UK sets new record for wind power generation


wind power

Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Britain Wind Generation Record underscores onshore and offshore wind momentum, as National Grid ESO reported 20.91 GW, boosting zero-carbon electricity, renewables share, and grid stability amid milder weather, falling gas prices, and net zero goals.

 

Key Points

The Britain wind generation record is 20.91 GW, set on 30 Dec, driven by onshore and offshore turbines.

✅ Set on 30 Dec 2022 with peak output of 20.91 GW.

✅ Zero-carbon sources hit 87.2% of grid supply.

✅ Driven by onshore and offshore wind; ESO reported stability.

 

Britain has set a new record for wind generation as power from onshore and offshore turbines helped boost clean energy supplies late last year.

National Grid’s electricity system operator (ESO), which handles Great Britain’s grid operations, said that a new record for wind generation was set on 30 December, when 20.91 gigawatts (GW) were produced by turbines.

This represented the third time Britain’s fleet of wind turbines set new generation records in 2022. In May, National Grid had to ask some turbines in the west of Scotland to shut down, as the network was unable to store such a large amount of electricity when a then record 19.9GW of power was produced – enough to boil 3.5m kettles.

The ESO said a new record was also set for the share of electricity on the grid coming from zero-carbon sources – renewables and nuclear – which supplied 87.2% of total power. These sources have accounted for about 55% to 59% of power over the past couple of years.

The surge in wind generation represents a remarkable reversal in fortunes as a cold snap that enveloped Britain and Europe quickly turned to milder weather.

Power prices had soared as the freezing weather forced Britons to increase their heating use, pushing up demand for energy despite high bills.

The cold weather came with a period of low wind, reducing the production of Britain’s windfarms to close to zero.

Emergency coal-fired power units at Drax in North Yorkshire were put on standby but ultimately not used, while gas-fired generation accounted for nearly 60% of the UK’s power output at times.

However, milder weather in the UK and Europe in recent days has led to a reduction in demand from consumers and a fall in wholesale gas prices. It has also reduced the risk of power cuts this winter, which National Grid had warned could be a possibility.

Wind generation is increasingly leading the power mix in Britain and is seen as a crucial part of Britain’s move towards net zero. The prime minister, Rishi Sunak, is expected to overturn a moratorium on new onshore wind projects with a consultation on the matter due to run until March.

 

Related News

Related News

DOE Issues Two LNG Export Authorizations

DOE LNG Export Approvals expand flexibility for Cheniere's Sabine Pass and Corpus Christi to ship to non-FTA countries, boosting U.S. supply to Europe while advancing methane emissions reductions and strengthening global energy security.

 

Key Points

DOE LNG export approvals authorize Sabine Pass and Corpus Christi to sell full-capacity LNG to non-FTA markets.

✅ Exports allowed to any non-FTA country, including Europe

✅ Capacity covers Sabine Pass and Corpus Christi terminals

✅ DOE targets methane reductions across oil and gas

 

The U.S. Department of Energy (DOE) today issued two long-term orders authorizing liquefied natural gas (LNG) exports from two current operating LNG export projects, Cheniere Energy Inc.’s Sabine Pass in Louisiana and Corpus Christi in Texas, following a recent deep freeze that slammed the American energy sector.

The two orders allow Sabine Pass and Corpus Christi additional flexibility to export the equivalent of 0.72 billion cubic feet per day of natural gas as LNG to any country with which the U.S. does not have a free trade agreement, including all of Europe, such as the UK natural gas market as well.

While U.S. exporters are already exporting at or near their maximum capacity, with today's issuances, every operating U.S. LNG export project has approval from DOE to export its full capacity to any country where not prohibited by U.S. law or policy constraints in place.

The U.S. is now the top global exporter of LNG and exports are set to grow an additional 20% beyond current levels by the end of this year as additional capacity comes online, even as a domestic energy crisis influences electricity and gas markets.  In January 2022, U.S. LNG supplied more than half of the LNG imports into Europe for the month.

With the expected rise in LNG exports, DOE is particularly focused on driving down methane emissions in the oil and gas sector both domestically and abroad, leveraging the deep technical expertise of the Department, and supporting nuclear innovation as well.

U.S. LNG remains an important component to global energy security worldwide and DOE remains committed to finding ways to help our allies and trading partners, including support to Ukraine and others with the energy supplies they need while continuing to work to mitigate the impact of climate change.

 

Related News

View more

The Age of Electric Cars Is Dawning Ahead of Schedule

EV Price Parity is nearing reality in Europe as subsidies, falling battery costs, higher energy density, and expanding charging infrastructure push Tesla, Volkswagen, and Renault to compete under EU CO2 regulations and fleet targets.

 

Key Points

EV price parity means EVs match ICE cars on total ownership cost as subsidies fade and batteries get cheaper.

✅ Battery pack costs trending toward $100/kWh

✅ EU CO2 rules and incentives accelerate adoption

✅ Charging networks reduce range anxiety and TCO

 

An electric Volkswagen ID.3 for the same price as a Golf. A Tesla Model 3 that costs as much as a BMW 3 Series. A Renault Zoe electric subcompact whose monthly lease payment might equal a nice dinner for two in Paris.

As car sales collapsed in Europe because of the pandemic, one category grew rapidly: electric vehicles, a shift that some analysts say could put most drivers within a decade on battery power. One reason is that purchase prices in Europe are coming tantalizingly close to the prices for cars with gasoline or diesel engines.

At the moment this near parity is possible only with government subsidies that, depending on the country, can cut more than $10,000 from the final price. Carmakers are offering deals on electric cars to meet stricter European Union regulations on carbon dioxide emissions. In Germany, an electric Renault Zoe can be leased for 139 euros a month, or $164.

Electric vehicles are not yet as popular in the United States, largely because government incentives are less generous, but an emerging American EV boom could change that trajectory. Battery-powered cars account for about 2 percent of new car sales in America, while in Europe the market share is approaching 5 percent. Including hybrids, the share rises to nearly 9 percent in Europe, according to Matthias Schmidt, an independent analyst in Berlin.

As electric cars become more mainstream, the automobile industry is rapidly approaching the tipping point, an inflection point for the market, when, even without subsidies, it will be as cheap, and maybe cheaper, to own a plug-in vehicle than one that burns fossil fuels. The carmaker that reaches price parity first may be positioned to dominate the segment.

A few years ago, industry experts expected 2025 would be the turning point. But technology is advancing faster than expected, and could be poised for a quantum leap. Elon Musk is expected to announce a breakthrough at Tesla’s “Battery Day” event on Tuesday that would allow electric cars to travel significantly farther without adding weight.

The balance of power in the auto industry may depend on which carmaker, electronics company or start-up succeeds in squeezing the most power per pound into a battery, what’s known as energy density. A battery with high energy density is inherently cheaper because it requires fewer raw materials and less weight to deliver the same range.

“We’re seeing energy density increase faster than ever before,” said Milan Thakore, a senior research analyst at Wood Mackenzie, an energy consultant which recently pushed its prediction of the tipping point ahead by a year, to 2024.

Some industry experts are even more bullish. Hui Zhang, managing director in Germany of NIO, a Chinese electric carmaker with global ambitions, said he thought parity could be achieved in 2023.

Venkat Viswanathan, an associate professor at Carnegie Mellon University who closely follows the industry, is more cautious, though EV revolution skeptics argue the revolution is overstated. But he said: “We are already on a very accelerated timeline. If you asked anyone in 2010 whether we would have price parity by 2025, they would have said that was impossible.”

This transition will probably arrive at different times for different segments of the market. High-end electric vehicles are pretty close to parity already. The Tesla Model 3 and the gas-powered BMW 3 Series both sell for about $41,000 in the United States.

A Tesla may even be cheaper to own than a BMW because it never needs oil changes or new spark plugs and electricity is cheaper, per mile, than gasoline. Which car a customer chooses is more a matter of preference, particularly whether an owner is willing to trade the convenience of gas stations for charging points that take more time. (On the other hand, owners can also charge their Teslas at home.)

Consumers tend to focus on sticker prices, and it will take longer before unsubsidized electric cars cost as little to drive off a dealer’s lot as an economy car, even for shoppers weighing whether it’s the right time to buy an electric car now.

The race to build a better battery
The holy grail in the electric vehicle industry has been to push the cost of battery packs — the rechargeable system that stores energy — below $100 per kilowatt-hour, the standard measure of battery power. That is the point, more or less, at which propelling a vehicle with electricity will be as cheap as it is with gasoline.

Current battery packs cost around $150 to $200 per kilowatt-hour, depending on the technology. That means a battery pack costs around $20,000. But the price has dropped 80 percent since 2008, according to the United States Department of Energy.

All electric cars use lithium-ion batteries, but there are many variations on that basic chemistry, and intense competition to find the combination of materials that stores the most power for the least weight.

For traditional car companies, this is all very scary. Internal combustion engines have not changed fundamentally for decades, but battery technology is still wide open. There are even geopolitical implications. China is pouring resources into battery research, seeing the shift to electric power as a chance for companies like NIO to make their move on Europe and someday, American, markets. In less than a decade, the Chinese battery maker CATL has become one of the world’s biggest manufacturers.


Everyone is trying to catch Tesla
The California company has been selling electric cars since 2008 and can draw on years of data to calculate how far it can safely push a battery’s performance without causing overheating or excessive wear. That knowledge allows Tesla to offer better range than competitors who have to be more careful. Tesla’s four models are the only widely available electric cars that can go more than 300 miles on a charge, according to Kelley Blue Book.

On Tuesday, Mr. Musk could unveil a technology offering 50 percent more storage per pound at lower cost, according to analysts at the Swiss bank UBS. If so, competitors could recede even further in the rearview mirror.

“The traditional car industry is still behind,” said Peter Carlsson, who ran Tesla’s supplier network in the company’s early days and is now chief executive of Northvolt, a new Swedish company that has contracts to manufacture batteries for Volkswagen and BMW.

“But,” Mr. Carlsson said, “there is a massive amount of resources going into the race to beat Tesla. A number, not all, of the big carmakers are going to catch up.”

The traditional carmakers’ best hope to avoid oblivion will be to exploit their expertise in supply chains and mass production to churn out economical electrical cars by the millions.

A key test of the traditional automakers’ ability to survive will be Volkswagen’s new battery-powered ID.3, which will start at under €30,000, or $35,000, after subsidies and is arriving at European dealerships now. By using its global manufacturing and sales network, Volkswagen hopes to sell electric vehicles by the millions within a few years. It plans to begin selling the ID.4, an electric sport utility vehicle, in the United States next year. (ID stands for “intelligent design.”)

But there is a steep learning curve.

“We have been mass-producing internal combustion vehicles since Henry Ford. We don’t have that for battery vehicles. It’s a very new technology,” said Jürgen Fleischer, a professor at the Karlsruhe Institute of Technology in southwestern Germany whose research focuses on battery manufacturing. “The question will be how fast can we can get through this learning curve?”

It’s not just about the batteries
Peter Rawlinson, who led design of the Tesla Model S and is now chief executive of the electric car start-up Lucid, likes to wow audiences by showing up at events dragging a rolling carry-on bag containing the company’s supercompact drive unit. Electric motor, transmission and differential in one, the unit saves space and, along with hundreds of other weight-saving tweaks, will allow the company’s Lucid Air luxury car — which the company unveiled on Sept. 9 — to travel more than 400 miles on a charge, Mr. Rawlinson said.

His point is that designers should focus on things like aerodynamic drag and weight to avoid the need for big, expensive batteries in the first place. “There is kind of a myopia,” Mr. Rawlinson said. “Everyone is talking about batteries. It’s the whole system.”

“We have been mass-producing internal combustion vehicles since Henry Ford,” said Jürgen Fleischer, a professor at the Karlsruhe Institute of Technology. “We don’t have that for battery vehicles.”

A charger on every corner would help
When Jana Höffner bought an electric Renault Zoe in 2013, driving anywhere outside her home in Stuttgart was an adventure. Charging stations were rare, and didn’t always work. Ms. Höffner drove her Zoe to places like Norway or Sicily just to see if she could make it without having to call for a tow.

Ms. Höffner, who works in online communication for the state of Baden-Württemberg, has since traded up to a Tesla Model 3 equipped with software that guides her to the company’s own network of chargers, which can fill the battery to 80 percent capacity in about half an hour. She sounds almost nostalgic when she remembers how hard it was to recharge back in the electric-vehicle stone age.

“Now, it’s boring,” Ms. Höffner said. “You say where you want to go and the car takes care of the rest.”

The European Union has nearly 200,000 chargers, far short of the three million that will be needed when electric cars become ubiquitous, according to Transport & Environment, an advocacy group. The United States remains far behind, with less than half as many as Europe, even as charging networks jostle under federal electrification efforts.

But the European network is already dense enough that owning and charging an electric car is “no problem,” said Ms. Höffner, who can’t charge at home and depends on public infrastructure.
 

 

Related News

View more

Toronto to start trial run of 'driverless' electric vehicle shuttles

Toronto Olli 2.0 Self-Driving Shuttle connects West Rouge to Rouge Hill GO with autonomous micro-transit. Electric shuttle pilot by Local Motors and Pacific Western Transportation, funded by Transport Canada, features accessibility, TTC and Metrolinx support.

 

Key Points

An autonomous micro-transit pilot linking West Rouge to Rouge Hill GO, with accessibility and onboard staff.

✅ Last-mile link: West Rouge to Rouge Hill GO

✅ Accessible: ramp, wheelchair securement, A/V announcements

✅ Operated with attendants; funded by Transport Canada

 

The city of Toronto, which recently opened an EV education centre to support adoption, has approved the use of a small, self-driving electric shuttle vehicle that will connect its West Rouge neighbourhood to the Rouge Hill GO station, a short span of a few kilometres.

It’s called the Olli 2.0, and it’s a micro-shuttle with service provided by Local Motors, in partnership with Pacific Western Transportation, as the province makes it easier to build EV charging stations to support growing demand.

The vehicle is designed to hold only eight people, and has an accessibility ramp, a wheelchair securement system, audio and visual announcements, and other features for providing rider information, aligning with transit safety policies such as the TTC’s winter lithium-ion device restrictions across the system.

“We are continuing to move our city forward on many fronts including micro-transit as we manage the effects of COVID-19,” said Mayor John Tory. “This innovative project will provide valuable insight, while embracing innovation that could help us build a better, more sustainable and equitable transportation network.”

At the provincial level, the public EV charging network has faced delays, underscoring infrastructure challenges.


Although the vehicle is “self-driving,” it will still require two people onboard for every trip during the six- to 12-month trial; those people will be a certified operator from Pacific Western Transportation, and either a TTC ambassador from an agency introducing battery electric buses across its fleet, or a Metrolinx customer service ambassador.

Funding for the program comes from Transport Canada, as part of a ten-year pilot program to test automated vehicles on Ontario’s roads that was approved in 2016, and it complements lessons from the TTC’s largest battery-electric bus fleet as well as emerging vehicle-to-grid programs that engage EV owners.

 

Related News

View more

GM, Ford Need Electric-Car Batteries, but Take Different Paths to Get Them

EV battery supply strategies weigh in-house cell manufacturing against supplier contracts, optimizing costs, scale, and supply-chain resilience for electric vehicles. Automakers like Tesla, GM-LG Chem, VW-Northvolt, and Ford balance gigafactories, joint ventures, and procurement risks.

 

Key Points

How automakers secure EV battery cells by balancing cost, scale, tech risk, and supply-chain control to meet demand.

