UK sets new record for wind power generation


wind power

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Britain Wind Generation Record underscores onshore and offshore wind momentum, as National Grid ESO reported 20.91 GW, boosting zero-carbon electricity, renewables share, and grid stability amid milder weather, falling gas prices, and net zero goals.

 

Key Points

The Britain wind generation record is 20.91 GW, set on 30 Dec, driven by onshore and offshore turbines.

✅ Set on 30 Dec 2022 with peak output of 20.91 GW.

✅ Zero-carbon sources hit 87.2% of grid supply.

✅ Driven by onshore and offshore wind; ESO reported stability.

 

Britain has set a new record for wind generation as power from onshore and offshore turbines helped boost clean energy supplies late last year.

National Grid’s electricity system operator (ESO), which handles Great Britain’s grid operations, said that a new record for wind generation was set on 30 December, when 20.91 gigawatts (GW) were produced by turbines.

This represented the third time Britain’s fleet of wind turbines set new generation records in 2022. In May, National Grid had to ask some turbines in the west of Scotland to shut down, as the network was unable to store such a large amount of electricity when a then record 19.9GW of power was produced – enough to boil 3.5m kettles.

The ESO said a new record was also set for the share of electricity on the grid coming from zero-carbon sources – renewables and nuclear – which supplied 87.2% of total power. These sources have accounted for about 55% to 59% of power over the past couple of years.

The surge in wind generation represents a remarkable reversal in fortunes as a cold snap that enveloped Britain and Europe quickly turned to milder weather.

Power prices had soared as the freezing weather forced Britons to increase their heating use, pushing up demand for energy despite high bills.

The cold weather came with a period of low wind, reducing the production of Britain’s windfarms to close to zero.

Emergency coal-fired power units at Drax in North Yorkshire were put on standby but ultimately not used, while gas-fired generation accounted for nearly 60% of the UK’s power output at times.

However, milder weather in the UK and Europe in recent days has led to a reduction in demand from consumers and a fall in wholesale gas prices. It has also reduced the risk of power cuts this winter, which National Grid had warned could be a possibility.

Wind generation is increasingly leading the power mix in Britain and is seen as a crucial part of Britain’s move towards net zero. The prime minister, Rishi Sunak, is expected to overturn a moratorium on new onshore wind projects with a consultation on the matter due to run until March.

 

Related News

Related News

West Wind Clean Energy Project Launched

Nova Scotia’s West Wind Clean Energy Project aims to harness offshore wind power to deliver renewable electricity, expand transmission infrastructure, and position Canada as a global leader in sustainable energy generation.

 

What is West Wind Clean Energy?

The West Wind Clean Energy Project is Nova Scotia’s $60-billion offshore wind initiative to generate up to 66 GW of clean electricity for Canada’s growing energy needs.

✅ Harnesses offshore wind resources for renewable power generation

✅ Expands grid and transmission infrastructure for clean energy exports

✅ Supports Canada’s transition to a sustainable, low-carbon economy

Nova Scotia has launched one of the most ambitious clean energy projects in Canadian history — a $60-billion plan to build 66 gigawatts (GW) of offshore wind capacity, as countries like the UK expand offshore wind, capable of meeting up to 27 per cent of the nation’s total electricity demand.

Premier Tim Houston unveiled the project, called West Wind, in June, positioning it as a cornerstone of Canada’s broader energy transition and aligning it with Prime Minister Mark Carney’s goal of making the country both a clean energy and conventional energy superpower. Three months later, Carney announced a slate of “nation-building” infrastructure projects the federal government would fast-track. While West Wind was not on the initial list, it was included in a second tier of high-potential proposals still under development.

The plan’s scale is unprecedented for Canada’s offshore energy industry, as organizations like Marine Renewables Canada pivot toward offshore wind to accelerate growth. However, enormous logistical, financial, and market challenges remain. Turbines will not be in the water for years, and the global offshore wind industry itself is facing one of its most difficult periods in over a decade.

“Right now is probably the worst time in 15 years to launch a project like this,” said an executive at a Canadian energy company who requested anonymity. “It’s not Nova Scotia’s fault. It’s just really bad timing.” He pointed to failed offshore wind auctions in Europe, rising costs, and policy reversals in the United States as troubling signals for investors, even as New York’s largest offshore wind project moved ahead this year. “You can’t build the wind and hope the lines come later. You have to build both — together.”

Indeed, transmission infrastructure is emerging as the project’s biggest obstacle. Nova Scotia’s local electricity demand is limited, meaning most of the power would need to be sold to markets in Ontario, Quebec, and New England. Of the $60 billion budgeted for West Wind, $40 billion is allocated to generation, and $20 billion to new transmission — massive sums that require close federal-provincial coordination and long-term investment planning.

Despite the economic headwinds, advocates argue that West Wind could transform Atlantic Canada’s energy landscape and strengthen national energy security, building on recent tidal power investments in Nova Scotia. Peter Nicholson, chair of the Canadian Climate Institute and author of Catching the Wind: How Atlantic Canada Can Become an Energy Superpower, believes the project could redefine Nova Scotia’s role in Canada’s energy transition.

“It’s very well understood where the world is headed,” Nicholson said, noting that wind power is becoming increasingly competitive worldwide. “We’re moving toward an electrical future that’s cleanly generated for economic, environmental, and security reasons. But for that to happen, the economics have to work.” He added that the official “nation-building” designation could give Nova Scotia “a seat at the table” with major utilities in other provinces.

The governments of Canada and Nova Scotia recently issued a notice of strategic direction to the Canada–Nova Scotia Offshore Energy Regulator, aligning with Ottawa’s plan to regulate offshore wind as it begins a prequalification process and designs a call for bids later this year. The initial round will cover just 3 GW of capacity — smaller than the originally envisioned 5 GW — but officials describe it as a first step in a multi-decade plan.

While timing and economics remain uncertain, supporters insist the long-term potential of offshore wind in Nova Scotia is too significant to ignore. As global demand for clean electricity grows and offshore wind moves toward a trillion-dollar global market, they argue, West Wind could help secure Canada’s place as a renewable energy leader — if government and industry can find a way to make the numbers work.

 

Related Articles

 

View more

'Consumer Reports' finds electric cars really do save money in the long run

Electric Vehicle Ownership Costs include lower maintenance, repair, and fuel expenses; Consumer Reports shows BEV and PHEV TCO beats ICE over 200,000 miles, with per-mile savings compounding through electricity prices and reduced service.

 

Key Points

Lifetime EV expenses, typically lower than ICE, due to cheaper electricity, reduced maintenance, and fewer repairs.

✅ BEV: $0.012/mi to 50k; $0.028/mi after; vs ICE up to $0.06/mi

✅ PHEV: $0.021/mi to 50k; $0.031/mi after; still below ICE

✅ Savings increase over 200k miles from fuel and service reductions

 

Electric vehicles are a relatively new technology, and the EV age is arriving ahead of schedule today. Even though we technically saw the first battery-powered vehicles more than 100 years ago, they haven’t really become viable transportation in the modern world until recently, and they are greener than ever in all 50 states as the grid improves.

As viable as they may now be, however, it still seems they’re unarguably more expensive than their conventional internal-combustion counterparts, prompting many to ask whether it’s time to buy an electric car today. Well, until now.

Lower maintenence costs and the lower price of electricity versus gasoline (see the typical cost to charge an electric vehicle in most regions) actually make electric cars much cheaper in the long run, despite their often higher purchase price, according to a new survey by Consumer Reports. The information was collected using annual reliability surveys conducted by CR in 2019 and 2020.

In the first 50,000 miles (80,500 km), battery electric vehicles cost just US$0.012 per mile for maintenence and repairs, while plug-in hybrid models bump that number up to USD$0.021. Compare these numbers to the typical USD$0.028 cost for internal combustion vehicles, and it becomes clear the more you drive, the more you will save, and across the U.S. plug-ins logged 19 billion electric miles in 2021 to prove the point. After 50,000 miles, the costs for BEV and PHEV vehicles is US$0.028 and US$0.031 respectively, while ICE vehicles jump to US$0.06 per mile.

To put it more practically, if you chose to buy a Model 3 instead of a BMW 330i, you’d see a total US$17,600 in savings over the lifetime of the vehicle, aligning with evidence that EVs are better for the planet and your budget as well, based on average driving. In the SUV sector, buying a Tesla Model Y instead of a Lexus crossover would save US$13,400 (provided the former’s roof doesn’t fly off) and buying a Nissan Leaf over a Honda Civic would save US$6,000 over the lifetime of the vehicles.

CR defines the vehicle’s “lifetime” as 200,000 miles (320,000 km). Ergo the final caveat: while it sounds like driving electric means big savings, you might only see those returns after quite a long period of ownership, though some forecasts suggest that within a decade adoption will be nearly universal for many drivers.

 

Related News

View more

Electric cars don't need better batteries. America needs better charging networks

EV charging anxiety reflects concerns beyond range anxiety, focusing on charging infrastructure, fast chargers, and network reliability during road trips, from Tesla Superchargers to Electrify America stations across highways in the United States.

 

Key Points

EV charging anxiety is worry about finding reliable fast chargers on public networks, not just limited range.

✅ Non-Tesla networks vary in uptime and plug-and-charge reliability.

✅ Charging deserts complicate route planning on long highway stretches.

✅ Sync stops: align rest breaks with fast chargers to save time.

 

With electric cars, people often talk about "range anxiety," and how cars with bigger batteries and longer driving ranges will alleviate that. I just drove an electric car from New York City to Atlanta, a distance of about 950 miles, and it taught me something important. The problem really isn't range anxiety. It's anxiety around finding a convenient and working chargers on America's still-challenged EV charging networks today.

Back in 2019, I drove a Tesla Model S Long Range from New York City to Atlanta. It was a mostly uneventful trip, thanks to Tesla's nicely organized and well maintained network of fast chargers that can fill the batteries with an 80% charge in a half hour or less. Since then, I've wanted to try that trip again with an electric car that wasn't a Tesla, one that wouldn't have Tesla's unified charging network to rely on.
I got my chance with a Mercedes-Benz EQS 450+, a car that is as close to a direct competitor to the Tesla Model S as any. And while I made it to Atlanta without major incident, I encountered glitchy chargers, called the charging network's customer service twice, and experienced some serious charging anxiety during a long stretch of the Carolinas.

Long range
The EPA estimated range for the Tesla I drove in 2019 was 370 miles, and Tesla's latest models can go even further.

The EQS 450+ is officially estimated to go 350 miles on a charge, but I beat that handily without even trying. When I got into the car, its internal displays showed a range estimate of 446 miles. On my trip, the car couldn't stretch its legs quite that far, because I was driving almost entirely on highways at fairly high speeds, but by my calculations, I could have gone between 370 and 390 miles on a charge.

I was going to drive over the George Washington Bridge then down through New Jersey, Delaware, Virginia then North Carolina and South Carolina. I figured three charging stops would be needed and, strictly speaking, that was correct. The driving route laid out by the car's navigation system included three charging stops, but the on-board computers tended push things to the limit. At each stop, the battery would be drained to a little over 10% or so. (I learned later this is a setting I could adjust to be more conservative if I'd wanted.)

But I've driven enough electric cars to have some concerns. I use public chargers fairly often, and I know they're imperfect, and we need to fix these problems to build confidence. Sometimes they aren't working as well as they should. Sometimes they're just plain broken. And even if the car's navigation system is telling you that a charger is "available," that can change at any moment. Someone else can pull into the charging spot just a few seconds before you get there.
I've learned to be flexible and not push things to the limit.

On the first day, when I planned to drive from New York to Richmond, Virginia, no charging stop was called for until Spotsylvania, Virginia, a distance of nearly 300 miles. By that point, I had 16% charge left in the car's batteries which, by the car's own calculation, would have taken me another 60 miles.

As I sat and worked inside the Spotsylvania Town Centre mall I realized I'd been dumb. I had already stopped twice, at rest stops in New Jersey and Delaware. The Delaware stop, at the Biden Welcome Center, had EV fast chargers, as the American EV boom accelerates nationwide. I could have used one even though the car's navigation didn't suggest it.

Stopping without charging was a lost opportunity and it cost me time. If I'm going to stop to recharge myself why not recharge the car, too?
But that's the thing, though. A car can be designed to go 350 miles or more before needing to park whereas human beings are not. Elementary school math will tell you that at highway speeds, that's nearly six hours of driving all at once. We need bathrooms, beverages, food, and to just get out and move around once in a while. Sure, it's physically possible to sit in a car for longer than that in one go, but most people in need of speed will take an airplane, and a driver of an EQS, with a starting price just north of $100,000, can almost certainly afford the ticket.

I stopped for a charge in Virginia but realized I could have stopped sooner. I encountered a lot of other electric cars on the trip, including this Hyundai Ioniq 5 charging next to the Mercedes.

I vowed not to make that strategic error again. I was going to take back control. On the second day, I decided, I would choose when I needed to stop, and would look for conveniently located fast chargers so both the EQS and I could get refreshed at once. The EQS's navigation screen pinpointed available charging locations and their maximum charging speeds, so, if I saw an available charger, I could poke on the icon with my finger and add it onto my route.

For my first stop after leaving Richmond, I pulled into a rest stop in Hillsborough, North Carolina. It was only about 160 miles south from my hotel and I still had half of a full charge.

I sipped coffee and answered some emails while I waited at a counter. I figured I would take as long as I wanted and leave when I was ready with whatever additional electricity the car had gained in that time. In all, I was there about 45 minutes, but at least 15 minutes of that was used trying to get the charger to work. One of the chargers was simply not working at all, and, at another one, a call to Electrify America customer service -- the EV charging company owned by Volkswagen that, by coincidence, operated all the chargers I used on the trip -- I got a successful charging session going at last. (It was unclear what the issue was.)

That was the last and only time I successfully matched my own need to stop with the car's. I left with my battery 91% charged and 358 miles of range showing on the display. I would only need to stop once more on way to Atlanta and not for a long time.

Charging deserts
Then I began to notice something. As I drove through North Carolina and then South Carolina, the little markers on the map screen indicating available chargers became fewer and fewer. During some fairly long stretches there were none showing at all, highlighting how better grid coordination could improve coverage.

It wasn't an immediate concern, though. The EQS's navigation wasn't calling for me to a charge up again until I'd nearly reached the Georgia border. By that point I would have about 11% of my battery charge remaining. But I was getting nervous. Given how far it was between chargers my whole plan of "recharging the car when I recharge myself" had already fallen apart, the much-touted electric-car revolution notwithstanding. I had to leave the highway once to find a gas station to use the restroom and buy an iced tea. A while later, I stopped for lunch, a big plate of "Lexington Style BBQ" with black eyed peas and collard greens in Lexington, North Carolina. None of that involved charging because there no chargers around.

Fortunately, a charger came into sight on my map while I still had 31% charge remaining. I decided I would protect myself by stopping early. After another call to Electrify America customer service, I was able to get a nice, high-powered charging session on the second charger I tried. After about an hour I was off again with a nearly full battery.

I drove the last 150 miles to Atlanta, crossing the state line through gorgeous wetlands and stopping at the Georgia Welcome Center, with hardly a thought about batteries or charging or range.

But I was driving $105,000 Mercedes. What if I'd been driving something that cost less and that, while still going farther than a human would want to drive at a stretch, wouldn't go far enough to make that trip as easily, a real concern for those deciding if it's time to buy an electric car today. Obviously, people do it. One thing that surprised me on this trip, compared to the one in 2019, was the variety of fully electric vehicles I saw driving the same highways. There were Chevrolet Bolts, Audi E-Trons, Porsche Taycans, Hyundai Ioniqs, Kia EV6s and at least one other Mercedes EQS.

Americans are taking their electric cars out onto the highways, as the age of electric cars gathers pace nationwide. But it's still not as easy as it ought to be.

 

Related News

View more

Hitachi Energy to accelerate sustainable mobility in Germany's biggest city

Grid-eMotion Fleet Smart Charging enables BVG Berlin to electrify bus depots with compact grid-to-plug DC infrastructure, smart charging software, and high reliability, accelerating zero-emission electric buses, lower noise, and space-efficient e-mobility.

 

Key Points

Grid-to-plug DC charging for bus depots, with smart software to reliably power zero-emission electric bus fleets.

✅ Up to 60% less space and 40% less cabling than alternatives

✅ DC charging with smart scheduling for depot operations

✅ Scalable, grid-code compliant, low-noise, high reliability

 

Grid-eMotion Fleet smart charging solution to help the City of Berlin reach its goal of a zero-emission bus fleet by 2030

Dubai, UAE: Hitachi Energy has won an order from Berliner Verkehrsbe-triebe (BVG), Germany’s biggest municipal public transportation company, to supply its Grid-eMotionTM Fleet smart charging infrastructure to help BVG transition to sustainable mobility in Berlin, the country’s capital, where an electric flying ferry initiative underscores the city’s e-mobility momentum.

Hitachi Energy will provide a complete Grid-eMotion Fleet grid-to-plug charging infrastructure solution for the next two bus depots to be converted in the bus electrification program. Hitachi Energy’s solution offers the smallest footprint for both the connection, as well as low noise emissions and high reliability that support grid stability across operations – three key requirements for bus depots in a densely populated urban environment, where space is limited and flawless charging is vital to ensure buses run on time.

The solution comprises a connection to the distribution grid, where effective grid coordination streamlines integration, power distribution and DC charging infrastructure with charging points and smart charging systems. Hitachi Energy will perform the engineering and integrate, install and service the entire solution. The solution has a compact and robust design that requires less equipment than competing infrastructure, which results in a small footprint, lower operating and maintenance costs, and higher reliability. Typically, Grid-eMotion Fleet requires 60 percent less space and 40 percent less cabling than alternative charging systems; it also provides superior overall system reliability.

“We are delighted to help the City of Berlin in its transition to quiet and emission-free transportation and a sustainable energy future for the people of this iconic capital,” said Niklas Persson, Managing Director of Hitachi Energy’s Grid Integration business. “We feel the urgency and have the pioneering technology and commitment to advance sustainable mobility, thus improving the quality of life of millions of people.”

BVG operates Germany’s biggest city bus fleet of around 1,500 vehicles, which it aims to make completely electric and emission-free by 2030, and could benefit from vehicle-to-grid pilots to enhance flexibility. This requires the installation of charging infra-structure in its large network of bus depots.

About Grid-eMotion:

Grid-eMotion comprises two unique, innovative solutions – Fleet and Flash. Grid-eMotion Fleet is a grid-code compliant and space-saving grid-to-plug charging solution that can be in-stalled in new and existing bus depots. The charging solution can be scaled flexibly as the fleet gets bigger and greener. It includes a robust and compact grid connection and charging points, and is also available for commercial vehicle fleets, including last-mile delivery and heavy-duty trucks, as electric truck fleets scale up, requiring high power charging of several megawatts. Grid-eMotionTM Flash enables operators to flash-charge buses within seconds at passenger stops and fully recharge within minutes at the route terminus, without interrupting the bus schedule.

Both solutions are equipped with configurable smart charging digital platforms that can be em-bedded with larger fleet and energy management systems, enabling vehicle-to-grid capabilities for bidirectional charging. Additional offerings from Hitachi Energy for EV charging systems consist of e-meshTM energy management and optimization solutions and Lumada APM, EAM and FSM solutions, to help transportation operators make informed decisions that maximize their uptime and improve efficiency.

In the past few months alone, Hitachi Energy has won orders from customers and partners all over the world for its smart charging portfolio – a sign that Grid-eMotion is changing the e-mobility landscape for electric buses and commercial vehicles, as advances in energy storage and mobile charging bolster resilience. Grid-eMotion solutions are al-ready operating or under development in Australia, Canada, China, India, the Middle East, the United States and several countries in Europe.

 

Related News

View more

GE to create 300 new jobs at French offshore wind blade factory

LM Wind Power Cherbourg Recruitment 2021 targets 300 new hires for offshore wind manufacturing, wind turbine blade production, Haliade-X components, and operations in France, with Center of Excellence training and second 107-meter blade mold expansion.

 

Key Points

A hiring drive to add 300 staff for offshore wind blade manufacturing in Cherbourg, with Center of Excellence training.

✅ 300 hires to scale offshore wind blade production

✅ 6-week Center of Excellence training for all recruits

✅ Second 107-meter blade mold boosts capacity

 

GE Renewable Energy plans to recruit 300 employees in 2021 at its LM Wind Power wind turbine blade factory in Cherbourg, France / Opened almost three years ago in April 2018, the factory today counts more than 450 employees / Every new hire will go through an intensive training program at the factory's ‘Center of Excellence' to learn wind turbine blade manufacturing processes / Site has produced the first offshore wind turbine blade longer than 100 meters, 107-meters long / Second 107-meter blade manufacturing mold is being installed at the plant today

GE Renewable Energy announced today its plan to recruit 300 employees at its LM Wind Power wind turbine blade manufacturing site in Cherbourg, France, in 2021. Every new hire will go through an intensive training program at the factory's ‘Center of Excellence' to learn wind turbine blade manufacturing processes supporting offshore wind energy growth in Europe. The expanded production workforce will allow LM Wind Power to meet the growing industry demand for offshore wind equipment, including emerging offshore green hydrogen applications across the sector.

The factory currently has more than 450 employees, with 34 percent being women. The facility became the first wind turbine blade manufacturing site in France when it was opened almost three years ago in April 2018, while Spanish wind factories faced temporary closures due to COVID-19 restrictions.

The facility has produced the first offshore wind turbine blade longer than 100 meters, a 107-meters long blade that will be used in GE’s Haliade-X offshore wind turbine. A second 107-meter blade manufacturing mold is currently being installed at the plant to support growing project pipelines like those planned off Massachusetts' South Coast in the U.S.

Florence Martinez Flores, the site’s Human Resources Director, said: "The arrival of the second mold within the factory marks an increased activity for LM Wind Power in Cherbourg, and we are happy to welcome a large wave of new employees, allowing us to participate in social development and create more jobs in the surrounding community, but also to bring new skills to the region."

Recent investments such as EDF Irish offshore wind stake news underscore the broader market momentum.

The Cherbourg team is mostly looking to expand its production workforce, with positions that are open to all profiles and backgrounds. Every new employee will be trained to manufacture wind turbine blades through LM Wind Power's ‘Center of Excellence' training program – a six-week theoretical and practical training course, which will develop the skills and technical expertise required to produce high-quality wind turbine blades and support wind turbine operations and maintenance across the industry. The site will also be looking for production supervisors, quality controllers and maintenance technicians.

 

Related News

View more

Harbour Air's electric aircraft a high-flying example of research investment

Harbour Air Electric Aircraft Project advances zero-emission aviation with CleanBC Go Electric ARC funding, converting seaplanes to battery-electric power, cutting emissions, enabling commercial passenger service, and creating skilled clean-tech jobs through R&D and electrification.

 

Key Points

Harbour Air's project electrifies seaplanes with CleanBC ARC support to enable zero-emission flights and cut emissions.

✅ $1.6M CleanBC ARC funds seaplane electrification retrofit

✅ Target: passenger-ready, zero-emission commercial service

✅ Creates 21 full-time clean-tech jobs in British Columbia

 

B.C.’s Harbour Air Seaplanes is building on its work in clean technology to decarbonize aviation, part of an aviation revolution underway, and create new jobs with support from the CleanBC Go Electric Advanced Research and Commercialization (ARC) program.

”Harbour Air is decarbonizing aviation and elevating the company to new altitudes as a clean-technology leader in B.C.'s transportation sector,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “With support from our CleanBC Go Electric ARC program, Harbour Air's project not only supports our emission-reduction goals, but also creates good-paying clean-tech jobs, exemplifying the opportunities in the low-carbon economy.”

Harbour Air is receiving almost $1.6 million from the CleanBC Go Electric ARC program for its aircraft electrification project. The funding supports Harbour Air’s conversion of an existing aircraft to be fully electric-powered and builds on its successful December 2019 flight of the world’s first all-electric commercial aircraft, and subsequent first point-to-point electric flight milestones.

That flight marked the start of the third era in aviation: the electric age. Harbour Air is working on a new design of the electric motor installation and battery systems to gain efficiencies that will allow carrying commercial passengers, as it eyes first electric passenger flights in 2023. Approximately 21 full-time jobs will be created and sustained by the project.

“CleanBC is helping accelerate world-leading clean technology and innovation at Harbour Air that supports good jobs for people in our communities,” said George Heyman, Minister of Environment and Climate Change Strategy. “Once proven, the technology supports a switch from fossil fuels to advanced electric technology, and will provide a clean transportation option, such as electric ferries, that reduces pollution and shows the way forward for others in the sector.”

Harbour Air is a leader in clean-technology adoption. The company has also purchased a fully electric, zero-emission passenger shuttle bus to pick up and drop off passengers between Harbour Air’s downtown Vancouver and Richmond locations, and the Vancouver International Airport, where new EV chargers support travellers.

“It is great to see the Province stepping up to support innovation,” said Greg McDougall, Harbour Air CEO and ePlane test pilot. “This type of funding confirms the importance of encouraging companies in all sectors to focus on what they can be doing to look at more sustainable practices. We will use these resources to continue to develop and lead the transportation industry around the world in all-electric aviation.”

In total, $8.18 million is being distributed to 18 projects from the second round of CleanBC Go Electric ARC program funding. Recipients include Damon Motors and IRDI System, both based on the Lower Mainland. The 15 other successful projects will be announced this year.

The CleanBC Go Electric ARC program supports the electric vehicle (EV) sector in B.C., which leads the country in going electric, by providing reliable and targeted support for research and development, commercialization and demonstration of B.C.-based EV technologies, services and products.

“This project is a great example of the type of leading-edge innovation and tech advancements happening in our province,” said Brenda Bailey, Parliamentary Secretary for Technology and Innovation. “By further supporting the development of the first all-electric commercial aircraft, we are solidifying our position as world leaders in innovation and using technology to change what is possible.”

The CleanBC Roadmap to 2030 is B.C.’s plan to expand and accelerate climate action, including a major hydrogen project, building on the province’s natural advantages – abundant, clean electricity, high-value natural resources and a highly skilled workforce. It sets a path for increased collaboration to build a British Columbia that works for everyone.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified