UK sets new record for wind power generation


wind power

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Britain Wind Generation Record underscores onshore and offshore wind momentum, as National Grid ESO reported 20.91 GW, boosting zero-carbon electricity, renewables share, and grid stability amid milder weather, falling gas prices, and net zero goals.

 

Key Points

The Britain wind generation record is 20.91 GW, set on 30 Dec, driven by onshore and offshore turbines.

✅ Set on 30 Dec 2022 with peak output of 20.91 GW.

✅ Zero-carbon sources hit 87.2% of grid supply.

✅ Driven by onshore and offshore wind; ESO reported stability.

 

Britain has set a new record for wind generation as power from onshore and offshore turbines helped boost clean energy supplies late last year.

National Grid’s electricity system operator (ESO), which handles Great Britain’s grid operations, said that a new record for wind generation was set on 30 December, when 20.91 gigawatts (GW) were produced by turbines.

This represented the third time Britain’s fleet of wind turbines set new generation records in 2022. In May, National Grid had to ask some turbines in the west of Scotland to shut down, as the network was unable to store such a large amount of electricity when a then record 19.9GW of power was produced – enough to boil 3.5m kettles.

The ESO said a new record was also set for the share of electricity on the grid coming from zero-carbon sources – renewables and nuclear – which supplied 87.2% of total power. These sources have accounted for about 55% to 59% of power over the past couple of years.

The surge in wind generation represents a remarkable reversal in fortunes as a cold snap that enveloped Britain and Europe quickly turned to milder weather.

Power prices had soared as the freezing weather forced Britons to increase their heating use, pushing up demand for energy despite high bills.

The cold weather came with a period of low wind, reducing the production of Britain’s windfarms to close to zero.

Emergency coal-fired power units at Drax in North Yorkshire were put on standby but ultimately not used, while gas-fired generation accounted for nearly 60% of the UK’s power output at times.

However, milder weather in the UK and Europe in recent days has led to a reduction in demand from consumers and a fall in wholesale gas prices. It has also reduced the risk of power cuts this winter, which National Grid had warned could be a possibility.

Wind generation is increasingly leading the power mix in Britain and is seen as a crucial part of Britain’s move towards net zero. The prime minister, Rishi Sunak, is expected to overturn a moratorium on new onshore wind projects with a consultation on the matter due to run until March.

 

Related News

Related News

Electricity or hydrogen - What is the future of vehicles?

Hydrogen vs Battery-Electric Vehicles compare FCEV and BEV tech for range, charging and refueling, zero-emissions, infrastructure in Canada, highlighting urban commuting, heavy-duty use, fast 5-minute fills, 30-minute fast charging, and renewable hydrogen from surplus wind.

 

Key Points

Hydrogen FCEVs suit long range and heavy-duty use; BEVs excel in urban commutes with overnight charging.

✅ FCEVs refuel in about 5 minutes; ideal for long range and heavy duty.

✅ BEVs fit urban commuting with home or night charging; fewer stops.

✅ Hydrogen enables energy storage from surplus wind and hydro power.

 

We’re constantly hearing that battery-electric cars are the future, as automakers pursue Canada-U.S. collaboration on EVs across the industry, so I was surprised to see that companies like Toyota, Honda and Hyundai are making hydrogen fuel-cell cars. Which technology is better? Could hydrogen still win? – Pete, Kingston

They’re both in their electric youth, relatively speaking, but the ultimate winner in the race between hydrogen and battery electric will likely be both.

“It’s not really a competition – they’ll both co-exist and there will also be plug-in hydrogen hybrids,” said Walter Merida, director of the Clean Energy Research Centre at the University of British Columbia. “Battery-electric vehicles [BEVs] are better for an urban environment where you have time to recharge and fuel-cell electric vehicles [FCEVs] are better-suited for long range and heavy duty.”

Last year, there were 9,840 BEVs sold in Canada, up from 5,130 the year before. If you include plug-in hybrids, the number sold in 2017 grows to 18,560, though many buyers now face EV shortages and wait times amid high gasoline prices.

And how many hydrogen vehicles were sold in Canada last year?

#google#

None – although Hyundai leased out about a half-dozen hydrogen Tucsons in British Columbia for $599 a month, which included fuel from Powertech labs in Surrey.

In January, Toyota announced it will be selling the Mirai in Quebec later this year. And Hyundai said it will offer about 25 Nexos for sale.

“It’s chicken or egg,” said Michael Fowler, a professor of chemical engineering at the University of Waterloo. “Car manufacturers won’t release cars into the market unless there’s a refuelling station and companies won’t build a refuelling station unless there are cars to fuel.”

Right now, there are no retail hydrogen refuelling stations in Canada. While there are plans under way to add stations in B.C., Ontario and Quebec, we’re still behind Japan, Europe and California, though experts outline how Canada can capitalize on the U.S. EV pivot to accelerate progress.

“In 2007, Ontario had a hydrogen strategy and they were starting to develop hydrogen vehicles and they dropped that in favour of the Green Energy Act and it was a complete disaster,” Fowler said. “The reality is the government of the day listened to the wrong people.”

It’s tough to pinpoint a single reason why governments focused on building charging stations instead of hydrogen stations, Merida said.

“It’s ironic, you know – the fuel cell was invented in Vancouver. Geoffrey Ballard was one of the pioneers of this technology,” Merida said. “And for a while, Canada was a global leader, but eventually government programs were discontinued and that was very disruptive to the sector.”

 

HYDROGEN FOR THE MASSES?

While we tend to think of BEVs when we think of electric cars, fuel-cell vehicles are electric, too; the hydrogen passes through a fuel cell stack, where it mixes with oxygen from the atmosphere to produce an electric current.

That current powers electric motors to drive the wheels and extra energy goes to a battery pack that’s used to boost acceleration (it’s also charged by regenerative braking).

Except for water that drips out of the hydrogen car, they’re both zero-emission on the road.

But a big advantage for hydrogen is that, if you can find a station, you can pull up to a pump and fill up in five minutes or less – the same way we do now at nearly 12,000 gas stations.

Compare that with fast-charging stations that can charge a battery to 80 per cent in 30 minutes – each station only handles one car at a time. What if you get there and it’s busy – or broken? And right now, there are only 139 of them in Canada.

And at slower, Level 2 stations, cars have to be plugged in for hours to recharge.

In a 2018 KPMG survey of auto executives, 55 per cent said that moves to switch entirely to pure battery-electric vehicles will fail because there won’t be enough charging stations, and some critics argue the 2035 EV mandate is delusional given infrastructure constraints.

“Ontario just invested $20-million in public charging stations and that’s going to service 100 or 200 cars a day,” Fowler said. “If you were to invest that in hydrogen stations, you’d be able to service thousands of cars a day.”

And when you do charge at a station, you might not be using clean power, as 18% of Canada’s 2019 electricity came from fossil fuels according to national data, Fowler said.

“At least in Ontario, in order to charge at a public station during the day, you have to rev up a natural-gas plant somewhere,” Fowler said. “So the only way you’re getting zero emissions is when you can charge at night using excess nuclear, hydro or wind that’s not being used.”

But hydrogen can be made when surplus green energy is stored, Fowler said.

“In Ontario, we have lots of wind in the spring and the fall, when we don’t need the electricity,” he said.

And eventually, you’ll be able to connect your fuel-cell vehicle to the grid and sell the power it produces, Merida said.

“The amount of power generation you have in these moving platforms is quite significant,” Merida said.

There are other strikes against battery-electric, including reduced range by 30 per cent or more in the winter and the need to upgrade infrastructure such as electrical transformers so they can handle more than just a handful of cars on each street charging at night, Fowler said.

In that KPMG survey, executives predicted a nearly equal split between BEVs, FCEVs, hybrids and gasoline engines by 2040.

“Battery-electric vehicles will serve a certain niche – they’ll be small commuter vehicles in certain cities,” Fowler said. “But for the way we use cars today – the family car, the suburban car, buses and probably trucks – it will be the fuel cell.”

 

Related News

View more

GM Canada announces tentative deal for $1 billion electric vehicle plant in Ontario

GM Canada-Unifor EV Deal outlines a $1B plan to transform the CAMI plant in Ingersoll, Ontario, building BrightDrop EV600 delivery vans, boosting EV manufacturing, creating jobs, and securing future production with government-backed investment.

 

Key Points

A tentative $1B deal to retool CAMI for BrightDrop EV600 production, creating jobs and securing Canada's EV manufacturing.

✅ $1B to transform CAMI, Ingersoll, for BrightDrop EV600 vans

✅ Ratification vote set; Unifor Local 88 to review details

✅ Supports EV manufacturing, delivery logistics, and new jobs

 

GM Canada says it has reached a tentative deal with Unifor that if ratified will see it invest $1 billion to transform its CAMI plant in Ingersoll, Ont., to make commercial electric vehicles, aligning with GM's EV hiring plans across North America.

Unifor National President Jerry Dias says along with the significant investment the agreement will mean new products, new jobs amid Ontario's EV jobs boom and job security for workers.

Dias says in a statement that more details of the tentative deal will be presented to Unifor Local 88 members at an online ratification meeting scheduled for Sunday.

He says the results of the ratification vote are scheduled to be released on Monday.

Details of the agreement were not released Friday night.

A GM spokeswoman says in a statement that the plan is to build BrightDrop EV 600s -- an all-new GM business announced this week at the Consumer Electronics Show and part of EV assembly deals that put Canada in the race -- that will offer a cleaner way for delivery and logistics companies to move goods more efficiently.

Unifor said the contract, if ratified, will bring total investment negotiated by the union to nearly $6 billion after new agreements were ratified with General Motors, Ford, including Ford EV production plans, and Fiat Chrysler in 2020 that included support from the federal and Ontario governments, and parallel investments such as a Niagara Region battery plant bolstering the supply chain.

It said the Ford deal reached in September included $1.95 billion to bring battery electric vehicle production to Oakville via the Oakville EV deal and a new engine derivative to Windsor and the Fiat Chrysler agreement included more than $1.5 billion to build plug-in hybrid vehicles and battery electric vehicles.

Unifor said in November, General Motors agreed to a $1.3 billion dollar investment to bring 1,700 jobs to Oshawa, as Honda's Ontario battery investment signals wider sector momentum, plus more than $109 million to in-source new transmission work for the Corvette and support continued V8 engine production in St. Catharines.

 

Related News

View more

EV Boom Unexpectedly Benefits All Electricity Customers

Electric Vehicles Lower Electricity Rates by boosting demand, enabling fixed-cost recovery, and encouraging off-peak charging that balances the grid, reduces peaker plant use, and funds utility upgrades, with V2G poised to expand system benefits.

 

Key Points

By boosting off-peak demand and utility revenue, EVs spread fixed costs, cut peaker use, and stabilize the grid.

✅ Off-peak charging flattens load, reducing peaker plant reliance

✅ Higher kWh sales spread fixed grid costs across more users

✅ V2G can supply power during peaks and emergencies

 

Electric vehicles (EVs) are gaining popularity, and it appears they might be offering an unexpected benefit to everyone – including those who don't own an EV.  A new study by the non-profit research group Synapse Energy Economics suggests that the growth of electric cars is actually contributing to lower electricity rates for all ratepayers.


How EVs Contribute to Lower Rates

The study explains several factors driving this surprising trend:

  • Increased Electricity Demand: Electric vehicles require additional electricity, boosting rising electricity demand on the grid.
  • Optimal Charging Times: Many EV owners take advantage of off-peak charging discounts. Charging cars overnight, when electricity demand is typically low, helps to balance state power grids and reduce the need for expensive "peaker" power plants, which are only used to meet occasional spikes in demand.
  • Revenue for Utilities: Electric car charging can generate substantial revenue for utilities, potentially supporting investment in grid improvements, energy storage solutions and renewable energy projects that can bring long-term benefits to all customers.


A Significant Impact

The Synapse Energy Economics study analyzed data from 2011 to 2021 and concluded that EV drivers already contributed over $3 billion more to the grid than their associated costs. That, in turn, reduced monthly electricity bills for all customers.


Benefits May Grow

While the impact on electricity rates has been modest so far, experts anticipate the benefits to grow as EV adoption rates increase. Vehicle-to-grid (V2G) technology, which allows EVs to feed stored power back into the grid during emergencies or high-demand periods, has the potential to further optimize electricity usage patterns and create additional benefits for electric utilities and customers.


National Implications

The findings of this study offer hope to other regions seeking to increase electric vehicle adoption rates and support California's grid stability efforts, which is a key step towards reducing transportation-related greenhouse gas emissions. This news may alleviate concerns about potential electricity rate hikes driven by EV adoption and suggests that the benefits will be broadly shared.


More than Just Environmental Benefits

Electric vehicles bring a clear environmental advantage by reducing reliance on fossil fuels. However, this unexpected economic benefit could further strengthen the case for accelerating the adoption of electric vehicles. This news might encourage policymakers and the public to consider additional incentives or policies, including vehicle-to-building charging approaches, to promote the transition to this cleaner mode of transportation knowing it can yield benefits beyond environmental goals.

 

Related News

View more

New Brunswick announces rebate program for electric vehicles

New Brunswick EV Rebates deliver stackable provincial and federal incentives for electric vehicles, used EVs, and home chargers, supporting NB Power infrastructure, lower GHG emissions, and climate goals with fast chargers across the province.

 

Key Points

Stackable provincial and federal incentives up to $10,000 for EV purchases, plus support for home charging.

✅ $5,000 new EVs; $2,500 used; stackable with federal $5,000

✅ 50% home charger rebate up to $750 through NB Power

✅ Supports GHG cuts, charging network growth, climate targets

 

New Brunswickers looking for an electric vehicle (EV) can now claim up to $10,000 in rebates from the provincial and federal governments.

The three-year provincial program was announced Thursday and will give rebates of $5,000 on new EVs and $2,500 on used ones. It closely mirrors the federal program and is stackable, meaning new owners will be able to claim up to $5,000 from the feds as well.

Minister of Environment and Climate Change Gary Crossman said the move is hoped to kickstart the province’s push toward a target of having 20,000 EVs on the road by 2030.

“This incentive has to make a positive difference,” Crossman said.

“I truly believe people have been waiting for it, they’ve been asking about it, and this will make a difference from today moving forward to put new or used cars in their hands.”

The first year of the program will cost $1.95 million, which will come from the $36 million in the Climate Change Fund and will be run by NB Power, whose public charging network has been expanding across the province. The department says if the full amount is used this year it could represent a reduction of 850 tonnes of greenhouse gasses (GHGs) annually.

Both the Liberal and Green parties welcomed the move calling it long overdue, but Green MLA Kevin Arseneau said it’s not a “miracle solution.”

“Yes, we need to electrify cars, but this kind of initiative without proper funding of public transportation, urban planning for biking … without this kind of global approach this is just another swipe of a sword in water,” he said.

Liberal environment critic Francine Landry says she hopes this will make the difference for those considering the purchase of an EV and says the government should consider further methods of incentivization like waiving registration fees.

The province’s adoption of EVs has not been overly successful so far, reflecting broader Atlantic EV buying interest trends across the region. At the end of 2020, there were 646 EVs registered in the province, far short of the 2,500 target set out in the Climate Action Plan. That was up significantly from the 437 at the end of 2019, but still a long way from the goal.

New Brunswick has a fairly expansive network of charging stations across the province, claiming to be the first “fully-connected province” in the country, and had hoped that the available infrastructure, including plans for new fast-charging stations on the Trans-Canada, would push adoption of non-emitting vehicles.

“In 2017 we had 11 chargers in the province, so we’ve come a long way from an infrastructure standpoint which I think is critical to promoting or having an electric vehicle network, or a number of electric vehicles operating in the province, and neighbouring N.L.’s fast-charging network shows similar progress,” said Deputy Minister of Natural Resources Tom Macfarlane at a meeting of the standing committee on climate change and environmental stewardship in January of 2020.

There are now 172 level two chargers and 83 fast chargers, while Labrador’s EV infrastructure still lags in neighbouring N.L. today. Level two chargers take between six and eight hours to charge a vehicle, while the fast chargers take about half an hour to get to 80 per cent charge.

The newly announced program will also cover 50 per cent of costs for a home charging station up to $750, similar to B.C. charger rebates that support home infrastructure, to further address infrastructure needs.

The New Brunswick Lung Association is applauding the rebate plan.

President and CEO Melanie Langille said about 15,000 Canadians, including 40 people from New Brunswick, die prematurely each year from air pollution. She said vehicle emissions account for about 30 per cent of the province’s air pollution.

“Electric vehicles are critical to reducing our greenhouse gas emissions,” said Langille. “New Brunswick has one of the highest per capita GHG emissions in Canada. But, because our electricity source in New Brunswick is primarily from non-emitting sources and regional initiatives like Nova Scotia’s vehicle-to-grid pilot are advancing grid integration, switching to an EV is an effective way for New Brunswickers to lower their GHG emissions.”

Langille said the lung association has been part of an electric vehicles advisory group in the province since 2014 and its research has shown this type of program is needed.

“The major barrier that is standing in the way of New Brunswickers adopting electric vehicles is the upfront costs,” Langille said. “So today’s announcement, and that it can be stacked on top of the existing federal rebates, is a huge step forward for us.”

 

Related News

View more

Within A Decade, We Will All Be Driving Electric Cars

Electric Vehicle Price Parity 2027 signals cheaper EV manufacturing as battery costs plunge, widening model lineups, and tighter EU emissions rules; UBS and BloombergNEF foresee parity, with TCO advantages over ICE amid growing fast-charging networks.

 

Key Points

EV cost parity in 2027 when manufacturing undercuts ICE, led by cheaper batteries, wider lineups, and emissions policy.

✅ Battery costs drop 58% next decade, after 88% fall

✅ Manufacturing parity across segments from 2027

✅ TCO favors EVs; charging networks expand globally

 

A Bloomberg/NEF report commissioned by Transport & Environment forecasts 2027 as the year when electric vehicles will start to become cheaper to manufacture than their internal combustion equivalents across all segments, aligning with analyses that the EV age is arriving ahead of schedule for consumers and manufacturers alike, mainly due to a sharp drop in battery prices and the appearance of new models by more manufacturers.

Batteries, which have fallen in price by 88% over the past decade and are expected to plunge by a further 58% over the next 10 years, make up between one-quarter and two-fifths of the total price of a vehicle. The average pre-tax price of a mid-range electric vehicle is around €33,300, and higher upfront prices concern many UK buyers compared to €18,600 for its diesel or gasoline equivalent. In 2026, both are expected to cost around €19,000, while in 2030, the same electric car will cost €16,300 before tax, while its internal combustion equivalent will cost €19,900, and that’s without factoring in government incentives.

Other reports, such as a recent one by UBS, put the date of parity a few years earlier, by 2024, after which they say there will be little reason left to buy a non-electric vehicle, as the market has expanded from near zero to 2 million in just five years.

In Europe, carmakers will become a particular stakeholder in this transition due to heavy fines for exceeding emissions limits calculated on the basis of the total number of vehicles sold. Increasing the percentage of electric vehicles in the annual sales portfolio is seen by the industry as the only way to avoid these fines. In addition to brands such as Bentley or Jaguar Land Rover, which have announced the total abandonment of internal combustion engine technology by 2025, or Volvo, which has set 2030 as the target date, other companies such as Ford, which is postponing this date in its home market, also set 2030 for the European market, which clearly demonstrates the suitability of this type of policy.

Nevertheless internal combustion vehicles will continue to travel on the roads or will be resold in developing countries. In addition to the price factor, which is even more accentuated when estimates are carried out in terms of total cost of ownership calculations due to the lower cost of electric recharging versus fuel and lower maintenance requirements, other factors such as the availability of fast charging networks must be taken into account.

While price parity is approaching, it is worth thinking about the factors that are causing car sales, which are still behind gasoline models in share, to suffer: the chip crisis, which is strongly affecting the automotive industry and will most likely extend until 2022, is creating production problems and the elimination of numerous advanced electronic options in many models, which reduces the incentive to purchase a vehicle at the present time. These types of reasons could lead some consumers to postpone purchasing a vehicle precisely when we may be talking about the final years for internal combustion technology, which would increase the likelihood that, later on and as the price gap closes, they would opt for an electric vehicle.

Finally, in the United States, the ambitious infrastructure plan put in place by the Biden administration also promises to accelerate the transition to electric vehicles by addressing key barriers to mainstream adoption such as charging access, which in turn is fueling the interest of automotive companies to have more electric vehicles in their range. In Europe, meanwhile, more Chinese brands offering electric vehicles are beginning to enter the most advanced markets, such as Norway and the Netherlands, with plans to expand to the rest of the continent with very competitive offers in terms of price.

One way or another, the future of the automotive industry is electric, and the transition will take place during the remainder of this decade. You might want to think about it if you are weighing whether it’s time to buy an electric car this year.

 

Related News

View more

Tesla prepares to bring its electric cars to South America

Tesla Chile Market Entry signals EV expansion into South America, with a Santiago country manager, service technicians, and advisors, leveraging lithium supply, competing with BYD, and preparing sales, service, and charging infrastructure.

 

Key Points

Tesla will enter Chile to launch EV sales, service, and charging from Santiago, opening its South America expansion.

✅ Country manager role based in Santiago to lead market launch

✅ Focus on EV sales, service centers, and charging infrastructure

✅ Leverages Chile's lithium ecosystem; competes with BYD

 

Tesla is preparing to bring its electric cars to South America, according to a new job posting in Chile.

It has been just over a decade since Tesla launched the Model S and significantly accelerated EV inflection point in the deployment of electric vehicles around the world.

The automaker has expanded its efforts across North America, where the U.S. EV tipping point has been reached, and most countries in Europe, and it is still gradually expanding in Asia.

But there’s one continent that Tesla hasn’t touched yet: South America, even as global EV adoption raced to two million in five years.

It sounds like it is about to change.

Tesla has started to promote a job posting on LinkedIn for a country manager in Chile, aligning with international moves like UK expansion plans it has signaled.

The country manager is generally the first person hired when Tesla expands in a new market.

The job is going to be based in Santiago, the capital of Chile, where the company is also looking for some Tesla advisors and service technicians.

Chile is an interesting choice for a first entry into the South American market. The Chilean auto market consists of only about 234,000 vehicles sold year-to-date and that’s down 29% versus the previous year.

That’s roughly the number of vehicles sold in Brazil every month.

While the size of the auto market in the country is small, there’s a strong interest for electric vehicles as the EV era arrives ahead of schedule there, which might explain Tesla’s foray.

The country is rich in lithium, a critical material for EV batteries, where lithium supply concerns have also emerged, which has helped create interest for electric vehicles in the country. The government also announced an initiative to allow for only new sales of electric vehicles in the country starting in 2035.

Tesla’s Chinese competitor BYD has set its sight on the South American market by bringing its cheaper China-made EVs to the market, part of a broader Chinese EV push in Europe as well, but now it looks like Tesla is willing to test the market on the higher-end.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.