Olympus to Use 100% Renewable Electricity


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Olympus Renewable Energy Initiative reduces CO2 emissions by sourcing 100% clean electricity at major Japan R&D and manufacturing sites, accelerating ESG goals toward net zero, decarbonization, and TCFD-aligned sustainability across global operations.

 

Key Points

Olympus's program to source renewable power, cut CO2, and reach net-zero site operations by 2030.

✅ 100% renewable electricity at major Japan R&D and manufacturing sites

✅ Expected 70% renewable share of electricity in FY2023

✅ Net-zero site operations targeted company-wide by 2030

 

Olympus Corporation announces that from April 2022, the company has begun to exclusively source 100% of the electricity used at its major R&D and manufacturing sites in Japan from renewable sources. As a result, CO2 emissions from Olympus Group facilities in Japan will be reduced by approximately 40,000 tons per year. The percentage of the Olympus Group's total electricity use in fiscal 2023 (ending March 2023) from renewable energy sources, including green hydrogen applications, is expected to substantially increase from approximately 14% in the previous fiscal year to approximately 70%.

Olympus has set a goal of achieving net zero CO2 emissions from its site operations by 2030, as part of its commitment to achieving environmentally responsible business growth and creating a sustainable society, aligning with Europe's push for electrification to address climate goals. This is a key goal in line with Olympus Corporation's ESG materiality targets focused on the theme of a "carbon neutral society and circular economy."

The company has already introduced a wide range of initiatives to reduce CO2 emissions. This includes the use of 100% renewable energy at some manufacturing sites in Europe, despite electricity price volatility in the region, and the United States, the installation of solar power generation facilities at some manufacturing sites in Japan, and support of the recommendations made by the Task Force on Climate-related Financial Disclosures (TCFD), alongside developments such as Honda's Ontario battery investment that signal rapid electrification.

To achieve its carbon neutral goal, Olympus will continue to optimize manufacturing processes and promote energy-saving measures, and notes that policy momentum from Canada's EV sales regulations and EPA emissions limits is accelerating complementary electrification trends, is committed to further accelerate the shift to renewable energy sources across the company, thereby contributing to the decarbonization of society on a global level, as reflected in regional labor markets like Ontario's EV jobs boom that accompany the transition.

 

Related News

Related News

Intersolar Europe restart 2021: solar power is becoming increasingly popular in Poland

Poland Solar PV Boom drives record installations, rooftop and utility-scale growth, EU-aligned incentives, net metering, PPAs, and auctions, pushing capacity toward 8.3 GW by 2024 while prosumers, grid upgrades, and energy management expand.

 

Key Points

A rapid expansion of Poland's PV market, driven by incentives, PPAs, and prosumers across rooftop and utility-scale.

✅ 2.2 GW added in 2020, triple 2019, led by small-scale prosumers

✅ Incentives: My Current, Clean Air, Agroenergia, net metering

✅ Growth toward 8.3 GW by 2024; PPAs and auctions scale utility

 

Photovoltaics (PV) is booming in Poland. According to SolarPower Europe, 2.2 gigawatts (GW) of solar power was installed in the country in 2020 - nearly three times as much as the 823 megawatts (MW) installed in 2019. This places Poland fourth across Europe, behind Germany, where a solar power boost has been underway (4.8 GW added in 2020), the Netherlands (2.8 GW) and Spain (2.6 GW). So all eyes in the industry are on the up-and-coming Polish market. The solar industry will come together at Intersolar Europe Restart 2021, taking place from October 6 to 8 at Messe München. As part of The smarter E Europe Restart 2021, manufacturers, suppliers, distributors and service providers will all present their products and innovations at the world's leading exhibition for the solar industry.

All signs point to continued strong growth, with renewables on course to set records across markets. An intermediate, more conservative EU Market Outlook forecast from SolarPower Europe expects the Polish solar market to grow by 35 percent annually, meaning that it will have achieved a PV capacity of 8.3 GW by 2024 as solar reshapes Northern Europe's power prices over the medium term. "PV in Poland is booming at every level - from private and commercial PV rooftop systems to large free-standing installations," says Dr. Stanislaw Pietruszko, President of the Polish Society for Photovoltaics (PV Poland). According to the PV Poland, the number of registered small-scale systems - those under 50 kilowatts (kW) - with an average capacity of 6.5 kilowatts (kW) grew from 155,000 (992 MW) at the end of 2019 to 457,400 (3 GW) by the end of 2020. These small-scale systems account for 75 percent of all PV capacity installed in Poland. Larger PV projects with a capacity of 4 GW have already been approved for grid connection, further attesting to the forecast growth.

8,000 people employed in the PV industry
Andrzej Kazmierski, Deputy Director of the Department for Low-emission Economy within the Polish Ministry of Economic Development, Labour and Technology, explained in the Intersolar Europe webinar "A Rising Star: PV Market Poland" at the end of March 2021 that the PV market volume in Poland currently amounts to 2.2 billion euros, with 8,000 people employed in the industry. According to Kazmierski, the implementation of the Renewable Energy Directive (RED II) in the EU, intended to promote energy communities and collective prosumers as well as long-term power purchase agreements (PPAs), will be a critical challenge, and ongoing Berlin PV barriers debates highlight the importance of regulatory coordination. Renewable energy must be integrated with greater focus into the energy system, and energy management and the grids themselves must be significantly expanded as researchers work to improve solar and wind integration. The government seeks to create a framework for stable market growth as well as to strengthen local value creation.


Government incentive programs in Poland
In addition to drastically reduced PV costs, reinforced by China's rapid PV expansion, and growing environmental consciousness, the Polish PV market is being advanced by an array of government-funded incentive programs such as My Current (230 million euros) and Clean Air as well as thermo-modernization. The incentive program Agroenergia (50 million euros) is specifically geared toward farmers and offers low-interest loans or direct subsidies for the construction of solar installations with capacities between 50 kW and 1 MW. Incentive programs for net metering have been extended to small and medium enterprises to provide stronger support for prosumers. Solar installations producing less than 50 kW benefit from a lower value-added tax of just eight percent (compared to the typical 23 percent). The acquisition and installation costs can be offset against income, in turn reducing income tax.
Government-funded auctions are also used to finance large-scale facilities, where the government selects operators of systems running on renewable energy who offer the lowest electricity price and funds the construction of their facilities. The winner of an auction back in December was an investment project for the construction of a 200 MW solar park in the Pomeranian Voivodeship.


Companies turn to solar power for self-consumption
Furthermore, Poland is now playing host to larger solar projects that do not rely on subsidies, as Europe's demand lifts US equipment makers amid supply shifts, such as a 64 MW solar farm in Witnica being built on the border to Germany whose electricity will be sold to a cement factory via a multi-year power purchase agreement. A new factory in Konin (Wielkopolska Voivodeship) for battery cathode materials to be used in electric cars will be powered with 100-percent renewable electricity. Plus, large companies are increasingly turning to solar power for self-consumption. For example, a leading manufacturer of metal furniture in Suwalki (Podlaskie Voivodeship) in northeastern Poland has recently started meeting its demand using a 2 MW roof-mounted and free-standing installation on the company premises.

 

Related News

View more

Wind Turbine Operations and Maintenance Industry Detailed Analysis and Forecast by 2025

Wind Turbine Operations and Maintenance Market is expanding as offshore and onshore renewables scale, driven by aging turbines, investment, UAV inspections, and predictive O&M services, despite skills shortages and rising logistics costs.

 

Key Points

Sector delivering inspection, repair, and predictive services to keep wind assets reliable onshore and offshore.

✅ Aging turbines and investor funding drive service demand

✅ UAV inspections and predictive analytics cut downtime

✅ Offshore growth offsets skills and logistics constraints

 

Wind turbines are capable of producing vast amounts of electricity at competitive prices, provided they are efficiently maintained and operated. Being a cleaner, greener source of energy, wind energy is also more reliable than other sources of power generation, with growth despite COVID-19 recorded across markets. Therefore, the demand for wind energy is slated to soar over the next few years, fuelling the growth of the global market for wind turbine operations and maintenance. By application, offshore and onshore wind turbine operations and maintenance are the two major segments of the market.

 

Global Wind Turbine Operations and Maintenance Market: Key Trends

The rising number of aging wind turbines emerges as a considerable potential for the growth of the market. The increasing downpour of funds from financial institutions and public and private investors has also been playing a significant role in the expansion of the market, with interest also flowing toward wave and tidal energy technologies that inform O&M practices. On the other hand, insufficient number of skilled personnel, coupled with increasing costs of logistics, remains a key concern restricting the growth of the market. However, the growing demand for offshore wind turbines across the globe is likely to materialize into fresh opportunities.

 

Global Wind Turbine Operations and Maintenance Market: Market Potential

A number of market players have been offering diverse services with a view to make a mark in the global market for wind turbine operations and maintenance. For instance, Scotland-based SgurrEnergy announced the provision of unmanned aerial vehicles (UAVs), commonly known as drones, as a part of its inspection services. Detailed and accurate assessments of wind turbines can be obtained through these drones, which are fitted with cameras, with four times quicker inspections than traditional methods, claims the company. This new approach has not only reduced downtime, but also has prevented the risks faced by inspection personnel.

The increasing number of approvals and new projects is preparing the ground for a rising demand for wind turbine operations and maintenance. In March 2017, for example, the Scottish government approved the installation of eight 6-megawatt wind turbines off the coast of Aberdeen, towards the northeast. The state of Maryland in the U.S. will witness the installation of a new offshore wind plant, encouraging greater adoption of wind energy in the country. The U.K., a leader in UK offshore wind deployment, has also been keeping pace with the developments, with the installation of a 400-MW offshore wind farm, off the Sussex coast throughout 2017. The Rampion project will be developed by E.on, who has partnered with Canada-based Enbridge Inc. and the UK Green Investment Bank plc.

 

Global Wind Turbine Operations and Maintenance Market: Regional Outlook

Based on geography, the global market for wind turbine operations and maintenance has been segmented into Asia Pacific, Europe, North America, and Rest of the World (RoW). Countries such as India, China, Spain, France, Germany, Scotland, and Brazil are some of the prominent users of wind energy and are therefore likely to account for a considerable share in the market. In the U.S., favorable government policies are backing the growth of the market, though analyses note that a prolonged solar ITC extension could pressure wind competitiveness. For instance, in 2013, a legislation that permits energy companies to transfer the costs of offshore wind credits to ratepayers was approved. Asia Pacific is a market with vast potential, with India and China being major contributors aiding the expansion of the market.

 

Global Wind Turbine Operations and Maintenance Market: Competitive Analysis

Some of the major companies operating in the global market for wind turbine operations and maintenance are Gamesa Corporacion Tecnologica, Xinjiang Goldwind Science & Technologies, Vestas Wind Systems A/S, Upwind Solutions, Inc, GE Wind Turbine, Guodian United Power Technology Company Ltd., Nordex SE, Enercon GmbH, Siemens Wind Power GmbH, and Suzlon Group. A number of firms have been focusing on mergers and acquisitions to extend their presence across new regions.

 

Related News

View more

Enabling storage in Ontario's electricity system

OEB Energy Storage Integration advances DERs and battery storage through CDM guidelines, streamlined connection requirements, IESO-aligned billing, grid modernization incentives, and the Innovation Sandbox, providing regulatory clarity and consumer value across Ontario's electricity system.

 

Key Points

A suite of OEB initiatives enabling storage and DERs via modern rules, cost recovery, billing reforms, and pilots.

✅ Updated CDM guidelines recognize storage at all grid levels.

✅ Standardized connection rules for DERs effective Oct 1, 2022.

✅ Innovation Sandbox supports pilots and temporary regulatory relief.

 

The energy sector is in the midst of a significant transition, where energy storage is creating new opportunities to provide more cost-effective, reliable electricity service. The OEB recognizes it has a leadership role to play in providing certainty to the sector while delivering public value, and a responsibility to ensure that the wider impacts of any changes to the regulatory framework, including grid rule changes, are well understood. 

Accordingly, the OEB has led a host of initiatives to better enable the integration of storage resources, such as battery storage, where they provide value for consumers.

Energy storage integration – our journey 
We have supported the integration of energy storage by:

Incorporating energy storage in Conservation and Demand Management (CDM) Guidelines for electricity distributors. In December 2021, the OEB released updated CDM guidelines that, among other things, recognize storage – either behind-the-meter, at the distribution level or the transmission level – as a means of addressing specific system needs. They also provide options for distributor cost recovery, aligning with broader industrial electricity pricing discussions, where distributor CDM activities also earn revenues from the markets administered by the Independent Electricity System Operator (IESO).
 
Modernizing, standardizing and streamlining connection requirements, as well as procedures for storage and other DERs, to help address Ontario's emerging supply crunch while improving project timelines. This was done through amendments to the Distribution System Code that take effect October 1, 2022, as part of our ongoing DER Connections Review.
 
Facilitating the adoption of Distributed Energy Resources (DERs), which includes storage, to enhance value for consumers by considering lessons from BESS in New York efforts. In March 2021, we launched the Framework for Energy Innovation consultation to achieve that goal. A working group is reviewing issues related to DER adoption and integration. It is expected to deliver a report to the OEB by June 2022 with recommendations on how electricity distributors can assess the benefits and costs of DERs compared to traditional wires and poles, as well as incentives for distributors to adopt third-party DER solutions to meet system needs.
 
Examining the billing of energy storage facilities. A Generic Hearing on Uniform Transmission Rates is underway. In future phases, this proceeding is expected to examine the basis for billing energy storage facilities and thresholds for gross-load billing. Gross-load billing demand includes not just a customer’s net load, but typically any customer load served by behind-the-meter embedded generation/storage facilities larger than one megawatt (or two megawatts if the energy source is renewable).
 
Enabling electricity distributors to use storage to meet system needs. Through a Bulletin issued in August 2020, we gave assurance that behind-the-meter storage assets may be considered a distribution activity if the main purpose is to remediate comparatively poor reliability of service.
 
Offering regulatory guidance in support of technology integration, including for storage, through our OEB Innovation Sandbox, as utilities see benefits across pilot deployments. Launched in 2019, the Innovation Sandbox can also provide temporary relief from a regulatory requirement to enable pilot projects to proceed. In January 2022, we unveiled Innovation Sandbox 2.0, which improves clarity and transparency while providing opportunities for additional dialogue. 
Addressing the barriers to storage is a collective effort and we extend our thanks to the sector organizations that have participated with us as we advanced these initiatives. In that regard, we provided an update to the IESO on these initiatives for a report it submitted to the Ministry of Energy, which is also exploring a hydrogen economy to support decarbonization.

 

Related News

View more

Why the Texas grid causes the High Plains to turn off its wind turbines

Texas High Plains Wind Energy faces ERCOT transmission congestion, limiting turbines in the Panhandle from stabilizing the grid as gas prices surge, while battery storage and solar could enhance reliability and lower power bills statewide.

 

Key Points

A major Panhandle wind resource constrained by ERCOT transmission, impacting grid reliability and electricity rates.

✅ Over 11,000 turbines can power 9M homes in peak conditions

✅ Transmission congestion prevents flow to major load centers

✅ Storage and solar can bolster reliability and reduce bills

 

Texas’s High Plains region, which covers 41 counties in the Texas Panhandle and West Texas, is home to more than 11,000 wind turbines — the most in any area of the state.

The region could generate enough wind energy to power at least 9 million homes. Experts say the additional energy could help provide much-needed stability to the electric grid during high energy-demand summers like this one, and even lower the power bills of Texans in other parts of the state.

But a significant portion of the electricity produced in the High Plains stays there for a simple reason: It can’t be moved elsewhere. Despite the growing development of wind energy production in Texas, the state’s transmission network, reflecting broader grid integration challenges across the U.S., would need significant infrastructure upgrades to ship out the energy produced in the region.

“We’re at a moment when wind is at its peak production profile, but we see a lot of wind energy being curtailed or congested and not able to flow through to some of the higher-population areas,” said John Hensley, vice president for research and analytics at the American Clean Power Association. “Which is a loss for ratepayers and a loss for those energy consumers that now have to either face conserving energy or paying more for the energy they do use because they don’t have access to that lower-cost wind resource.”

And when the rest of the state is asked to conserve energy to help stabilize the grid, the High Plains has to turn off turbines to limit wind production it doesn’t need.

“Because there’s not enough transmission to move it where it’s needed, ERCOT has to throttle back the [wind] generators,” energy lawyer Michael Jewell said. “They actually tell the wind generators to stop generating electricity. It gets to the point where [wind farm operators] literally have to disengage the generators entirely and stop them from doing anything.”

Texans have already had a few energy scares this year amid scorching temperatures and high energy demand to keep homes cool. The Electric Reliability Council of Texas, which operates the state’s electrical grid, warned about drops in energy production twice last month and asked people across the state to lower their consumption to avoid an electricity emergency.

The energy supply issues have hit Texans’ wallets as well. Nearly half of Texas’ electricity is generated at power plants that run on the state’s most dominant energy source, natural gas, and its price has increased more than 200% since late February, causing elevated home utility bills.

Meanwhile, wind farms across the state account for nearly 21% of the state’s power generation. Combined with wind production near the Gulf of Mexico, Texas produced more than one-fourth of the nation’s wind-powered electric generation last year.

Wind energy is one of the lowest-priced energy sources because it is sold at fixed prices, turbines do not need fuel to run and the federal government provides subsidies. Texans who get their energy from wind farms in the High Plains region usually pay less for electricity than people in other areas of the state. But with the price of natural gas increasing from inflation, Jewell said areas where wind energy is not accessible have to depend on electricity that costs more.

“Other generation resources are more expensive than what [customers] would have gotten from the wind generators if they could move it,” Jewell said. “That is the definition of transmission congestion. Because you can’t move the cheaper electricity through the grid.”

A 2021 ERCOT report shows there have been increases in stability constraints for wind energy in recent years in both West and South Texas that have limited the long-distance transfer of power.

“The transmission constraints are such that energy can’t make it to the load centers. [High Plains wind power] might be able to make it to Lubbock, but it may not be able to make it to Dallas, Fort Worth, Houston or Austin,” Jewell said. “This is not an insignificant problem — it is costing Texans a lot of money.”

Some wind farms in the High Plains foresaw there would be a need for transmission. The Trent Wind Farm was one of the first in the region. Beginning operations in 2001, the wind farm is between Abilene and Sweetwater in West Texas and has about 100 wind turbines, which can supply power to 35,000 homes. Energy company American Electric Power built the site near a power transmission network and built a short transmission line, so the power generated there does go into the ERCOT system.

But Jewell said high energy demand and costs this summer show there’s a need to build additional transmission lines to move more wind energy produced in the High Plains to other areas of the state.

Jewell said the Public Utility Commission, which oversees the grid, is conducting tests to determine the economic benefits of adding transmission lines from the High Plains to the more than 52,000 miles of lines that already connect to the grid across the state. As of now, however, there is no official proposal to build new lines.

“It does take a lot of time to figure it out — you’re talking about a transmission line that’s going to be in service for 40 or 50 years, and it’s going to cost hundreds of millions of dollars,” Jewell said. “You want to be sure that the savings outweigh the costs, so it is a longer process. But we need more transmission in order to be able to move more energy. This state is growing by leaps and bounds.”

A report by the American Society of Civil Engineers released after the February 2021 winter storm stated that Texas has substantial and growing reliability and resilience problems with its electric system.

The report concluded that “the failures that caused overwhelming human and economic suffering during February will increase in frequency and duration due to legacy market design shortcomings, growing infrastructure interdependence, economic and population growth drivers, and aging equipment even if the frequency and severity of weather events remains unchanged.”

The report also stated that while transmission upgrades across the state have generally been made in a timely manner, it’s been challenging to add infrastructure where there has been rapid growth, like in the High Plains.

Despite some Texas lawmakers’ vocal opposition against wind and other forms of renewable energy, and policy shifts like a potential solar ITC extension can influence the wind market, the state has prime real estate for harnessing wind power because of its open plains, and farmers can put turbines on their land for financial relief.

This has led to a boom in wind farms, even with transmission issues, and nationwide renewable electricity surpassed coal in 2022 as deployment accelerated. Since 2010, wind energy generation in Texas has increased by 15%. This month, the Biden administration announced the Gulf of Mexico’s first offshore wind farms will be developed off the coasts of Texas and Louisiana and will produce enough energy to power around 3 million homes.

“Texas really does sort of stand head and shoulders above all other states when it comes to the actual amount of wind, solar and battery storage projects that are on the system,” Hensley said.

One of the issues often brought up with wind and solar farms is that they may not be able to produce as much energy as the state needs all of the time, though scientists are pursuing improvements to solar and wind to address variability. Earlier this month, when ERCOT asked consumers to conserve electricity, the agency listed low wind generation and cloud coverage in West Texas as factors contributing to a tight energy supply.

Hensley said this is where battery storage stations can help. According to the U.S. Energy Information Administration, utility-scale batteries tripled in capacity in 2021 and can now store up to 4.6 gigawatts of energy. Texas has been quickly developing storage projects, spurred by cheaper solar batteries, and in 2011, Texas had only 5 megawatts of battery storage capacity; by 2020, that had ballooned to 323.1 megawatts.

“Storage is the real game-changer because it can really help to mediate and control a lot of the intermittency issues that a lot of folks worry about when they think about wind and solar technology,” Hensley said. “So being able to capture a lot of that solar that comes right around noon to [1 p.m.] and move it to those evening periods when demand is at its highest, or even move strong wind resources from overnight to the early morning or afternoon hours.”

Storage technology can help, but Hensley said transmission is still the big factor to consider.

Solar is another resource that could help stabilize the grid. According to the Solar Energy Industries Association, Texas has about 13,947 megawatts of solar installed and more than 161,000 installations. That’s enough to power more than 1.6 million homes.

This month, the PUC formed a task force to develop a pilot program next year that would create a pathway for solar panels and batteries on small-scale systems, like homes and businesses, to add that energy to the grid, similar to a recent virtual power plant in Texas rollout. The program would make solar and batteries more accessible and affordable for customers, and it would pay customers to share their stored energy to the grid as well.

Hensley said Texas has the most clean-energy projects in the works that will likely continue to put the region above the rest when it comes to wind generation.

“So they’re already ahead, and it looks like they’re going to be even farther ahead six months or a year down the road,” he said.

 

Related News

View more

Is residential solar worth it?

Home Solar Cost vs Utility Bills compares electricity rates, ROI, incentives, and battery storage, explaining payback, financing, and grid fees while highlighting long-term savings, rate volatility, and backup power resilience for homeowners.

 

Key Points

Compares home solar pricing and financing to utility rates, outlining savings, incentives, ROI, and backup power value.

✅ Average retail rates rose 59% in 20 years; volatility persists

✅ Typical 7.15 kW system costs $18,950 before incentives

✅ Federal ITC and state rebates improve ROI and payback

 

When shopping for a home solar system, sometimes the quoted price can leave you wondering why someone would move forward with something that seems so expensive. 

When compared with the status quo, electricity delivered from the utility, the price may not seem so high after all. First, pv magazine will examine the status quo, and how much you can expect to pay for power if you don’t get solar panels. Then, we will examine the average cost of solar arrays today and introduce incentives that boost home solar value.

The cost of doing nothing

Generally, early adopters have financially benefited from going solar by securing price certainty and stemming the impact of steadily increasing utility-bill costs, particularly for energy-insecure households who pay more for electricity.

End-use residential electric customers pay an average of $0.138/kWh in the United States, according to the Energy Information Administration (EIA). In California, that rate is $0.256/kWh, it averages $0.246/kWh across New England, $0.126/kWh in the South Atlantic region, and $0.124/kWh in the Mountain West region.

EIA reports that the average home uses 893 kWh per month, so based on the average retail rate of $0.138/kWh, that’s an electric bill of about $123 monthly, or $229 monthly in California.

Over the last 20 years, EIA data show that retail electricity prices have increased 59% across the United States, with evidence indicating that renewables are not making electricity more expensive, suggesting other factors have driven costs higher, or 2.95% each year.

This means based on historical rates, the average US homeowner can expect to pay $39,460 over the next 20 years on electricity bills. On average, Californians could pay $73,465 over 20 years.

Recent global events show just how unstable prices can be for commodities, and energy is no exception here, with solar panel sales doubling in the UK as homeowners look to cut soaring bills. What will your utility bill cost in 20 years?

These estimated bills also assume that energy use in the home is constant over 20 years, but as the United States electrifies its homes, adds more devices, and adopts electric vehicles, it is fair to expect that many homeowners will use more electricity going forward.

Another factor that may exacerbate rate raising is the upgrade of the national transmission grid. The infrastructure that delivers power to our homes is aging and in need of critical upgrades, and it is estimated that a staggering $500 billion will be spent on transmission buildout by 2035. This half-trillion-dollar cost gets passed down to homeowners in the form of raised utility bill rates.

The benefit of backup power may increase as time goes on as well. Power outages are on the rise across the United States, and recent assessments of the risk of power outages underscore that outages related to severe weather events have doubled in the last 20 years. Climate change-fueled storms are expected to continue to rise, so the role of battery backup in providing reliable energy may increase significantly.

The truth is, we don’t know how much power will cost in 20 years. Though it has increased 59% across the nation in the last 20 years, there is no way to be certain what it will cost going forward. That is where solar has a benefit over the status quo. By purchasing solar, you are securing price certainty going forward, making it easier to budget and plan for the future.

So how do these costs compare to going solar?

Cost of solar

As a general trend, prices for solar have fallen. In 2010, it cost about $40,000 to install a residential solar system, and since then, prices have fallen by as much as 70%, and about 37% in the last five years. However, prices have increased slightly in 2022 due to shipping costs, materials costs, and possible tariffs being placed on imported solar goods, and these pressures aren’t expected to be alleviated in the near-term.

When comparing quotes, the best metric for an apples-to-apples comparison is the cost per watt. Price benchmarking by the National Renewable Energy Laboratory shows the average cost per watt for the nation was $2.65/W DC in 2021, and the average system size was 7.15 kW. So, an average system would cost about $18,950. With 12.5 kWh of battery energy storage, the average cost was $4.26/W, representing an average price tag of $30,460 with batteries included.

The prices above do not include any incentives. Currently, the federal government applies a 26% investment tax credit to the system, bringing down system costs for those who qualify to $14,023 without batteries, and $22,540 with batteries. Compared to the potential $39,460 in utility bills, buying a solar system outright in cash appears to show a clear financial benefit.

Many homeowners will need financing to buy a solar system. Shorter terms can achieve rates as low as 2.99% or less, but financing for a 20-year solar loan typically lands between 5% to 8% or more. Based on 20-year, 7% annual percentage rate terms, a $14,000 system would total about $26,000 in loan payments over 20 years, and the system with batteries included would total about $42,000 in loan payments.

Often when you adopt solar, the utility will still charge you a grid access fee even if your system produces 100% of your needs. These vary from utility to utility but are often around $10 a month. Over 20 years, that equates to about $2,400 that you’ll still need to pay to the utility, plus any costs for energy you use beyond what your system provides.

Based on these average figures, a homeowner could expect to see as much as $12,000 in savings with a 20-year financed system. Homeowners in regions whose retail energy price exceeds the national average could see savings in multiples of that figure.

Though in this example batteries appear to be marginally more expensive than the status quo over a 20-year term, they improve the home by adding the crucial service of backup power, and as battery costs continue to fall they are increasingly being approved to participate in grid services, potentially unlocking additional revenue streams for homeowners.

Another thing to note is most solar systems are warranted for 25 years rather than the 20 used in the status quo example. A panel can last a good 35 years, and though it will begin to produce less in old age, any power produced by a panel you own is money back in your pocket.

Incentives and home value

Many states have additional incentives to boost the value of solar, too, and federal proposals to increase solar generation tenfold could remake the U.S. electricity system. Checking the Database of State Incentives for Renewables (DSIRE) will show the incentives available in your state, and a solar representative should be able to walk you through these benefits when you receive a quote. State incentives change frequently and vary widely, and in some cases are quite rich, offering thousands of dollars in additional benefits.

Another factor to consider is home value. A study by Zillow found that solar arrays increase a home value by 4.1% on average. For a $375,000 home, that’s an increase of $15,375 in value. In most states home solar is exempt from property taxes, making it a great way to boost value without paying taxes for it.

Bottom line

We’ve shared a lot of data on national averages and the potential cost of power going forward, but is solar for you? In the past, early adopters have been rewarded for going solar, and celebrate when they see $0 electric bills paid to the utility company.

Each home is different, each utility is different, and each homeowner has different needs, so evaluating whether solar is right for your home will take a little time and analysis. Representatives from solar companies will walk you through this analysis, and it’s generally a good rule of thumb to get at least three quotes for comparison.

A great resource for starting your research is the Solar Calculator developed by informational site SolarReviews. The calculator offers a quote and savings estimate based on local rates and incentives available to your area. The website also features reviews of installers, equipment, and more.

Some people will save tens of thousands of dollars in the long run with solar, while others may witness more modest savings. Solar will also provide the home clean, local energy, and U.S. solar generation is projected to reach 20% by 2050 as capacity expands, making an impact both on mitigating climate change and in supporting local jobs.

One indisputable benefit of solar is that it will offer greater clarity into what your electricity bills will cost over the next couple of decades, rather than leaving you exposed to whatever rates the utility company decides to charge in the future.

 

Related News

View more

Electricity or hydrogen - What is the future of vehicles?

Hydrogen vs Battery-Electric Vehicles compare FCEV and BEV tech for range, charging and refueling, zero-emissions, infrastructure in Canada, highlighting urban commuting, heavy-duty use, fast 5-minute fills, 30-minute fast charging, and renewable hydrogen from surplus wind.

 

Key Points

Hydrogen FCEVs suit long range and heavy-duty use; BEVs excel in urban commutes with overnight charging.

✅ FCEVs refuel in about 5 minutes; ideal for long range and heavy duty.

✅ BEVs fit urban commuting with home or night charging; fewer stops.

✅ Hydrogen enables energy storage from surplus wind and hydro power.

 

We’re constantly hearing that battery-electric cars are the future, as automakers pursue Canada-U.S. collaboration on EVs across the industry, so I was surprised to see that companies like Toyota, Honda and Hyundai are making hydrogen fuel-cell cars. Which technology is better? Could hydrogen still win? – Pete, Kingston

They’re both in their electric youth, relatively speaking, but the ultimate winner in the race between hydrogen and battery electric will likely be both.

“It’s not really a competition – they’ll both co-exist and there will also be plug-in hydrogen hybrids,” said Walter Merida, director of the Clean Energy Research Centre at the University of British Columbia. “Battery-electric vehicles [BEVs] are better for an urban environment where you have time to recharge and fuel-cell electric vehicles [FCEVs] are better-suited for long range and heavy duty.”

Last year, there were 9,840 BEVs sold in Canada, up from 5,130 the year before. If you include plug-in hybrids, the number sold in 2017 grows to 18,560, though many buyers now face EV shortages and wait times amid high gasoline prices.

And how many hydrogen vehicles were sold in Canada last year?

#google#

None – although Hyundai leased out about a half-dozen hydrogen Tucsons in British Columbia for $599 a month, which included fuel from Powertech labs in Surrey.

In January, Toyota announced it will be selling the Mirai in Quebec later this year. And Hyundai said it will offer about 25 Nexos for sale.

“It’s chicken or egg,” said Michael Fowler, a professor of chemical engineering at the University of Waterloo. “Car manufacturers won’t release cars into the market unless there’s a refuelling station and companies won’t build a refuelling station unless there are cars to fuel.”

Right now, there are no retail hydrogen refuelling stations in Canada. While there are plans under way to add stations in B.C., Ontario and Quebec, we’re still behind Japan, Europe and California, though experts outline how Canada can capitalize on the U.S. EV pivot to accelerate progress.

“In 2007, Ontario had a hydrogen strategy and they were starting to develop hydrogen vehicles and they dropped that in favour of the Green Energy Act and it was a complete disaster,” Fowler said. “The reality is the government of the day listened to the wrong people.”

It’s tough to pinpoint a single reason why governments focused on building charging stations instead of hydrogen stations, Merida said.

“It’s ironic, you know – the fuel cell was invented in Vancouver. Geoffrey Ballard was one of the pioneers of this technology,” Merida said. “And for a while, Canada was a global leader, but eventually government programs were discontinued and that was very disruptive to the sector.”

 

HYDROGEN FOR THE MASSES?

While we tend to think of BEVs when we think of electric cars, fuel-cell vehicles are electric, too; the hydrogen passes through a fuel cell stack, where it mixes with oxygen from the atmosphere to produce an electric current.

That current powers electric motors to drive the wheels and extra energy goes to a battery pack that’s used to boost acceleration (it’s also charged by regenerative braking).

Except for water that drips out of the hydrogen car, they’re both zero-emission on the road.

But a big advantage for hydrogen is that, if you can find a station, you can pull up to a pump and fill up in five minutes or less – the same way we do now at nearly 12,000 gas stations.

Compare that with fast-charging stations that can charge a battery to 80 per cent in 30 minutes – each station only handles one car at a time. What if you get there and it’s busy – or broken? And right now, there are only 139 of them in Canada.

And at slower, Level 2 stations, cars have to be plugged in for hours to recharge.

In a 2018 KPMG survey of auto executives, 55 per cent said that moves to switch entirely to pure battery-electric vehicles will fail because there won’t be enough charging stations, and some critics argue the 2035 EV mandate is delusional given infrastructure constraints.

“Ontario just invested $20-million in public charging stations and that’s going to service 100 or 200 cars a day,” Fowler said. “If you were to invest that in hydrogen stations, you’d be able to service thousands of cars a day.”

And when you do charge at a station, you might not be using clean power, as 18% of Canada’s 2019 electricity came from fossil fuels according to national data, Fowler said.

“At least in Ontario, in order to charge at a public station during the day, you have to rev up a natural-gas plant somewhere,” Fowler said. “So the only way you’re getting zero emissions is when you can charge at night using excess nuclear, hydro or wind that’s not being used.”

But hydrogen can be made when surplus green energy is stored, Fowler said.

“In Ontario, we have lots of wind in the spring and the fall, when we don’t need the electricity,” he said.

And eventually, you’ll be able to connect your fuel-cell vehicle to the grid and sell the power it produces, Merida said.

“The amount of power generation you have in these moving platforms is quite significant,” Merida said.

There are other strikes against battery-electric, including reduced range by 30 per cent or more in the winter and the need to upgrade infrastructure such as electrical transformers so they can handle more than just a handful of cars on each street charging at night, Fowler said.

In that KPMG survey, executives predicted a nearly equal split between BEVs, FCEVs, hybrids and gasoline engines by 2040.

“Battery-electric vehicles will serve a certain niche – they’ll be small commuter vehicles in certain cities,” Fowler said. “But for the way we use cars today – the family car, the suburban car, buses and probably trucks – it will be the fuel cell.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.