✅ In-source cells via gigafactories, JVs, and proprietary chemistries

✅ Contract with LG Chem, Panasonic, CATL, SKI to diversify supply

✅ Manage costs, logistics, IP, and technology obsolescence risks

 

Auto makers, pumping billions of dollars into developing electric cars, are now facing a critical inflection point as they decide whether to get more involved with manufacturing the core batteries or buy them from others.

Batteries are one of an electric vehicle’s most expensive components, accounting for between a quarter and a third of the car’s value. Driving down their cost is key to profitability, executives say.

But whereas the internal combustion engine traditionally has been engineered and built by auto makers themselves, battery production for electric cars is dominated by Asian electronics and chemical firms, such as LG Chem Ltd. and Panasonic Corp. , and newcomers like China’s Contemporary Amperex Technology Co.

California, the U.S.’s largest car market, said last month it would end the sale of new gasoline- and diesel-powered passenger cars by 2035, putting pressure on the auto industry to accelerate its shift to electric vehicles in the coming years.

The race to lock in supplies for electric cars has auto makers taking varied paths, with growing Canada-U.S. collaboration across supply chains.

While most make the battery pack, a large metal enclosure often lining the bottom of the car, they also need the cells that are bundled together to form the core electricity storage.

Tesla several years ago opened its Gigafactory in Nevada to make batteries with Panasonic, which in the shared space would produce cells for the packs. The electric-car maker wanted to secure production specifically for its own models and lower manufacturing and logistics costs.

Now it is looking to in-source more of that production.

While Tesla will continue to buy cells from Panasonic and other suppliers, it is also working on its own cell technology and production capabilities, aiming for cheaper, more powerful batteries to ensure it can keep up with demand for its cars, said Chief Executive Elon Musk last month.

Following Tesla’s lead, General Motors Co. and South Korea’s LG Chem are putting $2.3 billion into a nearly 3-million-square-foot factory in Lordstown, Ohio, highlighting opportunities for Canada to capitalize on the U.S. EV pivot as supply chains evolve, which GM says will eventually produce enough battery cells to outfit hundreds of thousands of cars each year.

In Europe, Volkswagen AG is taking a similar path, investing about $1 billion in Swedish battery startup Northvolt AB, including some funding to build a cell-manufacturing plant in Salzgitter, Germany, as part of a joint venture, and in North America, EV assembly deals in Canada are putting it in the race as well.

Others like Ford Motor Co. and Daimler AG are steering clear of manufacturing their own cells, with executives saying they prefer contracting with specialized battery makers.

Supply-chain disruptions, including lithium shortages, have already challenged some new model launches and put projects at risk, auto makers say.

For instance, Ford and VW have agreements in place with SK Innovation to supply battery cells for future electric-vehicle models. The South Korean company is building a factory in Georgia to help meet this demand, but a fight over trade secrets has put the plant’s future in jeopardy and could disrupt new model launches, both auto makers have said in legal filings.

GM executives say the risk of relying on suppliers has pushed them to produce their own battery cells, albeit with LG Chem.

“We’ve got to be able to control our own destiny,” said Ken Morris, GM’s vice president of electric vehicles.

Bringing the manufacturing in house will give the company more control over the raw materials it purchases and the battery-cell chemistry, Mr. Morris said.

But establishing production, even in a joint venture, is a costly proposition, and it won’t necessarily ensure a timely supply of cells. There are also risks with making big investments on one battery technology because a breakthrough could make it obsolete.

Ford cites those factors in deciding against a similar investment for now.

The company sees the industry’s conventional model of contracting with independent suppliers to build parts as better suited to its battery-cell needs, Ford executive Hau Thai-Tang told analysts in August.

“We have the competitive tension with dealing with multiple suppliers, which allows us to drive the cost down,” Mr. Thai-Tang said, adding that the company expects to pay prices for cells in line with GM and Tesla.


Meanwhile, Ford can leave the capital-intensive task of conducting the research and setting up manufacturing facilities to the battery companies, Mr. Thai-Tang said.

Germany’s Daimler has tried both strategies.

The car company made its own lithium-ion cells through a subsidiary until 2015. But the capital required to scale up was better spent elsewhere, said Ola Källenius, Daimler’s chief executive officer.

The auto maker instead signed long-term supply agreements with Asian companies like Chinese battery-maker CATL and Farasis Energy (Ganzhou) Co., which Daimler invested in last year.

The company has said it is spending roughly $23.6 billion on purchase agreements but keeping its battery research in-house.

“Let’s rather put that capital into what we do best, cars,” Mr. Källenius said.

 

Related News

View more

Renewables Poised to Eclipse Coal in Global Power Generation by 2025

IEA Electricity 2024 Renewables Outlook projects renewable energy surpassing coal in global electricity generation by early 2025, with nuclear power rebounding, clean energy expansion, electrification, and grid upgrades cutting emissions and decarbonizing power systems.

 

Key Points

IEA forecast: renewables beat coal by 2025, nuclear rebounds, speeding cleaner power and deeper emissions cuts by 2026.

✅ Renewables surpass coal by 2025; nuclear output hits records by 2025-2026.

✅ Power demand grows 3.4% avg to 2026 via EVs, data centers, electrification.

✅ Gas displaces coal; grids need investment; drought and supply chains pose risks.

 

The International Energy Agency's latest Electricity 2024 report predicts that renewable energy sources will surpass coal in global electricity generation by early 2025, reaching over one-third of the world's total power output. Additionally, nuclear power is expected to achieve record production levels by 2025, recovering from recent downturns and reflecting low-carbon electricity lessons from the COVID-19 period.

By 2026, the report estimates that renewables and nuclear will jointly contribute to nearly half of the global power generation, up from less than 40 percent in 2023. This shift is crucial as the United Nations emphasizes the transition to clean energy, with Asia to use half of electricity by 2025 highlighting the scale of the challenge, as a key factor in limiting global warming to 1.5 degrees Celsius above preindustrial levels.

IEA Executive Director Fatih Birol highlighted the promising trends of renewables, led by affordable solar power and the resurgence of nuclear power, as key factors covering almost all demand growth over the next three years.

At the COP28 climate summit in Dubai, participants agreed on a plan for phasing out fossil fuels and committed to tripling renewable capacity by 2030. This shift in the electricity mix is expected to reduce emissions from the power sector, which is currently the largest source of carbon dioxide emissions worldwide.

Despite a modest 2.2 percent growth in global electricity demand in 2023, an acceleration to an average annual increase of 3.4 percent is projected from 2024 to 2026. This surge in electricity demand is driven by factors like home and business electrification, the proliferation of electric vehicles, and industrial expansion.

Significant growth in electricity usage from data centers worldwide is anticipated, potentially doubling between 2022 and 2026, as global power demand has surged above pre-pandemic levels. Regulatory updates and technological advancements are essential to manage this energy consumption increase effectively.

Emissions from the electricity sector are expected to decrease following a 1 percent rise in 2023, with a more than 2 percent reduction projected in 2024 and continued declines in subsequent years. This reduced carbon intensity in electricity generation will enhance the emissions savings from electrifying cars and appliances.

Natural gas-fired power is predicted to see a modest increase over the next three years, primarily replacing coal power. While Europe has witnessed sharp declines in gas power, EU wind and solar beat gas last year, growth in the United States, Asia, Africa, and the Middle East is expected due to available liquefied natural gas supplies.

By 2026, fossil fuels are forecasted to account for 54 percent of global generation, dropping below 60 percent for the first time in over five decades. The U.S. is anticipated to boost renewable generation by approximately 10 percent annually between 2024 and 2026, surpassing coal generation in 2024.

The report warns of potential risks to clean energy trends, including droughts impacting hydropower, extreme weather affecting electricity reliability, and supply chain interruptions threatening new renewable and nuclear projects, and a generation mix sensitive to policies and gas prices that could shift trajectories.

Keisuke Sadamori, IEA’s director of energy markets and security, underscores the need for continued investment in grid infrastructure to integrate incoming renewable energy and sustain the power sector's trajectory towards emissions reduction goals.

 

 

Related News

View more

Canada must commit to 100 per cent clean electricity

Canada Green Investment Gap highlights lagging EV and clean energy funding as peers surge. With a green recovery budget pending, sustainable finance, green bonds, EV charging, hydrogen, and carbon capture are pivotal to decarbonization.

 

Key Points

Canada lags peers in EV and clean energy investment, urging faster budget and policy action to cut emissions.

✅ Per capita climate spend trails US and EU benchmarks

✅ EVs, hydrogen, charging need scaled funding now

✅ Strengthen sustainable finance, green bonds, disclosure

 

Canada is being outpaced on the international stage when it comes to green investments in electric vehicles and green energy solutions, environmental groups say.

The federal government has an opportunity to change course in about three weeks, when the Liberals table their first budget in over two years, the International Institute for Sustainable Development (IISD) argued in a new analysis endorsed by nine other climate action, ecology and conservation organizations.

“Canada’s international peers are ramping up commitments for green recovery, including significant investments from many European countries,” states the analysis, “Investing for Tomorrow, Today,” published March 29.

“To keep up with our global peers, sufficient investments and strengthened regulations, including EV sales regulations, must work in tandem to rapidly decarbonize all sectors of the Canadian economy.”

Deputy Prime Minister and Finance Minister Chrystia Freeland confirmed last week that the federal budget will be tabled April 19. The Liberals are expected to propose between $70 billion and $100 billion in fiscal stimulus to jolt the economy out of its pandemic doldrums.

The government teased a coming economic “green transformation” late last year when Freeland released the fall economic statement, promising to examine federal green bonds, border carbon adjustments and a sustainable finance market, with tweaks like tightening the climate-risk disclosure obligations of corporations.

The government has also proposed a wide range of green measures in its new climate plan released in December — which the think tank called the “most ambitious” in Canada’s history — including energy retrofit programs, boosting hydrogen and other alternative fuels, and rolling out carbon capture technology in a grid where 18% of electricity still came from fossil fuels in 2019.

But the possible “three-year stimulus package to jumpstart our recovery” mentioned in the fall economic statement came with the caveat that the COVID-19 virus would have to be “under control.” While vaccines are being administered, Canada is currently dealing with a rise of highly transmissible variants of the virus.

Freeland spoke with United States Vice-President Kamala Harris on March 25, highlighting potential Canada-U.S. collaboration on EVs alongside the “need to support entrepreneurs, small businesses, young people, low-wage and racialized workers, the care economy, and women” in the context of an economic recovery.

Biden is contemplating a climate recovery plan that could exceed US$2 trillion as Canada looks to capitalize on the U.S. auto pivot to EVs to spur domestic industry. Per capita, that is over 8 times what Canada has announced so far for climate-related spending in the wake of the pandemic, according to a new analysis from green groups.
U.S. President Joe Biden is contemplating a climate and clean energy recovery plan that could “exceed US$2 trillion,” White House officials told reporters this month. “Per capita, that is over eight times what Canada has announced so far for climate-related spending in the wake of the pandemic,” the IISD-led analysis stated.

Biden’s election platform commitment of $508 billion over 10 years in clean energy was also seen as “significantly higher per capita than Canada’s recent commitments.”

Since October 2020, Canada has announced $36 billion in new climate-focused funding, a 2035 EV mandate and other measures, the groups found. By comparison, they noted, a political agreement in Europe proposed that a minimum of 37 per cent of investments in each national recovery plan should support climate action. France and Germany have also committed tens of billions of dollars to support clean hydrogen.

As for electric vehicles (EVs), the United Kingdom has committed $4.9 billion, while Germany has put up $7.5 billion to expand EV adoption and charging infrastructure and sweeten incentive programs for prospective buyers, complementing Canada’s ambitious EV goals announced domestically. The U.K. has also committed $3.5 billion for bike lanes and other active transportation, the groups noted.

Canada announced $400 million over five years this month for a new network of bike lanes, paths, trails and bridges, the first federal fund dedicated to active transportation.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified