Olympus to Use 100% Renewable Electricity


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Olympus Renewable Energy Initiative reduces CO2 emissions by sourcing 100% clean electricity at major Japan R&D and manufacturing sites, accelerating ESG goals toward net zero, decarbonization, and TCFD-aligned sustainability across global operations.

 

Key Points

Olympus's program to source renewable power, cut CO2, and reach net-zero site operations by 2030.

✅ 100% renewable electricity at major Japan R&D and manufacturing sites

✅ Expected 70% renewable share of electricity in FY2023

✅ Net-zero site operations targeted company-wide by 2030

 

Olympus Corporation announces that from April 2022, the company has begun to exclusively source 100% of the electricity used at its major R&D and manufacturing sites in Japan from renewable sources. As a result, CO2 emissions from Olympus Group facilities in Japan will be reduced by approximately 40,000 tons per year. The percentage of the Olympus Group's total electricity use in fiscal 2023 (ending March 2023) from renewable energy sources, including green hydrogen applications, is expected to substantially increase from approximately 14% in the previous fiscal year to approximately 70%.

Olympus has set a goal of achieving net zero CO2 emissions from its site operations by 2030, as part of its commitment to achieving environmentally responsible business growth and creating a sustainable society, aligning with Europe's push for electrification to address climate goals. This is a key goal in line with Olympus Corporation's ESG materiality targets focused on the theme of a "carbon neutral society and circular economy."

The company has already introduced a wide range of initiatives to reduce CO2 emissions. This includes the use of 100% renewable energy at some manufacturing sites in Europe, despite electricity price volatility in the region, and the United States, the installation of solar power generation facilities at some manufacturing sites in Japan, and support of the recommendations made by the Task Force on Climate-related Financial Disclosures (TCFD), alongside developments such as Honda's Ontario battery investment that signal rapid electrification.

To achieve its carbon neutral goal, Olympus will continue to optimize manufacturing processes and promote energy-saving measures, and notes that policy momentum from Canada's EV sales regulations and EPA emissions limits is accelerating complementary electrification trends, is committed to further accelerate the shift to renewable energy sources across the company, thereby contributing to the decarbonization of society on a global level, as reflected in regional labor markets like Ontario's EV jobs boom that accompany the transition.

 

Related News

Related News

Total Cost of EV Ownership: New Data Reveals Long-Term Savings

Electric vehicles may cost more upfront but often save money long-term. A new MIT study shows the total cost of EV ownership is lower than gas cars when factoring in fuel, maintenance, and emissions.

 

Total cost of EV ownership is the focus of new MIT research showing electric vehicles offer both financial and environmental benefits over time.

✅ Electric vehicles cost more upfront but save money over their lifetime through lower fuel and maintenance costs

✅ MIT study confirms EVs have lower emissions and total ownership costs than most gas-powered cars

✅ New interactive tool helps consumers compare climate and cost impacts of EVs, hybrids, and traditional vehicles

Electric vehicles are better for the climate than gas‑powered cars, but many Americans are still reluctant to buy them. One reason: The larger upfront cost.

New data published Thursday shows that despite the higher sticker price, electric cars may actually save drivers money in the long-run.

To reach this conclusion, a team at the Massachusetts Institute of Technology calculated both the carbon dioxide emissions and full lifetime cost — including purchase price, maintenance and fuel — for nearly every new car model on the market.

They found electric cars were easily more climate friendly than gas-burning ones. Over a lifetime, they were often cheaper, too.

Jessika Trancik, an associate professor of energy studies at M.I.T. who led the research, said she hoped the data would “help people learn about how those upfront costs are spread over the lifetime of the car.”

For electric cars, lower maintenance costs and the lower costs of charging compared with gasoline prices tend to offset the higher upfront price over time. (Battery-electric engines have fewer moving parts that can break compared with gas-powered engines and they don’t require oil changes. Electric vehicles also use regenerative braking, which reduces wear and tear.)

As EV adoption continues to boom, more consumers are realizing the long-term savings and climate benefits. Ontario’s investment in EV charging stations reflects how infrastructure is beginning to catch up with demand. Despite regional energy pricing differences, EV charging costs remain lower than gasoline in nearly every U.S. city.

The cars are greener over time, too, despite the more emissions-intensive battery manufacturing process. Dr. Trancik estimates that an electric vehicle’s production emissions would be offset in anywhere from six to 18 months, depending on how clean the energy grid is where the car is charging.

In some areas, EVs are even being used to power homes, enhancing their value as a sustainable investment. Recent EPA rules aim to boost EV sales, further signaling government support. California leads the nation in EV charging infrastructure, setting a model for nationwide adoption.

The new data showed hybrid cars, which run on a combination of fuel and battery power, and can sometimes be plugged in, had more mixed results for both emissions and costs. Some hybrids were cheaper and spewed less planet-warming carbon dioxide than regular cars, but others were in the same emissions and cost range as gas-only vehicles.

Traditional gas-burning cars were usually the least climate friendly option, though long-term costs and emissions spanned a wide range. Compact cars were usually cheaper and more efficient, while gas-powered SUVs and luxury sedans landed on the opposite end of the spectrum.

Dr. Trancik’s team released the data in an interactive online tool to help people quantify the true costs of their car-buying decisions — both for the planet and their budget. The new estimates update a study published in 2016 and add to a growing body of research underscoring the potential lifetime savings of electric cars.

Take the Tesla Model 3, the most popular electric car in the United States. The M.I.T. team estimated the lifetime cost of the most basic model as comparable to a Nissan Altima that sells for $11,000 less upfront. (That’s even though Tesla’s federal tax incentive for electric vehicles has ended.)

Toyota’s Hybrid RAV4 S.U.V. also ends up cheaper in the long run than a similar traditional RAV4, a national bestseller, despite a higher retail price.

Hawaii, Alaska and parts of New England have some of the highest average electricity costs, while parts of the Midwest, West and South tend to have lower rates. Gas prices are lower along the Gulf Coast and higher in California. But an analysis from the Union of Concerned Scientists still found that charging a vehicle was more cost effective than filling up at the pump across 50 major American cities. “We saw potential savings everywhere,” said David Reichmuth, a senior engineer for the group’s Clean Transportation Program.

Still, the upfront cost of an electric vehicle continues to be a barrier for many would-be owners.

The federal government offers a tax credit for some new electric vehicle purchases, but that does nothing to reduce the initial purchase price and does not apply to used cars. That means it disproportionately benefits wealthier Americans. Some states, like California, offer additional incentives. President-elect Joseph R. Biden Jr. has pledged to offer rebates that help consumers swap inefficient, old cars for cleaner new ones, and to create 500,000 more electric vehicle charging stations, too.

EV sales projections for 2024 suggest continued acceleration, especially as costs fall and policy support expands. Chris Gearhart, director of the Center for Integrated Mobility Sciences at the National Renewable Energy Laboratory, said electric cars will become more price competitive in coming years as battery prices drop. At the same time, new technologies to reduce exhaust emissions are making traditional cars more expensive. “With that trajectory, you can imagine that even immediately at the purchase price level, certain smaller sedans could reach purchase price parity in the next couple of years,” Dr. Gearhart said.

 

Related Pages:

EV Boom Unexpectedly Benefits All Electricity Customers

Ontario Invests in New EV Charging Stations

EV Charging Cost Still Beats Gasoline, Study Finds

EPA Rules Expected to Boost U.S. Electric Vehicle Sales

California Takes the Lead in Electric Vehicle and Charging Station Adoption

EVs to Power Homes: New Technology Turns Cars Into Backup Batteries

U.S. Electric Vehicle Sales Soar Into 2024

 

 

View more

Tesla's lead in China's red-hot electric vehicle market is shrinking, says rival XPeng

China EV Market sees surging deliveries as Tesla, XPeng, Nio, and Li Auto race for market share, driven by tech-forward infotainment, autonomous features, and strong P7 and G3 demand, signaling intensifying competition and rapid growth.

 

Key Points

China EV Market features rapid EV sales growth led by Tesla, XPeng, Nio, and Li Auto amid tech-driven competition.

✅ XPeng deliveries up 617% YoY in June; 459% YTD growth

✅ Nio and Li Auto post triple-digit quarterly gains

✅ Tech focus: infotainment, ADAS; models P7, G3, G3i

 

XPeng President and Vice Chairman Brian Gu is quick to praise the Tesla brand and acknowledge the EV maker's "commanding" market share in China, and in key markets like the California EV market as well. 

But in the same breath, the executive at the upstart China-based EV rival said his company and peers are fast closing the competitive gap with Tesla.

"I think the Chinese players are catching up very quickly," Gu said on Yahoo Finance Live. "Our product as well as some of the other products that are being introduced by the leading players are very good, and have comparable specs — as well as better features I think compared to Tesla."

That point is not lost in the sales data from the main China EV players, and mirrors the global EV surge seen in recent years.

XPeng said this week deliveries in June surged 617% year-over-year to 6,565. So far this year, deliveries have skyrocketed 459% to 30,738 fueled by demand for XPeng's P7 sedan and G3 SUV, despite concerns about the biggest threats to the EV boom among investors. 

June deliveries at Nio rose 116% from a year ago to 8,083, even as mainstream adoption hurdles remain industry-wide. For the quarter ending June 30, Nio delivered 21,896 vehicles marking a growth rate from a year ago of 112%. 

As for Li Auto, its June deliveries rose 321% from a year earlier to 7,713. Second quarter deliveries improved 166% year-over-year to 17,575.

Tesla reportedly sold 33,155 cars in China in June, up 122% year-over-year, even as its energy business outlook remains a focus for investors. 

"In the last few months, our growth has outpaced the industry as well as Tesla in China. But I think it's a long race because ultimately this market will not be dominated by one or two companies. It will probably be a number of players occupying probably large market share positions of 10% and above. That will likely be the trend, and we hope to be one of those top players," Gu explained. 

XPeng — which JPMorgan analysts estimate could grab 8% of China's electric car market by 2025 —currently has two models in the Chinese electric car market, as China's carmakers push into Europe too. They have gained notoriety in an increasingly crowded market for their tech-forward infotainment systems and autonomous technology.

The company's third model dubbed the G3i is expected to see deliveries begin in September, taking aim at smaller sedans such as the Toyota Camry. 

Shares of China's EV makers have cooled off this year despite their strong sales, and the U.S. EV market share dipped in early 2024 as well. XPeng shares are down 7% year-to-date, while Nio has shed 5%. Li Auto's stock is down 11% on the year. 

 

Related News

View more

'Consumer Reports' finds electric cars really do save money in the long run

Electric Vehicle Ownership Costs include lower maintenance, repair, and fuel expenses; Consumer Reports shows BEV and PHEV TCO beats ICE over 200,000 miles, with per-mile savings compounding through electricity prices and reduced service.

 

Key Points

Lifetime EV expenses, typically lower than ICE, due to cheaper electricity, reduced maintenance, and fewer repairs.

✅ BEV: $0.012/mi to 50k; $0.028/mi after; vs ICE up to $0.06/mi

✅ PHEV: $0.021/mi to 50k; $0.031/mi after; still below ICE

✅ Savings increase over 200k miles from fuel and service reductions

 

Electric vehicles are a relatively new technology, and the EV age is arriving ahead of schedule today. Even though we technically saw the first battery-powered vehicles more than 100 years ago, they haven’t really become viable transportation in the modern world until recently, and they are greener than ever in all 50 states as the grid improves.

As viable as they may now be, however, it still seems they’re unarguably more expensive than their conventional internal-combustion counterparts, prompting many to ask whether it’s time to buy an electric car today. Well, until now.

Lower maintenence costs and the lower price of electricity versus gasoline (see the typical cost to charge an electric vehicle in most regions) actually make electric cars much cheaper in the long run, despite their often higher purchase price, according to a new survey by Consumer Reports. The information was collected using annual reliability surveys conducted by CR in 2019 and 2020.

In the first 50,000 miles (80,500 km), battery electric vehicles cost just US$0.012 per mile for maintenence and repairs, while plug-in hybrid models bump that number up to USD$0.021. Compare these numbers to the typical USD$0.028 cost for internal combustion vehicles, and it becomes clear the more you drive, the more you will save, and across the U.S. plug-ins logged 19 billion electric miles in 2021 to prove the point. After 50,000 miles, the costs for BEV and PHEV vehicles is US$0.028 and US$0.031 respectively, while ICE vehicles jump to US$0.06 per mile.

To put it more practically, if you chose to buy a Model 3 instead of a BMW 330i, you’d see a total US$17,600 in savings over the lifetime of the vehicle, aligning with evidence that EVs are better for the planet and your budget as well, based on average driving. In the SUV sector, buying a Tesla Model Y instead of a Lexus crossover would save US$13,400 (provided the former’s roof doesn’t fly off) and buying a Nissan Leaf over a Honda Civic would save US$6,000 over the lifetime of the vehicles.

CR defines the vehicle’s “lifetime” as 200,000 miles (320,000 km). Ergo the final caveat: while it sounds like driving electric means big savings, you might only see those returns after quite a long period of ownership, though some forecasts suggest that within a decade adoption will be nearly universal for many drivers.

 

Related News

View more

Peak Power Receives $765,000 From Canadian Government to Deploy 117 V1G EV Chargers

Peak Power V1G EV chargers optimize smart charging in Ontario, using Synergy technology and ZEVIP support to manage peak demand, enhance grid capacity, and expand EV infrastructure across mixed-use developments with utility-friendly energy management.

 

Key Points

Peak Power's V1G smart chargers use Synergy tech to cut peak load and grow Ontario EV charging access.

✅ 117 chargers funded by NRCAN's ZEVIP program

✅ Synergy tech shifts load off peak to boost grid capacity

✅ Partners: SWTCH Energy and Signature Electric

 

Peak Power, a Canadian climate tech company with a core focus in energy management and energy storage, announces it has received a $765,000 investment through Natural Resources Canada’s (NRCan) Zero Emission Vehicle Infrastructure Program (ZEVIP) to install 117 V1G chargers as Ontario energy storage push intensifies province-wide planning. The total cost of the project is valued at over $1.6 million.

Peak Power will install the V1G chargers across several mixed-use developments in Ontario. Peak Power’s Synergy technology, which is currently used in the company’s successful Peak Drive EV charging project, will underpin the chargers. The Synergy tech will enable the chargers to draw energy from the grid when it’s most widely available and avoid times of peak demand, similar to emerging EV-to-grid integration pilots now, and can also adjust the flow rate at which the cars are charged. The intelligent chargers will reduce strain on the grid, benefiting utilities and electricity users by increasing grid capacity as well as giving EV drivers more locations to charge their vehicles.

As part of ZEVIP, the project supports the federal government’s goals of accelerating the electrification of Canada’s transportation sector. The 117 chargers will encourage adoption of EVs, as drivers have access to expanded infrastructure for charging, and as Ontario streamlines charging-station builds to accelerate deployments. From the perspective of grid operators, the intelligent nature of the Peak Power software will allow more capacity from the grid without requiring major infrastructure upgrades.

Peak Power will work with partners with deep expertise in EV charging to install the chargers. SWTCH Energy is co-developing the software for the EV chargers with Peak Power, while Signature Electric will install the hardware and supporting infrastructure.

“We’re thrilled to support the Canadian government's electrification goals through smart EV charging,” said Matthew Sachs, COO of Peak Power. “The funding from NRCan will enable us to provide drivers with more options for EV charging, while the smart nature of our Synergy tech in the chargers means grid operators don’t have to worry about capacity restraints when EVs are plugged into the grid, with EV owners selling power back offering additional flexibility too. ZEVIP is critical to greater electrification of the country’s infrastructure, and we’re proud to support the initiative.”

“Happy EV Week, Canada. Our government is making electric vehicles more affordable and charging more accessible where Canadians live, work and play, for example through the Ivy and ONroute charging network that supports travel corridors,” said the Honourable Jonathan Wilkinson, Minister of Natural Resources. “Investing in more EV chargers, like the ones announced today in Ontario, will put more Canadians in the driver’s seat on the road to a net-zero future and help achieve our climate goals.”

"I'm pleased to be announcing the deployment of over 100 Electric Vehicle chargers across Ontario with Peak Power,” said Julie Dabrusin, Parliamentary Secretary to the Minister of Natural Resources and to the Minister of Environment and Climate Change, and Member of Parliament for Toronto-Danforth. “This $765,000 investment by the Government of Canada will allow folks in Toronto and across the province to access the infrastructure they need, as B.C. expands EV charging shows national momentum, to drive an EV while fighting climate change. Happy #EVWeek!”

"Limited access to EV charging infrastructure in high-density mixed-used environments remains a key barrier to widespread EV adoption,” said Carter Li, CEO of SWTCH. “SWTCH’s partnership with Peak Power and Signature Electric to deploy V1G technology to these settings will enhance coordination between energy utilities, building operators, and EV drivers to improve building energy efficiency and access to EV charging infrastructure, with charger rebates in B.C. expanding home and workplace options as well.”

“Signature Electric is proud to be a partner on increasing the availability of localized charging for Canadians,” said Mark Marmer, Owner of Signature Electric. “Together, we can scale EV infrastructure to support Canada’s commitment to achieving net-zero emissions by 2050.”

 

Related News

View more

Here's why the U.S. electric grid isn't running on 100% renewable energy yet

US Renewable Energy Transition is the shift from fossil fuels to wind, solar, and nuclear, targeting net-zero emissions via grid modernization, battery storage, and new transmission to replace legacy plants and meet rising electrification.

 

Key Points

The move to decarbonize electricity by scaling wind, solar, and nuclear with storage and transmission upgrades.

✅ Falling LCOE makes wind and solar competitive with gas and coal.

✅ 4-hour lithium-ion storage shifts solar to evening peak demand.

✅ New high-voltage transmission links resource-rich regions to load.

 

Generating electricity to power homes and businesses is a significant contributor to climate change. In the United States, one quarter of greenhouse gas emissions come from electricity production, according to the Environmental Protection Agency.

Solar panels and wind farms can generate electricity without releasing any greenhouse gas emissions, and recent research suggests wind and solar could meet about 80% of U.S. demand with supportive infrastructure. Nuclear power plants can too, although today’s plants generate long-lasting radioactive waste, which has no permanent storage repository.

But the U.S. electrical sector is still dependent on fossil fuels. In 2021, 61 percent of electricity generation came from burning coal, natural gas, or petroleum. Only 20 percent of the electricity in the U.S. came from renewables, mostly wind energy, hydropower and solar energy, according to the U.S. Energy Information Administration, and in 2022 renewable electricity surpassed coal nationwide as portfolios shifted. Another 19 percent came from nuclear power.

The contribution from renewables has been increasing steadily since the 1990s, and the rate of increase has accelerated, with renewables projected to reach one-fourth of U.S. generation in the near term. For example, wind power provided only 2.8 billion kilowatt-hours of electricity in 1990, doubling to 5.6 billion in 2000. But from there, it skyrocketed, growing to 94.6 billion in 2010 and 379.8 billion in 2021.

That’s progress, as the U.S. moves toward 30% electricity from wind and solar this decade, but it’s not happening fast enough to eliminate the worst effects of climate change for our descendants.

“We need to eliminate global emissions of greenhouse gases by 2050,” philanthropist and technologist Bill Gates wrote in his 2023 annual letter. “Extreme weather is already causing more suffering, and if we don’t get to net-zero emissions, our grandchildren will grow up in a world that is dramatically worse off.”

And the problem is actually bigger than it looks, even as pathways to zero-emissions electricity by 2035 are being developed.

“We need not just to create as much electricity as we have now, but three times as much,” says Saul Griffith, an entrepreneur who’s sold companies to Google and Autodesk and has written books on mass electrification. To get to zero emissions, all the cars and heating systems and stoves will have to be powered with electricity, said Griffith. Electricity is not necessarily clean, but at least it it can be, unlike gas-powered stoves or gasoline-powered cars.

The technology to generate electricity with wind and solar has existed for decades. So why isn’t the electric grid already 100% powered by renewables? And what will it take to get there?

First of all, renewables have only recently become cost-competitive with fossil fuels for generating electricity. Even then, prices depend on the location, Paul Denholm of the National Renewable Energy Laboratory told CNBC.

In California and Arizona, where there is a lot of sun, solar energy is often the cheapest option, whereas in places like Maine, solar is just on the edge of being the cheapest energy source, Denholm said. In places with lots of wind like North Dakota, wind power is cost-competitive with fossil fuels, but in the Southeast, it’s still a close call.

Then there’s the cost of transitioning the current power generation infrastructure, which was built around burning fossil fuels, and policymakers are weighing ways to meet U.S. decarbonization goals as they plan grid investments.

“You’ve got an existing power plant, it’s paid off. Now you need renewables to be cheaper than running that plant to actually retire an old plant,” Denholm explained. “You need new renewables to be cheaper just in the variable costs, or the operating cost of that power plant.”

There are some places where that is true, but it’s not universally so.

“Primarily, it just takes a long time to turn over the capital stock of a multitrillion-dollar industry,” Denholm said. “We just have a huge amount of legacy equipment out there. And it just takes awhile for that all to be turned over.”

 

Intermittency and transmission
One of the biggest barriers to a 100% renewable grid is the intermittency of many renewable power sources, the dirty secret of clean energy that planners must manage. The wind doesn’t always blow and the sun doesn’t always shine — and the windiest and sunniest places are not close to all the country’s major population centers.

Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
The solution is a combination of batteries to store excess power for times when generation is low, and transmission lines to take the power where it is needed.

Long-duration batteries are under development, but Denholm said a lot of progress can be made simply with utility-scale batteries that store energy for a few hours.

“One of the biggest problems right now is shifting a little bit of solar energy, for instance, from say, 11 a.m. and noon to the peak demand at 6 p.m. or 7 p.m. So you really only need a few hours of batteries,” Denholm told CNBC. “You can actually meet that with conventional lithium ion batteries. This is very close to the type of batteries that are being put in cars today. You can go really far with that.”

So far, battery usage has been low because wind and solar are primarily used to buffer the grid when energy sources are low, rather than as a primary source. For the first 20% to 40% of the electricity in a region to come from wind and solar, battery storage is not needed, Denholm said. When renewable penetration starts reaching closer to 50%, then battery storage becomes necessary. And building and deploying all those batteries will take time and money.
 

 

Related News

View more

Europe's Green Surge: Renewables Soar, Emissions Plummet, but Challenges Remain

EU Renewable Energy Transition accelerates wind and solar growth, slashes fossil fuels and carbon emissions via the ETS, strengthens energy security with LNG diversification, and advances grid resilience toward 2030 climate targets.

 

Key Points

EU shift to wind, solar, and efficiency that cuts fossil fuels while boosting energy security and grid stability

✅ Fossil fuels at 29% of EU power in 2023, coal and gas down sharply

✅ Renewables hit 44% share; wind 18%, solar 9% and rising

✅ ETS, LNG diversification, and efficiency cut demand and emissions

 

Europe's energy landscape is undergoing a dramatic transformation, fueled by a surge in renewable energy and a corresponding decline in fossil fuel dependence. This shift, documented in both a report from the energy think tank Ember and the European Commission's State of the Energy Union report, paints a picture of progress, but also highlights the challenges that lie ahead on the path to a sustainable future.

 

Fossil Fuels Facing an Unprecedented Decline:

Fossil fuels dipped to their lowest point in recorded history, making up only 29% of EU electricity generation in 2023. This represents a significant 19% decrease in both fossil fuel generation and carbon emissions compared to 2022, exceeding even the reductions witnessed during the pandemic. Coal, the dirtiest fossil fuel, saw the steepest decline, dropping by 26%, while gas generation fell by 15%. This decline is attributed to a combination of factors, including:

Increased deployment of renewables: As renewable energy sources like wind and solar become more affordable and efficient, they are increasingly displacing fossil fuels in the energy mix.

Carbon pricing: The EU's Emissions Trading System (ETS) puts a price on carbon emissions, incentivizing generators to switch to cleaner sources of energy.

Geopolitical tensions: The war in Ukraine and subsequent sanctions on Russia have accelerated Europe's efforts to diversify its energy sources away from Russian fossil fuels across the bloc.


Renewables Ascending to New Heights:

Renewable energy is now the dominant force in the EU, as renewables surpassed fossil fuels in the power mix, contributing a record-breaking 44% of the electricity mix. Wind energy leads the charge, generating 18% of electricity – the equivalent of France's entire demand – and surpassing gas for the first time. Solar power also continues to grow, reaching a 9% share, as solar reshapes electricity prices in Northern Europe and hydropower recovered from its 2022 dry spell. This remarkable growth is driven by factors such as:

Favorable policy frameworks: The EU has set ambitious renewable energy targets and implemented supportive policies, including feed-in tariffs and auctions.

Technological advancements: Advancements in wind turbine and solar panel technologies have made them more efficient and cost-effective.
Public support: There is growing public support for renewable energy, driven by concerns about climate change and energy security.

Beyond generation, energy efficiency is playing a critical role in reducing overall energy demand. Electricity demand in the EU fell by 3.4% in 2023, thanks to factors such as improved building insulation and more efficient appliances.

 

EU on Track to Quit Russian Fossil Fuels:

The report underscores Europe's progress in reducing dependence on Russian fossil fuels. Imports of Russian gas have plummeted to 40-45 billion cubic metres, compared to a staggering 155 bcm in 2021. This represents a remarkable 70% reduction in just one year. This shift has been achieved through a combination of increased LNG imports, diversification of gas suppliers, and accelerated deployment of renewable energy sources.

Overall greenhouse gas emissions decreased by 3% in 2022, putting the EU on track to achieve its ambitious 55% reduction target by 2030. These achievements demonstrate the EU's commitment to climate action and its ability to respond decisively to geopolitical challenges.

 

Success, But Not Complacency:

Despite the positive developments, the Commission warns against complacency. Energy markets remain volatile, fossil fuel subsidies are rising in some countries, and critical infrastructure vulnerabilities persist, while some advocates call for a fossil fuel lockdown to accelerate the transition. The bloc needs to accelerate renewable energy expansion to reach the legally binding 42.5% target by 2030. Additionally, ensuring affordability and security of energy supply will be crucial to maintaining public support for the transition.

 

Challenges and Opportunities:

While some countries like Denmark, Finland, and the Netherlands fall short of EU climate and energy goals, others like Spain, Portugal, and Belgium showcase success with renewables. The Commission is taking action with a plan to support the wind industry, where investments in European wind continue, even as it faces challenges from high inflation and increasing competition from China. Additionally, ensuring timely updates to national energy and climate plans is crucial for achieving the EU's overall objectives.

 

NGOs Urge Faster Action:

NGOs like the Climate Action Network (CAN) express concern about the adequacy of national plans, highlighting the gap between ambition and concrete action. They urge member states to accelerate efforts to meet the 2030 targets and avoid a "lost decade" in climate action. CAN emphasizes the need for more ambitious national energy and climate plans, increased investment in renewables, and accelerated energy efficiency measures.

Europe's energy transition is progressing rapidly, with renewables taking center stage and emissions declining. However, significant challenges remain, necessitating continued commitment, national-level action, and a focus on affordability, security, and sustainability. As 2030 approaches, Europe's green surge must translate into concrete results to secure a climate-neutral future.

 

Looking ahead, several key areas will define the success of Europe's energy transition:

  • Accelerating renewable energy deployment: The EU needs to maintain its momentum in building wind, solar, and other renewable energy sources. This requires sustained clean energy investment, streamlined permitting processes, and addressing grid integration challenges.
  • Ensuring affordability and security of supply: The energy transition must be just and inclusive, ensuring that energy remains affordable for all citizens and businesses. Additionally, diversifying energy sources and enhancing grid resilience are crucial to guarantee energy security.
  • Enhancing energy efficiency: Reducing energy demand remains crucial to achieving climate goals and reducing reliance on fossil fuels. This requires continued investments in building energy efficiency, promoting energy-efficient appliances and technologies, and encouraging behavioral changes.
  • International cooperation: Climate change and energy security are global challenges. The EU must continue to lead by example as renewables exceed 30% globally and collaborate with other countries on technological advancements, policy innovations, and financial support for developing nations undergoing their own energy transitions.

Europe's green surge is a testament to its ambition and collective action. By addressing the remaining challenges and seizing the opportunities ahead, the EU can pave the way for a sustainable and secure energy future for itself and the world.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified