Zero-emissions electricity by 2035 is possible


solar power panel

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Canada Net-Zero Electricity 2035 aligns policy and investments with renewables, wind, solar, hydro, storage, and transmission to power electrification of EVs and heat pumps, guided by a stringent clean electricity standard and carbon pricing.

 

Key Points

A 2035 plan for a zero-emissions grid using renewables, storage and transmission to electrify transport and homes.

✅ Wind, solar, and hydro backed by battery storage and reservoirs

✅ Interprovincial transmission expands reliability and lowers costs

✅ Stringent clean electricity standard and full carbon pricing

 

By Tom Green
Senior Climate Policy Advisor
David Suzuki Foundation

Electric vehicles are making inroads in some areas of Canada. But as their numbers grow, will there be enough electrical power for them, and for all the buildings and the industries that are also switching to electricity?

Canada – along with the United States, the European Union and the United Kingdom – is committed to a “net-zero electricity grid by 2035 policy goal”. This target is consistent with the Paris Agreement’s ambition of staying below 1.5 C of global warming, compared with pre-industrial levels.

This target also gives countries their best chance of energy security, as laid out in landmark reports over the past year from the International Energy Agency and the Intergovernmental Panel on Climate Change. A new federal regulation in the form of a clean electricity standard is being developed, but will it be stringent enough to set us up for climate success and avoid dead ends?

Canada starts this work from a relatively low emissions-intensity grid, powered largely by hydroelectricity. However, some provinces such as Alberta, Saskatchewan, Nova Scotia and New Brunswick still have predominantly fossil fuel-powered electricity. Plus, there is a risk of more natural gas generation of electricity in the coming years in most provinces without new federal and provincial regulations.

This means the transition of Canada’s electricity system must solve two problems at once. It must first clean up the existing electricity system, but it must also meet future electricity needs from zero-emissions sources while overall electricity capacity doubles or even triples by 2050.

Canada has enormous potential for renewable generation, even though it remains a solar power laggard in deployment to date. Wind, solar and energy storage are proven, affordable technologies that can be produced here in Canada, while avoiding the volatility of global fossil fuel markets.

As wind and solar have become the cheapest forms of electricity generation in history, we’re already seeing foreign governments and utilities ramp up renewable projects at the pace and scale that would be needed here in Canada, highlighting a significant global electricity market opportunity for Canadian firms at home. In 2020, 280 gigawatts of new capacity was added globally – a 45 per cent increase over the previous year. In Canada, since 2010, annual growth in renewables has so far averaged less than three per cent.

So why aren’t we moving full steam – or electron – ahead? With countries around the world bringing in wind and solar for new generation, why is there so much delay and doubt in Canada, even as analyses explore why the U.S. grid isn’t 100% renewable and remaining barriers?

The modelling team drew on a dataset that accounts for how wind and solar potential varies across the country, through the weeks of the year and the hours of each day. The models provide solutions for the most cost-effective new generation, storage and transmission to add to the grid while ensuring electricity generation meets demand reliably every hour of the year.

The David Suzuki Foundation partnered with the University of Victoria to model the electricity grid of the future.

To better understand future electricity demand, a second modelling team was asked to explore a future when homes and businesses are aggressively electrified; fossil fuel furnaces and boilers are retired and replaced with electric heat pumps; and gasoline and diesel cars are replaced by electric vehicles and public transit. It also dialed up investments in energy efficiency to further reduce the need for energy. These hourly electricity-demand projections were fed back to the models developed at the University of Victoria.

The results? It is possible to meet Canada’s needs for clean electricity reliably and affordably through a focus on expanding wind and solar generation capacity, complemented with new transmission connections between provinces, and other grid improvements.

How is it that such high levels of variable wind and solar can be added to the grid while keeping the lights on 24/7? The model took full advantage of the country’s existing hydroelectric reservoirs, using them as giant batteries, storing water behind the dams when wind and solar generation was high to be used later when renewable generation is low, or when demand is particularly high. The model also invested in more transmission to enable expanded electricity trade between provinces and energy storage in the form of batteries to smooth out the supply of electricity.

Not only is it possible, but the renewable pathway is the safe bet.

There’s no doubt it will take unprecedented effort and scale to transform Canada’s electricity systems. The high electrification pathway would require an 18-fold increase over today’s renewable electricity capacity, deploying an unprecedented amount of new wind, solar and energy storage projects every year from now to 2050. Although the scale seems daunting, countries such as Germany are demonstrating that this pace and scale is possible.

The modelling also showed that small modular nuclear reactors (SMRs) are neither necessary nor cost-effective, making them a poor candidate for continued government subsidies. Likewise, we presented pathways with no need for continued fossil fuel generation with carbon capture and storage (CCS) – an expensive technology with a global track record of burning through public funds while allowing fossil fuel use to expand and while capturing a smaller proportion of the smokestack carbon than promised. We believe that Canada should terminate the significant subsidies and supports it is giving to fossil fuel companies and redirect this support to renewable electricity, energy efficiency and energy affordability programming.

The transition to clean electricity would come with new employment for people living in Canada. Building tomorrow’s grid will support more than 75,000 full-time jobs each year in construction, operation and maintenance of wind, solar and transmission facilities alone.

Regardless of the path chosen, all energy projects in Canada take place on unceded Indigenous territories or treaty land. Decolonizing power structures with benefits to Indigenous communities is imperative. Upholding Indigenous rights and title, ensuring ownership opportunities and decision-making and direct support for Indigenous communities are all essential in how this transition takes place.

Wind, solar, storage and smart grid technologies are evolving rapidly, but our understanding of the possibilities they offer for a zero-emissions future, including debates over clean energy’s dirty secret in some supply chains, appears to be lagging behind reality. As the Institut de L’énergie Trottier observed, decarbonization costs have fallen faster than modellers anticipated.

The shape of tomorrow’s grid will largely depend on policy decisions made today. It’s now up to people living in Canada and their elected representatives to create the right conditions for a renewable revolution that could make the country electric, connected and clean in the years ahead.

To avoid a costly dash-to-gas that will strand assets and to secure early emissions reductions, the electricity sector needs to be fully exposed to the carbon price. The federal government’s announcement that it will move forward with a clean electricity standard – requiring net-zero emissions in the electricity sector by 2035 – will help if the standard is stringent.

Federal funding to encourage provinces to expand interprovincial transmission, including recent grid modernization investments now underway will also move us ahead. At the provincial level, electricity system governance – from utility commission mandates to electricity markets design – needs to be reformed quickly to encourage investments in renewable generation. As fossil fuels are swapped out across the economy, more and more of a household’s total energy bill will come from a local electric utility, so a national energy poverty strategy focused on low-income and equity-seeking households must be a priority.

The payoff from this policy package? Plentiful, reliable, affordable electricity that brings better outcomes for community health and resilience while helping to avoid the worst impacts of climate change.

 

Related News

Related News

High-rise headaches: EV charging in Canada's condos, apartments and MURBs a mixed experience

Canada EV-ready rules for MURBs vary by city, with municipal bylaws dictating at-home Level 2 charging in condos, apartments, strata, and townhomes; BC leads, others evaluating updates to building codes.

 

Key Points

Municipal bylaws mandate EV-ready, Level 2 charging in multi-unit housing; requirements vary by city.

✅ No federal/provincial mandates; municipal bylaws set EV access.

✅ B.C. leads; many cities require 100% EV-ready residential stalls.

✅ Other cities are evaluating code changes; enforcement varies widely.

 

An absence of federal, provincial rules for EV charging in Canada’s condos, apartment buildings, strata or townhomes punts the issue to municipalities and leaves many strata owners to fend for themselves, finds Electric Autonomy’s cross-Canada guide to municipal building code regulations for EV charging in MURBs

When it comes to reducing barriers to electric vehicle adoption in Canada, one of the most critical steps governments can do is to help provide access to at-home EV charging.

While this is usually not a complicated undertaking in single-unit dwellings, in multi-unit residential buildings (MURBs) which includes apartments, condos, strata and townhomes, the situation and the experience is quite varied for Canadian EV drivers, and retrofitting condos can add complexity depending on the city in which they live.

In Canada, there are no regulations in the national building code that require new or existing condos, apartment buildings, strata or townhomes to offer EV charging. Provinces and territories are able to create their own building laws and codes, but none have added anything yet to support EV charging. Instead, some municipalities are provided with the latitude by their respective provinces to amend local bylaws and add regulations that will require multi-residential units — both new builds and existing ones — to be EV-ready.

The result is that the experience and process of MURB residents getting EV charging infrastructure access is highly fragmented across Canada.

In order to bring more transparency, Electric Autonomy Canada has compiled a roundup of all the municipalities in Canada with existing regulations that require all new constructions to be EV-ready for the future and those cities that have announced publicly they are considering implementing the same.

The tally shows that 21 cities in British Columbia and one city in both Quebec and Ontario have put in place some EV-ready regulations. There are eight other municipalities in Alberta, Saskatchewan, Ontario, Nova Scotia and Newfoundland evaluating their own building code amendments, including Calgary’s condo charging expansion initiatives across apartments and condos.

No municipalities in Manitoba, Prince Edward Island and New Brunswick have any regulations around this. City councils in Edmonton, Saskatoon, Hamilton, Sarnia, Halifax and St. John’s have started looking into it, but no regulations have officially been made.

British Columbia
B.C. is, by far, Canada’s most advanced province in terms of having mandates for EV charging access in condos, apartment buildings, strata or townhomes, leading the country in expanding EV charging with 20 cities with modified building codes to stipulate EV-readiness requirements and one city in the process of implementing them.

City of Vancouver: Bylaw 10908 – Section 10.2.3. was amended on July 1, 2014, to include provisions for Level 2 EV charging infrastructure at all residential and commercial buildings. On March 14, 2018, the bylaw was updated to adopt a 100 per cent EV-ready policy from 20 per cent to 100 per cent. The current bylaw also requires one EV-ready stall for single-family residences with garages and 10 per cent of parking stalls to be EV-ready for commercial buildings.

City of Burnaby: Zoning Bylaw 13903 – Section 800.8, which took effect on September 1st, required Level 2 energized outlets in all new residential parking spaces. This includes both single-family homes and multi-unit residential buildings. Parking spaces for secondary suites and visitor parking are exempt, but all other stalls in new buildings must be 100 per cent EV-ready.


City of Nelson: The city amended its Off-Street Parking and Landscaping Bylaw No. 3274 – Section 7.4 in 2019 to have at least one parking space per dwelling unit feature
Level 2 charging or higher in new single-family and multi-unit residential buildings, starting in 2020. For every 10 parking spaces available at a dwelling, two stalls must have Level 2 charging capabilities.

City of Coquitlam: The Zoning Bylaw No. 4905 – Section 714 was amended on October 29, 2018, to require all new construction, including single-family residences and MURBs, to have a minimum of one energized outlet capable of Level 2 charging or higher for every dwelling unit. Parking spaces designated for visitors are exempt.

If the number of parking spaces is less than the number of dwelling units, all residential parking spots must have an energized outlet with Level 2 or higher charging capabilities.

City of North Vancouver: According to Zoning Bylaw No. 6700 – Section 909, all parking spaces in all new residential multi-family buildings must include Level 2 EV charging infrastructure as of June 2019 and 10 per cent of residential visitor parking spaces must include Level 2 EV charging infrastructure as of Jan. 2022.

District of North Vancouver: Per the Electric Vehicle Charging Infrastructure Policy, updated on March 17, 2021, all parking stalls — not including visitor parking — must feature energized outlets capable of providing Level 2 charging or higher for multi-family residences.

City of New Westminster: As of April 1, 2019, all new buildings with at least one residential unit are required to have a Level 2 energized outlet to the residential parking spaces, according to Electric Vehicle Ready Infrastructure Zoning Bylaw 8040, 2018. Energized Level 2 outlets will not be required for visitor parking spaces.

City of Port Moody: Zoning Bylaw No. 2937 – Section 6.11 mandated that all spaces in new residential constructions starting from March 1, 2019, required an energized outlet capable of Level 2 charging. A minimum of 20 per cent of spaces in new commercial constructions from March 1, 2019, required an energized outlet capable of Level 2 charging.

City of Richmond: All new buildings and residential parking spaces from April 1, 2018, excluding those provided for visitors’ use, have had an energized outlet capable of providing Level 2 charging or higher to the parking space, says Zoning Bylaw 8500 – Section 7.15.

District of Saanich: Zoning Bylaw No. 8200 – Section 7 specified that all new residential MURBs are required to provide Level 2 charging after Sept. 1, 2020.

District of Squamish: Bylaw No. 2610, 2018 Subsection 41.11(f) required 100 per cent of off-street parking stalls to have charging infrastructure starting from July 24, 201, in any shared parking areas for multiple-unit residential uses.

City of Surrey: Zoning By-law No. 12000 – Part 5(7) was amended on February 25, 2019 to say builders must construct and install an energized electrical outlet for 100 per cent of residential parking spaces, with home and workplace charging rebates helping adoption, 50 per cent of visitor parking spaces, and 20 per cent of commercial parking spaces. Each energized electrical outlet must be capable of providing Level 2 or a higher level of electric vehicle charging

District of West Vancouver: Per Zoning Bylaw No. 4662 – Sections 142.10; 141.01(4), new dwelling units, all parking spaces for residential use, except visitor parking, need to include an energized outlet that is: (a) capable of providing Level 2 charging for an electric vehicle; (b) labelled for the use of electric vehicle charging.

City of Victoria: In effect since October 1, 2020, the Zoning Bylaw No. 80-159 – Schedule C Section 2.4 stipulates that all residential parking spaces in new residential developments must have an energized electrical outlet installed that can provide Level 2 charging for an electric vehicle, and residents can access EV charger rebates to offset costs. This requirement applies to both single-family and multi-unit residential dwellings but not visitor parking spaces.

Township of Langley: In Zoning Bylaw No. 2500 – Section 107.3, all new residential construction, including single-home dwellings, townhouses and apartments, required one space per dwelling unit to have EV charging requirements, starting from Nov. 4, 2019.

Town of View Royal: As per Zoning Bylaw No. 900 – Section 5.13, every commercial or multi-unit residential construction with more than 100 parking spots must provide an accessible electric vehicle charging station on the premises for patrons or residents. This bylaw was adopted on Feb. 2021.

Nanaimo: According to the Off-Street Parking Regulations Bylaw No. 7266 – Section 7.7, a minimum of 25 per cent of all off-street parking spots in any common parking area for multifamily residential housing must have shared access to a Level 2 EV charging, and have an electrical outlet box wired with a separate branch circuit capable of supplying electricity to support both Level 1 and Level 2 charging.

Port Coquitlam: For residential buildings that do not have a common parking area, one parking space per dwelling unit is required to provide “roughed-in” charging infrastructure, put in effect on Jan. 23, 2018. This must include an electrical outlet box located within three metres of the unit’s parking space, according to Zoning Bylaw No. 3630 – Section 2.5.10;11. For a residential building with a common parking area, a separate single utility electrical meter and disconnect should be provided in line with the electrical panel(s) intended to provide EV charging located within three metres of the parking space.

Maple Ridge: The city’s Bylaw No. 4350-1990 – Schedule F says for apartments, each parking space provided for residential use, excluding visitor parking spaces, will be required to have roughed-in infrastructure capable of providing Level 2 charging.

Apartments and townhouses with a minimum of 50 per cent of required visitor parking spaces will need partial infrastructure capable of Level 2 charging.

White Rock: The city is currently considering changes to its Zoning Bylaw, 2012, No. 2000. On March 18, 2021, the Environmental Advisory Committee presented recommendations that would require all resident parking stalls to be Level 2 EV-ready in new multi-unit residential buildings and 50 per cent of visitor parking stalls to be Level 2 EV-ready in new multi-unit residential buildings.

Kamloops: The city of Kamloops is looking to draft a zoning amendment bylaw that would require new residential developments, all new single-family, single-family with a secondary suite, two-family, and multi-family residential developments, to have EV-ready parking with one parking stall per dwelling unit, at the beginning of Jan. 1, 2023.

Kamloops’ sustainability services supervisor Glen Cheetham told Electric Autonomy Canada in an email statement that the city’s council has given direction to staff to “conduct one final round of engagement with industry before bringing the zoning amendment bylaw to Council mid-June for first and second reading, followed by a public hearing and third reading/approval.”

 

Related News

View more

Electric Cars Have Hit an Inflection Point

U.S. EV Manufacturing Expansion accelerates decarbonization as Ford and SK Innovation invest in lithium-ion batteries and truck assembly in Tennessee and Kentucky, building new factories, jobs, and supply chain infrastructure in right-to-work states.

 

Key Points

A rapid scale-up of U.S. electric vehicle production, battery plants, and assembly lines fueled by major investments.

✅ Ford and SK build battery and truck plants by 2025

✅ $11.4B investment, 11,000 jobs in TN and KY

✅ Right-to-work context reshapes union dynamics

 

One theme of this newsletter is that the world’s physical infrastructure will have to massively change if we want to decarbonize the economy by 2050, which the United Nations has said is necessary to avoid the worst effects of the climate crisis. This won’t be as simple as passing a carbon tax or a clean-electricity mandate: Wires will have to be strung as the power grid expands; solar farms will have to be erected; industries will have to be remade. And although that kind of change can be orchestrated only by the government (hence the importance of the infrastructure bills in Congress), consumers and companies will ultimately do most of the work to make it happen.

Take electric cars, for instance. An electric car is an expensive, highly specialized piece of technology, but building one takes even more expensive, specialized technology—tools that tend to be custom-made, large and heavy, and spread across a factory or the world. And if you want those tools to produce a car in a few years, you have to start planning now, as the EV timeline accelerates ahead.

That’s exactly what Ford is doing: Last night, the automaker and SK Innovation, a South Korean battery manufacturer, announced that they were spending $11.4 billion to build two new multi-factory centers in Tennessee and Kentucky that are scheduled to begin production in 2025. The facilities, which will hire a combined 11,000 employees, will manufacture EV batteries and assemble electric F-series pickup trucks. While Ford already has several factories in Kentucky, this will be its first plant in Tennessee in six decades. The 3,600-acre Tennessee facility, located an hour outside Memphis, will be Ford’s largest campus ever—and its first new American vehicle-assembly plant in decades.

The politics of this announcement are worth dwelling on. Ford and SK Innovation were lured to Tennessee with $500 million in incentives; Kentucky gave them $300 million and more than 1,500 acres of free land. Ford’s workers in Detroit have historically been unionized—and, indeed, a source of power in the national labor movement. But with these new factories, Ford is edging into a more anti-union environment: Both Tennessee and Kentucky are right-to-work states, meaning that local laws prevent unions from requiring that only unionized employees work in a certain facility. In an interview, Jim Farley, Ford’s CEO, played coy about whether either factory will be unionized. (Last week, the company announced that it was investing $250 million, a comparative pittance, to expand EV production at its unionized Michigan facilities.)

That news might depress those on the left who hope that old-school unions, such as the United Auto Workers, can enjoy the benefits of electrification. But you can see the outline of a potential political bargain here. Climate-concerned Democrats get to see EV production expand in the U.S., creating opportunities for Canada to capitalize as supply chains shift, while climate-wary Republicans get to add jobs in their home states. (And unions get shafted.) Whether that bargain can successfully grow support for more federal climate policy, further accelerating the financial-political-technological feedback loop that I’ve dubbed “the green vortex,” remains to be seen.

Read: How the U.S. made progress on climate change without ever passing a bill

More important than the announcement is what it portends. In the past, environmentalists have complained that even when the law has required that automakers make climate-friendly cars, they haven’t treated them as a major product. It’s easy to tune out climate-friendly announcements as so much corporate greenwashing, amid recurring EV hype, but Ford’s two new factories represent real money: The automaker’s share of the investment exceeds its 2019 annual earnings. This investment is sufficiently large that Ford will treat EVs as a serious business line.

And if you look around globally, you’ll see that Ford isn’t alone. EVs are no longer the neglected stepchild of the global car industry. Here are some recent headlines:

Nine percent of new cars sold globally this year will be EVs or plug-in hybrids, according to S&P Global. That’s up from 3 percent two years ago, a staggering, iPhone-like rise.

GM, Ford, Volkswagen, Toyota, BMW, and the parent company of Fiat-Chrysler have all pledged that by 2030, at least 40 percent of their new cars worldwide will run on a non-gasoline source, and there is scope for Canada-U.S. collaboration as companies turn to electric cars. A few years ago, the standard forecast was that half of new cars sold in the U.S. would be electric by 2050. That timeline has moved up significantly not only in America, but around the world. (In fact, counter to its high-tech self-image, America is the laggard in this global transition. The two largest markets for EVs worldwide are China and the European Union.)

More remarkably (and importantly), automakers are spending like they actually believe that goal: The auto industry as a whole will pump more than $500 billion into EV investment by 2030, and new assembly deals are putting Canada in the race. Ford’s investment in these two plants represents less than a third of its planned total $30 billion investment in EV production by 2025, and that’s relatively small compared with its peers’. Volkswagen has announced more than $60 billion in investment. Honda has committed $46 billion.

Norway could phase out gas cars ahead of schedule. The country has one of the world’s most robust pro-EV policies, and it is still outperforming its own mandates. In the most recent accounting period, eight out of 10 cars had some sort of electric drivetrain. If the current trend holds, Norway would sell its last gas car in April of next year—and while I doubt the demise will be that steep, consumer preferences are running well ahead of its schedule to ban new gas-car sales by 2025.

 

Related News

View more

"Remarkable" New Contract Award Adds 10 GW of Renewables to UK Grid

UK Renewable Energy Auction secures 10 GW for the grid at record-low costs, led by offshore wind, floating wind, solar, and onshore wind, with inflation-indexed CfDs delivering £37/MWh strike prices and enhanced energy security.

 

Key Points

Government CfDs add 10 GW of low-cost renewables to the UK grid via offshore wind, floating wind, and solar.

✅ 10 GW capacity: 7 GW offshore wind, 2.2 GW solar, 0.9 GW onshore wind

✅ Record-low £37/MWh offshore; floating wind at £87/MWh CfD strikes

✅ 15-year indexed contracts cut exposure to volatile gas prices

 

The United Kingdom will add 10 gigawatts (GW) of renewable energy capacity to its power grid at one-quarter the cost of fossil gas after concluding its biggest-ever renewable energy auction for new renewable supplies.

The “remarkable new UK renewable auction” will meet one-eighth of the country’s current electricity demand at record low prices of just £37 per megawatt-hour for offshore wind and £87 for floating offshore systems (a dynamic echoed as wind power gains in Canada across other markets), tweeted Carbon Brief Deputy Editor Simon Evans.

“The government is increasing its reliance on a local supply of renewables amid soaring UK power prices driven by a surge in the cost of natural gas following Russia’s invasion of Ukraine,” Bloomberg Green reports. Offshore wind energy “will add about seven gigawatts of clean power capacity to the nation’s fleet from 2026, bringing Britain closer to its target of installing 50 gigawatts by the end of the decade.”

The awards also include 2.2 gigawatts (that’s 2.2 billion watts) of solar and 900 megawatts of onshore wind, even as the UK faces a renewables backlog on some projects, Bloomberg says.

“Eye-watering gas prices are hitting consumers across Europe,” said UK Business and Energy Secretary Kwasi Kwarteng. “The more cheap, clean power we generate within our own borders, the better protected we will be from volatile gas prices that are pushing up bills.”

Citing government figures, Bloomberg says wind generation costs came in 5.8% lower than the previous auction in 2019, reflecting momentum in a sector set to become a trillion-dollar business this decade. Some of the winning bidders included Ørsted, Iberdrola’s Scottish Power unit, Vattenfall, and a consortium of AB Ignitis Grupe, EDP Renovaveis, and Engie.

Offshore wind power costs have fallen dramatically in recent years as the UK supported the industry to scale up and industrialize production of larger, more efficient turbines,” the news story states. Now, “the decline in price developers are willing to accept comes even after the cost of wind turbines rose in recent months as prices increased for key metals like steel and supply chain disruptions created expensive delays.”

The 15-year, fixed-price contracts will be adjusted for inflation when the turbines are ready to start delivering electricity, offering lessons for the U.S. wind sector on contract design.

 

Related News

View more

This Thin-Film Turns Heat Waste From Electronics Into Electricity

Pyroelectric Energy Harvesting captures low-grade heat via thin-film materials, converting temperature fluctuations into power for waste heat recovery in electronics, vehicles, and industrial machinery, offering a thermoelectric alternative for microelectronics and exascale systems.

 

Key Points

Thin-film pyroelectric harvesting turns temperature changes into electricity, enabling low-grade waste heat recovery.

✅ Converts low-grade heat fluctuations into usable power

✅ Thin-film design suits microelectronics and edge devices

✅ Alternative to thermoelectrics for waste heat recovery

 

The electronic device you are reading this on is currently producing a modest to significant amount of waste heat that emerging thermoelectric materials could help recover in principle. In fact, nearly 70% of the energy produced annually in the US is ultimately wasted as heat, much of it less than 100 degrees Celsius. The main culprits are computers and other electronic devices, vehicles, as well as industrial machinery. Heat waste is also a big problem for supercomputers, because as more circuitry is condensed into smaller and smaller areas, the hotter those microcircuits get.

It’s also been estimated that a single next-generation exascale supercomputer could feasibly use up to 10% of the energy output of just one coal-fired power station, and that nearly all of that energy would ultimately be wasted as heat.

What if it were possible to convert that heat energy into a useable energy source, and even to generate electricity at night from temperature differences as well?

#google#

It’s not a new idea, of course. In fact the possibility of thermoelectric energy generation, where thermal energy is turned into electricity was recognised as early as 1821, around the same time that Michael Faraday developed the electric motor.

Unfortunately, when the heat source is ‘low grade’, aka less than 100 degrees Celsius, a number of limitations arise, and related approaches for nighttime renewable generation face similar challenges as well. For it to work well, you need materials that have quite high electrical conductivity, but low thermal conductivity. It’s not an easy combination to come by.

Taking a different approach, researchers at the University of California, Berkeley, have developed thin-film that uses pyroelectric harvesting to capture heat-waste and convert heat to electricity in prototype demonstrations. The findings were published today in Nature Materials.

 

Related News

View more

Four effective ways to meet US decarbonization goals

US Grid Decarbonization demands balancing renewables, reliability, and resilience with smart transmission, storage, siting, and demand response, leveraging digital asset management to modernize infrastructure while meeting climate goals and rising electricity consumption.

 

Key Points

Low-carbon power while maintaining reliability via renewables, storage, transmission, and digital operations.

✅ Siting wind and solar requires community engagement and environmental review

✅ Balance variable renewables with storage, flexible load, and firm capacity

✅ Modernize transmission and digitize asset data for reliable operations

 

Last week, over 13,000 energy and technology leaders arrived in Dallas for DISTRIBUTECH International to share knowledge, showcase new technology advancements, and discuss initiatives to prepare for the future of energy. Among the many topics discussed was the critical need to balance rising energy demands and environmental pressures while understanding why the grid isn't 100% renewable today alongside effective climate change solutions.

The most widespread source of energy consumption is electricity. According to The U.S. Energy Information Administration, 2020 electricity consumption rates were roughly 3.8 trillion kWh - 13 times higher than in 1950. With our ever-increasing reliance on electricity, renewables' share of generation is also rising and this number is sure to grow exponentially in the coming years.

How can the US achieve meaningful decarbonization goals without sacrificing reliable and stable energy? Here are 4 of the biggest challenges and practical ways to meet them:


Siting New Solar and Wind Farms
Building renewable energy sources is more difficult than it seems. Scouting for sites is fraught with issues such as community opposition due to local aesthetics and clean energy's hidden costs around disruption to the environment and recreation.

NIMBY (Not In My Backyard) is an influential source of opposition. Local residents join together in an effort to prevent shore front views in wealthy coastal areas from obstruction, which are needed to support offshore wind farms. These farms can also negatively impact local fisheries, while outdoor sports and entertainment activities such as sailing, waterskiing, fishing, or swimming may be disrupted, which are equally opposed by NIMBY advocates.

Utilities must take these concerns into account when scouting for renewable energy sites.

 

Maintaining Consistent Availability of Generation Capacity
The capacity to generate consistent, reliable electricity is both a regional and nationwide concern.

Wind and solar farms depend on a consistent level of wind velocity and sunny periods, yet wind and solar could meet 80% of U.S. demand and regional concerns must be considered. For example, the southwestern United States is an ideal location for large commercial solar arrays. Areas in the north are more problematic since fall and winter days are shorter, reducing their ability to consistently generate energy. The Midwest is a prime location for wind-based generation since it experiences a consistent level of wind throughout the year.

Nighttime periods and cloudy days virtually eliminate solar farms as a consistent energy source while loss of available winds impacts the reliability of wind as a base load supply of energy generation.

 

Pivoting From Current Energy Usage Models
Over the last 20 years, utilities have been heavily involved with normalizing consumer energy consumption curves, pursuing grid resilience strategies to manage variability. Due to the high cost of siting new fossil fuel facilities, building new electric grid interconnections, and the high commodity pricing for imported power, utilities were driven to modify their customers’ energy usage patterns.

These consumption regulating policies included:

  • Time of use metering to entice customers to use high energy devices at night
  • Installation of energy monitoring devices on high use customer equipment to enable the utility to reduce energy demand during peak use periods
  • Charging electric vehicles overnight

With fundamental changes occurring in how energy is generated, the availability of renewable power during low or no-sun periods and lower wind levels will require utilities to alter their energy consumption models.

 

Utilizing Government Support of New Electric Infrastructure
With the proposed government infusion of funds, including a rule to boost renewable transmission, to build and modernize infrastructures, utility leaders will be ideally positioned to drastically improve the reliability of the US electric grid.

Utilities will be involved in aggressive transmission line building projects to ensure the effective distribution of energy across multiple state lines, aligning with the U.S. grid overhaul for renewables underway today. This expansive build out of the US transmission and distribution system will create a dramatic increase in the need to accurately document the location and details of the new utility assets for current tracking and future analysis needs.

Energy leaders must seek advanced technology to provide them with solutions for precisely this purpose. Manual, paper-based field data collection must be replaced with digital workflows which automate and simplify asset data capture and analysis. Continued reliance on manual methods will cause them to lag behind the industry and impede their ability to support renewable energy for the modern era.

 

Related News

View more

Low-emissions sources are set to cover almost all the growth in global electricity demand in the next three years

IEA Electricity Market Outlook 2023-2025 projects faster demand growth as renewables and nuclear dominate supply, stabilizing power-sector carbon emissions, with Asia leading expansion despite energy crisis shocks and weather-driven volatility.

 

Key Points

IEA forecast for 2023-2025 electricity demand: renewables and nuclear meet growth as power-sector emissions hold steady.

✅ Asia drives >70% of demand growth

✅ Renewables and nuclear meet most new supply

✅ CO2 intensity declines; grid flexibility vital

 

The world’s electricity demand growth slowed only slightly in 2022, despite headwinds from the energy crisis, and is expected to accelerate in the years ahead

Renewables are set to dominate the growth of the world’s electricity supply over the next three years as, renewables eclipse coal in global generation, together with nuclear power they meet the vast majority of the increase in global demand through to 2025, making significant rises in the power sector’s carbon emissions unlikely, according to a new IEA report.

After slowing slightly last year to 2% amid the turmoil of the global energy crisis and exceptional weather conditions in some regions, the growth in world electricity demand is expected to accelerate to an average of 3% over the next three years, the IEA’s Electricity Market Report 2023 finds. Emerging and developing economies in Asia are the driving forces behind this faster pace, which is a step up from average growth of 2.4% during the years before the pandemic and above pre-pandemic levels globally.

More than 70% of the increase in global electricity demand over the next three years is expected to come from China, India and Southeast Asia, as Asia’s power use nears half of the world by mid-decade, although considerable uncertainties remain over trends in China as its economy emerges from strict Covid restrictions. China’s share of global electricity consumption is currently forecast to rise to a new record of one-third by 2025, up from one-quarter in 2015. At the same time, advanced economies are seeking to expand electricity use to displace fossil fuels in sectors such as transport, heating and industry.

“The world’s growing demand for electricity is set to accelerate, adding more than double Japan’s current electricity consumption over the next three years,” said IEA Executive Director Fatih Birol. “The good news is that renewables and nuclear power are growing quickly enough to meet almost all this additional appetite, suggesting we are close to a tipping point for power sector emissions. Governments now need to enable low-emissions sources to grow even faster and drive down emissions so that the world can ensure secure electricity supplies while reaching climate goals.”

While natural gas-fired power generation in the European Union is forecast to fall in the coming years, as wind and solar outpaced gas in 2022, based on current trends, significant growth in the Middle East is set to partly offset this decrease. Sharp spikes in natural gas prices amid the energy crisis have in turn fuelled soaring electricity prices in some markets, particularly in Europe, prompting debate in policy circles over reforms to power market design.

Meanwhile, expected declines in coal-fired generation in Europe and the Americas are likely to be matched by a rise in the Asia-Pacific region, despite increases in nuclear power deployment and restarts of plants in some countries such as Japan. This means that after reaching an all-time high in 2022, carbon dioxide (CO2) emissions from global power generation are set to remain around the same level through 2025.

The strong growth of renewables means their share of the global power generation mix is forecast to rise from 29% in 2022 to 35% in 2025, with the shares of coal- and gas-fired generation falling. As a result, the CO2 intensity of global power generation will continue to decrease in the coming years. Europe bucked this global trend last year, however. The CO2 intensity of Europe’s power generation increased as a result of higher use of coal and gas amid steep drops in output from both hydropower, due to drought, and nuclear power, due to plant closures and maintenance. This setback will be temporary, though, as Europe’s power generation emissions are expected to decrease on average by about 10% a year through 2025.

Electricity demand trends varied widely by region in 2022. India’s electricity consumption rose strongly, while China’s growth was more subdued due to its zero-Covid policy weighing heavily on economic activity. The United States recorded a robust increase in demand, driven by economic activity and higher residential use amid hotter summer weather and a colder-than-normal winter, even as electricity sales projections continue to decline according to some outlooks.

Demand in the European Union contracted due to unusually mild winter weather and a decline in electricity consumption in the industrial sector, which significantly scaled back production because of high energy prices and supply disruptions caused by Russia’s invasion of Ukraine. The 3.5% decrease in EU demand was its second largest percentage decline since the global financial crisis in 2009, with the largest being the exceptional contraction due to the COVID-19 shock in 2020.

The new IEA report notes that electricity demand and supply worldwide are becoming increasingly weather dependent, with extreme conditions a recurring theme in 2022. In addition to the drought in Europe, there were heatwaves in India, resulting in the country’s highest ever peak in power demand. Similarly, central and eastern regions of China were hit by heatwaves and drought, which caused demand for air conditioning to surge amid reduced hydropower generation in Sichuan province. The United States also saw severe winter storms in December, triggering massive power outages.

These highlight the need for faster decarbonisation and accelerated deployment of clean energy technologies, the report says. At the same time, as the clean energy transition gathers pace, the impact of weather events on electricity demand will intensify due to the increased electrification of heating, while the share of weather-dependent renewables will continue to grow in the generation mix. In such a world, increasing the flexibility of power systems, which are under growing strain across grids and markets, while ensuring security of supply and resilience of networks will be crucial.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified