costly dash-to-gas that will strand assets and to secure early emissions reductions, the electricity sector needs to be fully exposed to the carbon price. The federal government’s announcement that it will move forward with a clean electricity standard – requiring net-zero emissions in the electricity sector by 2035 – will help if the standard is stringent.

Federal funding to encourage provinces to expand interprovincial transmission, including recent grid modernization investments now underway will also move us ahead. At the provincial level, electricity system governance – from utility commission mandates to electricity markets design – needs to be reformed quickly to encourage investments in renewable generation. As fossil fuels are swapped out across the economy, more and more of a household’s total energy bill will come from a local electric utility, so a national energy poverty strategy focused on low-income and equity-seeking households must be a priority.

The payoff from this policy package? Plentiful, reliable, affordable electricity that brings better outcomes for community health and resilience while helping to avoid the worst impacts of climate change.

 

Related News

Related News

UK leads G20 for share of electricity sourced from wind

UK Wind Power Leadership in 2020 highlights record renewable energy growth, G20-leading wind share, rapid coal phase-out, and rising solar integration, advancing decarbonization targets under the Paris Agreement and momentum ahead of COP26.

 

Key Points

The UK led the G20 in wind power share in 2020, displacing coal, expanding solar, and cutting power-sector emissions.

✅ G20-leading wind share; second for combined wind and solar

✅ Fastest coal decline among G20 from 2015 to 2020

✅ Emissions risk rising as post-pandemic demand returns

 

Nearly a quarter of the UK’s electricity came from wind turbines in 2020 – making the country the leader among the G20 for share of power sourced from the renewable energy, a new analysis finds.

The UK also moved away from coal power at a faster rate than any other G20 country from 2015 to 2020, according to the results.

And it ranked second in the G20, behind Germany, for the proportion of electricity sourced from both wind and solar in 2020, after first surpassing coal in 2016.

“It’s crazy how much wind power has grown in the UK and how much it has offset coal, and how it’s starting to eat at gas,” Dave Jones, Ember’s global lead analyst, told The Independent.

But it is important to bear in mind that “we’re only doing a great job by the standards of the rest of the world”, he added, noting that low-carbon generation stalled in 2019 in the UK.

Ember’s Global Electricity Review notes that the world’s power sector emissions were two per cent higher in 2020 than in 2015 – the year that countries agreed to slash their greenhouse gas pollution as part of the Paris Agreement.

Power generated from coal fell by a record amount from 2019 to 2020, the analysis finds. However, this decline was greatly facilitated by lockdowns introduced to stop the spread of Covid-19, as global electricity demand was temporarily stifled before rebounding, the analysts say.

Coal is the most polluting of the fossil fuels. The UK government hopes to convince all countries to stop building new coal-fired power stations at Cop26, a climate conference that is to be held in Glasgow later this year.

UN chief Antonio Guterres has also called for all countries to end their “deadly addiction to coal”.

At a summit held earlier this month, he described ending the use of coal in electricity generation as the “single most important step” to meeting the Paris Agreement’s goal of limiting global warming to well below 2C above pre-industrial levels by 2100.

“There is definitely a concern that, in the pandemic year of 2020, coal hasn’t fallen as fast as it needed to,” said Mr Jones, even as the UK set coal-free power records recently.

“There is concern that, once electricity demand returns, we won’t be seeing that decline in coal anymore.”

 

Related News

View more

Will the next wave of Ontario's electric vehicles run on clean power?

Ontario EV Clean Electricity Plan aligns EV adoption with clean power, natural gas phaseout, and grid decarbonization, cutting greenhouse gas emissions. Parties propose net-zero by 2030 as IESO warns rising gas use undermines climate gains.

 

Key Points

A plan to link EV growth to a cleaner grid by phasing out gas, boosting renewables, and targeting net-zero power.

✅ Parties back EVs; most pledge gas phaseout by 2030

✅ IESO projects quadrupled grid emissions under more gas

✅ Clean power needed to maximize EV climate benefits

 

Ontario’s political leaders are unanimously promoting electric vehicles (EVs) in their election platforms, even as Ontario's EV charging network remains only partially complete by a recent deadline. But if the electricity that powers those vehicles continues to come from burning fossil fuels, the province won’t reap the full environmental benefit of EVs, the Ontario Clean Air Alliance says.

“If we’re going to get the maximum benefit of electric vehicles, we’ve got to have a clean electricity supply,” said Jack Gibbons, chair of the alliance.

The environmental advocacy group surveyed the province’s Progressive Conservative, Liberal, NDP and Green parties about where they stand on generating electricity from natural gas, a fossil fuel. Only three committed to phasing out Ontario’s gas plants, a step seen as essential for supporting Canada's EV goals over time.

The NDP promised an electricity grid with net-zero emissions by 2030, while federal targets like the 2035 EV sales mandate shape transport electrification as well. The Liberals pledged to bring electricity emissions "as close to zero as possible by 2030.” The Green Party plans to make Ontario’s electricity “emission-free as quickly as possible,” aiming for a gas phaseout by 2030. The Progressive Conservatives did not answer the survey and did not respond to requests for comment from Canada’s National Observer.

Affordability and reliability were the top concerns for all three parties that responded, including the cost of expanding EV charging stations across the province.

Ontario used to get 25 per cent of its electricity from coal-fired power plants, even as 2019 fossil-fuel electricity share remained significant nationwide. However, in 1997, Gibbons formed the alliance to campaign against coal, and the province’s last coal-fired plant closed in 2014, leaving Ontario with one of North America’s cleanest electricity systems. At the time, Gibbons said, transitioning to gas-fired electricity made sense.

Now, Doug Ford’s Progressive Conservatives plan to double-down on gas-fired electricity generation to meet future demand, despite a looming energy storage supply crunch that is reshaping planning. As a result, planet-warming greenhouse gas emissions from electricity generation will more than quadruple by 2030, according to Ontario’s Independent Electricity System Operator (IESO).

If that happens, Ontario will lose 30 per cent of the progress it made by phasing out coal.

“If you have an increasing percentage of your electricity generated with fossil fuels, that undermines the activities of a variety of sectors in the society,” said Peter Tabuns, NDP candidate for Toronto-Danforth and former NDP energy and climate critic. “Ford's position of not committing to greening the system undermines the goals.”

In 2020, the alliance spearheaded a campaign calling on the Ford government to phase out the province’s gas plants. Thirty-two municipalities supported the campaign, and in Northern Ontario, Sudbury eco groups say sustainability is key to the grid's future. Many cities have said they will not be able to meet their own goals to fight climate change unless Ontario stops using fossil fuels for electricity.

 

Related News

View more

Major investments by Canada and Quebec in electric vehicle battery assembly

Lion Electric Battery Plant Quebec secures near $100M public investment for an automated battery-pack assembly in Saint-Jérôme, fueling EV manufacturing, R&D, local supply chains, and heavy-duty zero-emission vehicle competitiveness and jobs.

 

Key Points

Automated battery-pack plant in Saint-Jérôme boosting EV manufacturing and strengthening Quebec's supply chain.

✅ $100M joint federal-provincial investment announced

✅ 135 jobs in 2023; 150 more long-term positions

✅ R&D hub to enhance heavy-duty EV battery performance

 

Canadian Prime Minister of Canada, Justin Trudeau, and the Premier of Quebec, François Legault, have announced an equal investment totalling nearly $100 million to Lion Electric, as a B.C. battery plant announcement has done in another province, for the establishment of a highly automated battery-pack assembly plant in Saint–Jérôme, in the Laurentians. This project, valued at nearly $185 million, will create 135 jobs when construction of the plant is completed in 2023. It is also expected that 150 additional jobs will be created over the longer term.

For the announcement, Mr. Trudeau and Mr. Legault were accompanied by the Minister of Innovation, Science and Industry, François-Philippe Champagne, by Quebec's Minister of Economy and Innovation, Pierre Fitzgibbon, and by Marc Bédard, President and Founder of Lion Electric.

The battery packs assembled at the new plant will be used in Lion Electric vehicles. This strategic investment will allow the company to improve its cost structure, and better control the design and shape of its batteries, making it more competitive in the heavy-duty electric vehicle market, as EV assembly deals put Canada in the race. Ultimately, the company will be able to increase the volume of its vehicle production. Lion Electric will be the first Canadian manufacturer of medium and heavy-duty vehicles to have state-of-the-art, automated battery-pack manufacturing facilities.

The company will also establish a research and development innovation centre within its manufacturing plant, which will allow it to test and refine products for future use, including batteries for emergency vehicles such as ambulances. The company will test innovations from research and development, including energy storage capacity and battery performance. The results will make these products more competitive in the North American market, where a Niagara Region battery plant signals growing demand.

The company said it expects to employ 135 people at the plant when it is operational by 2023. It also plans to invest in a research and development facility that could create a number of spinoff jobs.

"When we talk about an economic recovery that's good for workers, for families and for the environment, this is exactly the kind of project we mean," Trudeau said at a news conference in Montreal.

Trudeau toured Lion Electric's factory in Saint-Jérôme, Que., last March, just before the pandemic. (Ryan Remiorz/The Canadian Press)
It was the prime minister's first trip to Montreal in more than a year. He said one of the reasons he decided to attend the announcement was to illustrate the importance of the green economy and how Canada can capitalize on the U.S. EV pivot for future job growth.

The project also aligns with the Legault government's desire to create a supply chain within Quebec that is able to feed the electric vehicle industry, where Canada-U.S. collaboration could accelerate progress.

At Monday's announcement, Economy Minister Pierre Fitzgibbon spoke at length about the province's deposits of lithium and nickel — key components in electric vehicle batteries — as well as its supply of low-emission hydroelectricity.

"If we play our cards right, we could become world leaders in this market of the future," Fitzgibbon said.

Currently, many of those strategic minerals found in Quebec are exported to Asia where they are turned into battery cells, and then imported back to Quebec by companies like Lion, said Mickaël Dollé, a chemistry professor at the Université de Montréal.

By opening a battery assembly plant in Quebec, Lion could help stimulate more cell-makers, such as the Northvolt project near Montreal, to set up shop in the province. Further localizing the supply chain, Dollé said, means better value and a greener product. 

But other countries have the same goal in mind, he said, and the window for the province to establish itself as an important player in the emerging electric vehicle battery industry is closing quickly, as major Ford Oakville deal commitments accelerate competition.

"The decision has to be taken now, or in the coming months, but if we wait too long we may miss our main goal which is to get our own supply chain in Canada," Dollé said.

What's in a name?
Monday's announcement was closely watched in Quebec for what it foretold about the political future as well as the economic one.

By coming to Montreal and touring a vaccination clinic before making the funding announcement, Trudeau fed speculation in the province that he is preparing to call an election soon.

Intrigue also surrounded the informal meeting Trudeau had with Legault on Monday. The Quebec premier and members of his government have repeatedly expressed frustration with Trudeau during the pandemic.

 

Related News

View more

Ford Motor Co. details plans to spend $1.8B to produce EVs

Ford Oakville Electric Vehicle Complex will anchor EV production in Ontario, adding a battery plant, retooling lines, and assembly capacity for passenger models targeting the North American market and Canada's zero-emission mandates.

 

Key Points

A retooled Ontario hub for passenger EV production, featuring on-site battery assembly and modernized lines.

✅ Retooling begins Q2 2024; EV production slated for 2025.

✅ New 407,000 sq ft battery plant for pack assembly.

✅ First full-line passenger EV production in Canada.

 

Ford Motor Co. has revealed some details of its plan to spend $1.8 billion on its Oakville Assembly Complex to turn it into an electric vehicle production hub, a government-backed Oakville EV deal, in the latest commitment by an automaker transitioning towards an electric future.

The automaker said Tuesday that it will start retooling the Ontario complex in the second quarter of 2024, bolstering Ontario's EV jobs boom, and begin producing electric vehicles in 2025.

The transformation of the Oakville site, to be renamed the Oakville Electric Vehicle Complex, will include a new 407,000 square-foot battery plant, similar to Honda's Ontario battery investment efforts, where parts produced at Ford's U.S. operations will be assembled into battery packs.

General Motors is already producing electric delivery vans in Canada, and its Ontario EV plant plans continue to expand, but Ford says this is the first time a full-line automaker has announced plans to produce passenger EVs in Canada for the North American market.

GM said in February it plans to build motors for electric vehicles at its St. Catharines, Ont. propulsion plant, aligning with the Niagara Region battery investment now underway. The motors will go into its BrightDrop electric delivery vans, which it produces in part at its Ingersoll, Ont. plant, as well as its electric pickup trucks, producing enough at the plant for 400,000 vehicles a year.

Ford's announcement is the latest commitment by an automaker transitioning towards an electric future, part of Canada's EV assembly push that is accelerating.

"Canada and the Oakville complex will play a vital role in our Ford Plus transformation," said chief executive Jim Farley in a statement.

The company has committed to invest over US$50 billion in electric vehicles globally and has a target of producing two million EVs a year by the end of 2026 as part of its Ford Plus growth plan, reflecting an EV market inflection point worldwide.

Ford didn't specify in the release which models it planned to build at the Oakville complex, which currently produces the Ford Edge and Lincoln Nautilus.

The company's spending plans were first announced in 2020 as part of union negotiations, with workers seeking long-term production commitments and the Detroit Three automakers eventually agreeing to invest in Canadian operations in concert with spending agreements with the Ontario and federal governments.

The two governments agreed to provide $295 million each in funding to secure the Ford investment.

"The partnership between Ford and Canada helps to position us as a global leader in the EV supply chain for decades to come," said Industry Minister Francois-Philippe Champagne in Ford's news release.

Funding help comes as the federal government moves to require that at least 20 percent of new vehicles sold in Canada will be zero-emission by 2026, at least 60 per cent by 2030, and 100 per cent by 2035.

 

Related News

View more

Reversing the charge - Battery power from evs to the grid could open a fast lane

Vehicle-to-Grid V2G unlocks EV charging flexibility and grid services, integrating renewable energy, demand response, and peak shaving to displace stationary storage and firm generation while lowering system costs and enhancing reliability.

 

Key Points

Vehicle-to-Grid V2G lets EV batteries discharge to grid, balancing renewables and cutting storage and firm generation.

✅ Displaces costly stationary storage and firm generation

✅ Enables demand response and peak shaving at scale

✅ Supports renewable integration and grid reliability

 

Owners of electric vehicles (EVs) are accustomed to plugging into charging stations at home and at work and filling up their batteries with electricity from the power grid. But someday soon, when these drivers plug in, their cars will also have the capacity to reverse the flow and send electrons back to the grid. As the number of EVs climbs, the fleet’s batteries could serve as a cost-effective, large-scale energy source, with potentially dramatic impacts on the energy transition, according to a new paper published by an MIT team in the journal Energy Advances.

“At scale, vehicle-to-grid (V2G) can boost renewable energy growth, displacing the need for stationary energy storage and decreasing reliance on firm [always-on] generators, such as natural gas, that are traditionally used to balance wind and solar intermittency,” says Jim Owens, lead author and a doctoral student in the MIT Department of Chemical Engineering. Additional authors include Emre Gençer, a principal research scientist at the MIT Energy Initiative (MITEI), and Ian Miller, a research specialist for MITEI at the time of the study.

The group’s work is the first comprehensive, systems-based analysis of future power systems, drawing on a novel mix of computational models integrating such factors as carbon emission goals, variable renewable energy (VRE) generation, and costs of building energy storage, production, and transmission infrastructure.

“We explored not just how EVs could provide service back to the grid — thinking of these vehicles almost like energy storage on wheels providing flexibility — but also the value of V2G applications to the entire energy system and if EVs could reduce the cost of decarbonizing the power system,” says Gençer. “The results were surprising; I personally didn’t believe we’d have so much potential here.”

Displacing new infrastructure

As the United States and other nations pursue stringent goals to limit carbon emissions, electrification of transportation has taken off, with the rate of EV adoption rapidly accelerating. (Some projections show EVs supplanting internal combustion vehicles over the next 30 years.) With the rise of emission-free driving, though, there will be increased demand for energy on already stressed state power grids nationwide. “The challenge is ensuring both that there’s enough electricity to charge the vehicles and that this electricity is coming from renewable sources,” says Gençer.

But solar and wind energy is intermittent. Without adequate backup for these sources, such as stationary energy storage facilities using lithium-ion batteries, for instance, or large-scale, natural gas- or hydrogen-fueled power plants, achieving clean energy goals will prove elusive. More vexing, costs for building the necessary new energy infrastructure runs to the hundreds of billions.

This is precisely where V2G can play a critical, and welcome, role, the researchers reported. In their case study of a theoretical New England power system meeting strict carbon constraints, for instance, the team found that participation from just 13.9 percent of the region’s 8 million light-duty (passenger) EVs displaced 14.7 gigawatts of stationary energy storage. This added up to $700 million in savings — the anticipated costs of building new storage capacity.

Their paper also described the role EV batteries could play at times of peak demand, such as hot summer days. “With proper grid coordination practices in place, V2G technology has the ability to inject electricity back into the system to cover these episodes, so we don’t need to install or invest in additional natural gas turbines,” says Owens. “The way that EVs and V2G can influence the future of our power systems is one of the most exciting and novel aspects of our study.”

Modeling power

To investigate the impacts of V2G on their hypothetical New England power system, the researchers integrated their EV travel and V2G service models with two of MITEI’s existing modeling tools: the Sustainable Energy System Analysis Modeling Environment (SESAME) to project vehicle fleet and electricity demand growth, and GenX, which models the investment and operation costs of electricity generation, storage, and transmission systems. They incorporated such inputs as different EV participation rates, costs of generation for conventional and renewable power suppliers, charging infrastructure upgrades, travel demand for vehicles, changes in electricity demand, and EV battery costs.

Their analysis found benefits from V2G applications in power systems (in terms of displacing energy storage and firm generation) at all levels of carbon emission restrictions, including one with no emissions caps at all. However, their models suggest that V2G delivers the greatest value to the power system when carbon constraints are most aggressive — at 10 grams of carbon dioxide per kilowatt hour load. Total system savings from V2G ranged from $183 million to $1,326 million, reflecting EV participation rates between 5 percent and 80 percent.

“Our study has begun to uncover the inherent value V2G has for a future power system, demonstrating that there is a lot of money we can save that would otherwise be spent on storage and firm generation,” says Owens.


Harnessing V2G

For scientists seeking ways to decarbonize the economy, the vision of millions of EVs parked in garages or in office spaces and plugged into the grid via vehicle-to-building charging for 90 percent of their operating lives proves an irresistible provocation. “There is all this storage sitting right there, a huge available capacity that will only grow, and it is wasted unless we take full advantage of it,” says Gençer.

This is not a distant prospect. Startup companies are currently testing software that would allow two-way communication between EVs and grid operators or other entities. With the right algorithms, EVs would charge from and dispatch energy to the grid according to profiles tailored to each car owner’s needs, never depleting the battery and endangering a commute.

“We don’t assume all vehicles will be available to send energy back to the grid at the same time, at 6 p.m. for instance, when most commuters return home in the early evening,” says Gençer. He believes that the vastly varied schedules of EV drivers will make enough battery power available to cover spikes in electricity use over an average 24-hour period. And there are other potential sources of battery power down the road, such as electric school buses that are employed only for short stints during the day and then sit idle, with the potential to power buildings during peak hours.

The MIT team acknowledges the challenges of V2G consumer buy-in. While EV owners relish a clean, green drive, they may not be as enthusiastic handing over access to their car’s battery to a utility or an aggregator working with power system operators. Policies and incentives would help.

“Since you’re providing a service to the grid, much as solar panel users do, you could get paid to sell electricity back for your participation, and paid at a premium when electricity prices are very high,” says Gençer.

“People may not be willing to participate ’round the clock, but as states like California explore EVs for grid stability programs and incentives, if we have blackout scenarios like in Texas last year, or hot-day congestion on transmission lines, maybe we can turn on these vehicles for 24 to 48 hours, sending energy back to the system,” adds Owens. “If there’s a power outage and people wave a bunch of money at you, you might be willing to talk.”

“Basically, I think this comes back to all of us being in this together, right?” says Gençer. “As you contribute to society by giving this service to the grid, you will get the full benefit of reducing system costs, and also help to decarbonize the system faster and to a greater extent.”


Actionable insights

Owens, who is building his dissertation on V2G research, is now investigating the potential impact of heavy-duty electric vehicles in decarbonizing the power system. “The last-mile delivery trucks of companies like Amazon and FedEx are likely to be the earliest adopters of EVs,” Owen says. “They are appealing because they have regularly scheduled routes during the day and go back to the depot at night, which makes them very useful for providing electricity and balancing services in the power system.”

Owens is committed to “providing insights that are actionable by system planners, operators, and to a certain extent, investors,” he says. His work might come into play in determining what kind of charging infrastructure should be built, and where.

“Our analysis is really timely because the EV market has not yet been developed,” says Gençer. “This means we can share our insights with vehicle manufacturers and system operators — potentially influencing them to invest in V2G technologies, avoiding the costs of building utility-scale storage, and enabling the transition to a cleaner future. It’s a huge win, within our grasp.”

 

Related News

View more

New Brunswick announces rebate program for electric vehicles

New Brunswick EV Rebates deliver stackable provincial and federal incentives for electric vehicles, used EVs, and home chargers, supporting NB Power infrastructure, lower GHG emissions, and climate goals with fast chargers across the province.

 

Key Points

Stackable provincial and federal incentives up to $10,000 for EV purchases, plus support for home charging.

✅ $5,000 new EVs; $2,500 used; stackable with federal $5,000

✅ 50% home charger rebate up to $750 through NB Power

✅ Supports GHG cuts, charging network growth, climate targets

 

New Brunswickers looking for an electric vehicle (EV) can now claim up to $10,000 in rebates from the provincial and federal governments.

The three-year provincial program was announced Thursday and will give rebates of $5,000 on new EVs and $2,500 on used ones. It closely mirrors the federal program and is stackable, meaning new owners will be able to claim up to $5,000 from the feds as well.

Minister of Environment and Climate Change Gary Crossman said the move is hoped to kickstart the province’s push toward a target of having 20,000 EVs on the road by 2030.

“This incentive has to make a positive difference,” Crossman said.

“I truly believe people have been waiting for it, they’ve been asking about it, and this will make a difference from today moving forward to put new or used cars in their hands.”

The first year of the program will cost $1.95 million, which will come from the $36 million in the Climate Change Fund and will be run by NB Power, whose public charging network has been expanding across the province. The department says if the full amount is used this year it could represent a reduction of 850 tonnes of greenhouse gasses (GHGs) annually.

Both the Liberal and Green parties welcomed the move calling it long overdue, but Green MLA Kevin Arseneau said it’s not a “miracle solution.”

“Yes, we need to electrify cars, but this kind of initiative without proper funding of public transportation, urban planning for biking … without this kind of global approach this is just another swipe of a sword in water,” he said.

Liberal environment critic Francine Landry says she hopes this will make the difference for those considering the purchase of an EV and says the government should consider further methods of incentivization like waiving registration fees.

The province’s adoption of EVs has not been overly successful so far, reflecting broader Atlantic EV buying interest trends across the region. At the end of 2020, there were 646 EVs registered in the province, far short of the 2,500 target set out in the Climate Action Plan. That was up significantly from the 437 at the end of 2019, but still a long way from the goal.

New Brunswick has a fairly expansive network of charging stations across the province, claiming to be the first “fully-connected province” in the country, and had hoped that the available infrastructure, including plans for new fast-charging stations on the Trans-Canada, would push adoption of non-emitting vehicles.

“In 2017 we had 11 chargers in the province, so we’ve come a long way from an infrastructure standpoint which I think is critical to promoting or having an electric vehicle network, or a number of electric vehicles operating in the province, and neighbouring N.L.’s fast-charging network shows similar progress,” said Deputy Minister of Natural Resources Tom Macfarlane at a meeting of the standing committee on climate change and environmental stewardship in January of 2020.

There are now 172 level two chargers and 83 fast chargers, while Labrador’s EV infrastructure still lags in neighbouring N.L. today. Level two chargers take between six and eight hours to charge a vehicle, while the fast chargers take about half an hour to get to 80 per cent charge.

The newly announced program will also cover 50 per cent of costs for a home charging station up to $750, similar to B.C. charger rebates that support home infrastructure, to further address infrastructure needs.

The New Brunswick Lung Association is applauding the rebate plan.

President and CEO Melanie Langille said about 15,000 Canadians, including 40 people from New Brunswick, die prematurely each year from air pollution. She said vehicle emissions account for about 30 per cent of the province’s air pollution.

“Electric vehicles are critical to reducing our greenhouse gas emissions,” said Langille. “New Brunswick has one of the highest per capita GHG emissions in Canada. But, because our electricity source in New Brunswick is primarily from non-emitting sources and regional initiatives like Nova Scotia’s vehicle-to-grid pilot are advancing grid integration, switching to an EV is an effective way for New Brunswickers to lower their GHG emissions.”

Langille said the lung association has been part of an electric vehicles advisory group in the province since 2014 and its research has shown this type of program is needed.

“The major barrier that is standing in the way of New Brunswickers adopting electric vehicles is the upfront costs,” Langille said. “So today’s announcement, and that it can be stacked on top of the existing federal rebates, is a huge step forward for us.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified