Electric car charging networks jostle for pole position amid Biden's push to electrify


monterey charging stations

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

EV Charging Infrastructure Expansion accelerates as DC fast charging, Level 2 stations, and 150-350 kW networks grow nationwide, driven by Biden's plan, ChargePoint, EVgo, and Electrify America partnerships at retailers like Walmart and 7-Eleven.

 

Key Points

The nationwide build-out of public EV chargers, focusing on DC fast charging, kW capacity, and retailer partnerships.

✅ DC fast chargers at 150-350 kW cut charge times

✅ Retailers add ports: Walmart and 7-Eleven expand access

✅ Investments surge via ChargePoint, EVgo, Electrify America

 

Today’s battery-electric vehicles deliver longer range at a lower cost, are faster and more feature-laden than earlier models. But there’s one particular challenge that still must be addressed: charging infrastructure across the U.S.

That’s a concern that President Joe Biden wants to address, with $174 billion of his proposed infrastructure bill to be used to promote the EV boom while expanding access. About 10 percent of that would help fund a nationwide network of 500,000 chargers.

However, even before a formal bill is delivered to Congress, the pace at which public charging stations are switching on is rapidly accelerating.

From Walmart to 7-Eleven, electric car owners can expect to find more and more charging stations available, as automakers strike deals with regulators, charger companies and other businesses, even as control of charging remains contested.

7-Eleven convenience chain already operates 22 charging stations and plans to grow that to 500 by the end of 2022. Walmart now lets customers charge up at 365 stores around the country and plans to more than double that over the next several years.

According to the Department of Energy, there were 20,178 public chargers available at the end of 2017. That surged to 41,400 during the first quarter of this year, as electric utilities pursue aggressive charging plans.

The vast majority of those available three years ago were “Level 2,” 240-volt AC chargers that would take as much as 12 hours to fully recharge today’s long-range BEVs, like the Tesla Model 3 or Ford Mustang Mach-E. Increasingly, new chargers are operating at 400 volts and even 800 volts, delivering anywhere from 50 to 350 kilowatts. The new Kia EV6 will be able to reach 80 percent of its full capacity in just 18 minutes.

“Going forward, unless there is a limit to the power we can access at a particular location, all our new chargers will have 150 to 350 kilowatt capacity,” Pat Romano, CEO of ChargePoint, one of the world’s largest providers of chargers, told NBC News.

ChargePoint saw its first-quarter revenues jump by 24 percent to $40.5 million this year, a surge largely driven by rapid growth in the EV market. Sales of battery cars were up 45 percent during the first quarter, compared to a year earlier. To take advantage of that growth, ChargePoint added another 6,000 active ports — the electric equivalent of a gas pump — during the quarter. It now has 112,000 active charge ports.

In March, ChargePoint became the world’s first publicly traded global EV charging network. It completed a SPAC-style merger with Switchback Energy Acquisition Corporation. Rival EVgo plans to go through a similar deal this month with the "blank check" company Climate Change Crisis Real Impact Acquisition Corporation (CRIS), which has valued the charge provider at $2.6 billion.

“We look forward to highlighting EVgo’s leadership position and its significant opportunity for long-term growth in the climate critical electrification of transport sector,” CRIS CEO David Crane said Tuesday, ahead of an investor meeting with EVgo.

Electrify America, another emerging giant, has its own deep-pocket backer. The suburban Washington, D.C.-based firm was created using $2 billion of the settlement Volkswagen agreed to pay to settle its diesel emissions scandal. It is doling that out in regular tranches and just announced $200 million in additional investments — much of that to set up new chargers.

Industry investments in BEVs will top $250 million this decade, and could even reach $500 billion. That's encouraging automakers like Volkswagen, Ford and General Motors to tie up with individual charger companies, including plans to build 30,000 chargers nationwide.

In 2019, GM set up a partnership with Bechtel to build a charger network that will stretch across the U.S.

Others are establishing networks of their own, as Tesla has done with its Supercharger network.

Each charging network is leveraging relationships to speed up installations. Ford is offering buyers of its Mustang Mach-E 250 kilowatt-hours of free energy through Electrify America stations and is also partnering with Bank of America to “let you charge where you bank,” the automaker said.

Even if Biden gets his infrastructure plan through Congress quickly, other government agencies are already getting in to the charger business, even as state power grids brace for increased loads. That includes New York State which, in May, announced plans to put 150 new ports into place by year-end.

"Expanding high-speed charging in local markets across the state is a crucial step in encouraging more drivers to choose EVs,” said Gov. Andrew Cuomo, adding that, "public-private partnerships enable New York to build a network of fast, affordable and reliable electric vehicle public charging stations in a nimble and affordable way."

One of the big questions is how many charging stations actually are needed. There are 168,000 gas stations in the U.S., according to the Dept. of Energy. But the goal is not a one-for-one match, stressed ChargePoint CEO Romano, because “80 percent of EV owners today charge at home, and energy storage promises added flexibility, … and we expect that to continue to be the case."

But there are still many potential owners who won’t be able to set up their own chargers, and a network will still be needed for those driving long distances. Until that happens, many motorists will be reluctant to switch.

 

Related News

Related News

Electric cars don't need better batteries. America needs better charging networks

EV charging anxiety reflects concerns beyond range anxiety, focusing on charging infrastructure, fast chargers, and network reliability during road trips, from Tesla Superchargers to Electrify America stations across highways in the United States.

 

Key Points

EV charging anxiety is worry about finding reliable fast chargers on public networks, not just limited range.

✅ Non-Tesla networks vary in uptime and plug-and-charge reliability.

✅ Charging deserts complicate route planning on long highway stretches.

✅ Sync stops: align rest breaks with fast chargers to save time.

 

With electric cars, people often talk about "range anxiety," and how cars with bigger batteries and longer driving ranges will alleviate that. I just drove an electric car from New York City to Atlanta, a distance of about 950 miles, and it taught me something important. The problem really isn't range anxiety. It's anxiety around finding a convenient and working chargers on America's still-challenged EV charging networks today.

Back in 2019, I drove a Tesla Model S Long Range from New York City to Atlanta. It was a mostly uneventful trip, thanks to Tesla's nicely organized and well maintained network of fast chargers that can fill the batteries with an 80% charge in a half hour or less. Since then, I've wanted to try that trip again with an electric car that wasn't a Tesla, one that wouldn't have Tesla's unified charging network to rely on.
I got my chance with a Mercedes-Benz EQS 450+, a car that is as close to a direct competitor to the Tesla Model S as any. And while I made it to Atlanta without major incident, I encountered glitchy chargers, called the charging network's customer service twice, and experienced some serious charging anxiety during a long stretch of the Carolinas.

Long range
The EPA estimated range for the Tesla I drove in 2019 was 370 miles, and Tesla's latest models can go even further.

The EQS 450+ is officially estimated to go 350 miles on a charge, but I beat that handily without even trying. When I got into the car, its internal displays showed a range estimate of 446 miles. On my trip, the car couldn't stretch its legs quite that far, because I was driving almost entirely on highways at fairly high speeds, but by my calculations, I could have gone between 370 and 390 miles on a charge.

I was going to drive over the George Washington Bridge then down through New Jersey, Delaware, Virginia then North Carolina and South Carolina. I figured three charging stops would be needed and, strictly speaking, that was correct. The driving route laid out by the car's navigation system included three charging stops, but the on-board computers tended push things to the limit. At each stop, the battery would be drained to a little over 10% or so. (I learned later this is a setting I could adjust to be more conservative if I'd wanted.)

But I've driven enough electric cars to have some concerns. I use public chargers fairly often, and I know they're imperfect, and we need to fix these problems to build confidence. Sometimes they aren't working as well as they should. Sometimes they're just plain broken. And even if the car's navigation system is telling you that a charger is "available," that can change at any moment. Someone else can pull into the charging spot just a few seconds before you get there.
I've learned to be flexible and not push things to the limit.

On the first day, when I planned to drive from New York to Richmond, Virginia, no charging stop was called for until Spotsylvania, Virginia, a distance of nearly 300 miles. By that point, I had 16% charge left in the car's batteries which, by the car's own calculation, would have taken me another 60 miles.

As I sat and worked inside the Spotsylvania Town Centre mall I realized I'd been dumb. I had already stopped twice, at rest stops in New Jersey and Delaware. The Delaware stop, at the Biden Welcome Center, had EV fast chargers, as the American EV boom accelerates nationwide. I could have used one even though the car's navigation didn't suggest it.

Stopping without charging was a lost opportunity and it cost me time. If I'm going to stop to recharge myself why not recharge the car, too?
But that's the thing, though. A car can be designed to go 350 miles or more before needing to park whereas human beings are not. Elementary school math will tell you that at highway speeds, that's nearly six hours of driving all at once. We need bathrooms, beverages, food, and to just get out and move around once in a while. Sure, it's physically possible to sit in a car for longer than that in one go, but most people in need of speed will take an airplane, and a driver of an EQS, with a starting price just north of $100,000, can almost certainly afford the ticket.

I stopped for a charge in Virginia but realized I could have stopped sooner. I encountered a lot of other electric cars on the trip, including this Hyundai Ioniq 5 charging next to the Mercedes.

I vowed not to make that strategic error again. I was going to take back control. On the second day, I decided, I would choose when I needed to stop, and would look for conveniently located fast chargers so both the EQS and I could get refreshed at once. The EQS's navigation screen pinpointed available charging locations and their maximum charging speeds, so, if I saw an available charger, I could poke on the icon with my finger and add it onto my route.

For my first stop after leaving Richmond, I pulled into a rest stop in Hillsborough, North Carolina. It was only about 160 miles south from my hotel and I still had half of a full charge.

I sipped coffee and answered some emails while I waited at a counter. I figured I would take as long as I wanted and leave when I was ready with whatever additional electricity the car had gained in that time. In all, I was there about 45 minutes, but at least 15 minutes of that was used trying to get the charger to work. One of the chargers was simply not working at all, and, at another one, a call to Electrify America customer service -- the EV charging company owned by Volkswagen that, by coincidence, operated all the chargers I used on the trip -- I got a successful charging session going at last. (It was unclear what the issue was.)

That was the last and only time I successfully matched my own need to stop with the car's. I left with my battery 91% charged and 358 miles of range showing on the display. I would only need to stop once more on way to Atlanta and not for a long time.

Charging deserts
Then I began to notice something. As I drove through North Carolina and then South Carolina, the little markers on the map screen indicating available chargers became fewer and fewer. During some fairly long stretches there were none showing at all, highlighting how better grid coordination could improve coverage.

It wasn't an immediate concern, though. The EQS's navigation wasn't calling for me to a charge up again until I'd nearly reached the Georgia border. By that point I would have about 11% of my battery charge remaining. But I was getting nervous. Given how far it was between chargers my whole plan of "recharging the car when I recharge myself" had already fallen apart, the much-touted electric-car revolution notwithstanding. I had to leave the highway once to find a gas station to use the restroom and buy an iced tea. A while later, I stopped for lunch, a big plate of "Lexington Style BBQ" with black eyed peas and collard greens in Lexington, North Carolina. None of that involved charging because there no chargers around.

Fortunately, a charger came into sight on my map while I still had 31% charge remaining. I decided I would protect myself by stopping early. After another call to Electrify America customer service, I was able to get a nice, high-powered charging session on the second charger I tried. After about an hour I was off again with a nearly full battery.

I drove the last 150 miles to Atlanta, crossing the state line through gorgeous wetlands and stopping at the Georgia Welcome Center, with hardly a thought about batteries or charging or range.

But I was driving $105,000 Mercedes. What if I'd been driving something that cost less and that, while still going farther than a human would want to drive at a stretch, wouldn't go far enough to make that trip as easily, a real concern for those deciding if it's time to buy an electric car today. Obviously, people do it. One thing that surprised me on this trip, compared to the one in 2019, was the variety of fully electric vehicles I saw driving the same highways. There were Chevrolet Bolts, Audi E-Trons, Porsche Taycans, Hyundai Ioniqs, Kia EV6s and at least one other Mercedes EQS.

Americans are taking their electric cars out onto the highways, as the age of electric cars gathers pace nationwide. But it's still not as easy as it ought to be.

 

Related News

View more

BC's Kootenay Region makes electric cars a priority

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

View more

Wind Turbine Operations and Maintenance Industry Detailed Analysis and Forecast by 2025

Wind Turbine Operations and Maintenance Market is expanding as offshore and onshore renewables scale, driven by aging turbines, investment, UAV inspections, and predictive O&M services, despite skills shortages and rising logistics costs.

 

Key Points

Sector delivering inspection, repair, and predictive services to keep wind assets reliable onshore and offshore.

✅ Aging turbines and investor funding drive service demand

✅ UAV inspections and predictive analytics cut downtime

✅ Offshore growth offsets skills and logistics constraints

 

Wind turbines are capable of producing vast amounts of electricity at competitive prices, provided they are efficiently maintained and operated. Being a cleaner, greener source of energy, wind energy is also more reliable than other sources of power generation, with growth despite COVID-19 recorded across markets. Therefore, the demand for wind energy is slated to soar over the next few years, fuelling the growth of the global market for wind turbine operations and maintenance. By application, offshore and onshore wind turbine operations and maintenance are the two major segments of the market.

 

Global Wind Turbine Operations and Maintenance Market: Key Trends

The rising number of aging wind turbines emerges as a considerable potential for the growth of the market. The increasing downpour of funds from financial institutions and public and private investors has also been playing a significant role in the expansion of the market, with interest also flowing toward wave and tidal energy technologies that inform O&M practices. On the other hand, insufficient number of skilled personnel, coupled with increasing costs of logistics, remains a key concern restricting the growth of the market. However, the growing demand for offshore wind turbines across the globe is likely to materialize into fresh opportunities.

 

Global Wind Turbine Operations and Maintenance Market: Market Potential

A number of market players have been offering diverse services with a view to make a mark in the global market for wind turbine operations and maintenance. For instance, Scotland-based SgurrEnergy announced the provision of unmanned aerial vehicles (UAVs), commonly known as drones, as a part of its inspection services. Detailed and accurate assessments of wind turbines can be obtained through these drones, which are fitted with cameras, with four times quicker inspections than traditional methods, claims the company. This new approach has not only reduced downtime, but also has prevented the risks faced by inspection personnel.

The increasing number of approvals and new projects is preparing the ground for a rising demand for wind turbine operations and maintenance. In March 2017, for example, the Scottish government approved the installation of eight 6-megawatt wind turbines off the coast of Aberdeen, towards the northeast. The state of Maryland in the U.S. will witness the installation of a new offshore wind plant, encouraging greater adoption of wind energy in the country. The U.K., a leader in UK offshore wind deployment, has also been keeping pace with the developments, with the installation of a 400-MW offshore wind farm, off the Sussex coast throughout 2017. The Rampion project will be developed by E.on, who has partnered with Canada-based Enbridge Inc. and the UK Green Investment Bank plc.

 

Global Wind Turbine Operations and Maintenance Market: Regional Outlook

Based on geography, the global market for wind turbine operations and maintenance has been segmented into Asia Pacific, Europe, North America, and Rest of the World (RoW). Countries such as India, China, Spain, France, Germany, Scotland, and Brazil are some of the prominent users of wind energy and are therefore likely to account for a considerable share in the market. In the U.S., favorable government policies are backing the growth of the market, though analyses note that a prolonged solar ITC extension could pressure wind competitiveness. For instance, in 2013, a legislation that permits energy companies to transfer the costs of offshore wind credits to ratepayers was approved. Asia Pacific is a market with vast potential, with India and China being major contributors aiding the expansion of the market.

 

Global Wind Turbine Operations and Maintenance Market: Competitive Analysis

Some of the major companies operating in the global market for wind turbine operations and maintenance are Gamesa Corporacion Tecnologica, Xinjiang Goldwind Science & Technologies, Vestas Wind Systems A/S, Upwind Solutions, Inc, GE Wind Turbine, Guodian United Power Technology Company Ltd., Nordex SE, Enercon GmbH, Siemens Wind Power GmbH, and Suzlon Group. A number of firms have been focusing on mergers and acquisitions to extend their presence across new regions.

 

Related News

View more

US: In 2021, Plug-Ins Traveled 19 Billion Miles On Electricity

US Plug-in EV Miles 2021 highlight BEV and PHEV growth, DOE and Argonne data, 19.1 billion electric miles, 6.1 TWh consumed, gasoline savings, rising market share, and battery capacity deployed across the US light-duty fleet.

 

Key Points

They represent 19.1 billion electric miles by US BEVs and PHEVs in 2021, consuming 6.1 TWh of electricity.

✅ 700 million gallons gasoline avoided in 2021

✅ $1.3 billion fuel cost savings estimated

✅ Cumulative 68 billion EV miles since 2010

 

Plug-in electric cars are gradually increasing their market share in the US (reaching about 4% in 2021), which starts to make an impact even as the U.S. EV market share saw a brief dip in Q1 2024.

The Department of Energy (DOE)’s Vehicle Technologies Office highlights in its latest weekly report that in 2021, plug-ins traveled some 19.1 billion miles (31 billion km) on electricity - all miles traveled in BEVs and the EV mode portion of miles traveled in PHEVs, underscoring grid impacts that could challenge state power grids as adoption grows.

This estimated distance of 19 billion miles is noticeably higher than in 2020 (nearly 13 billion miles), which indicates how quickly the electrification of driving progresses, with U.S. EV sales continuing to soar into 2024. BEVs noted a 57% year-over-year increase in EV miles, while PHEVs by 24% last year (mostly proportionally to sales increase).

According to Argonne National Laboratory's Assessment of Light-Duty Plug-in Electric Vehicles in the United States, 2010–2021, the cumulative distance covered by plug-in electric cars in the US (through December 2021) amounted to 68 billion miles (109 billion miles).

U.S. Department of Transportation, Federal Highway Administration, December 2021 Traffic Volume Trends, 2022.

The report estimates that over 2.1 million plug-in electric cars have been sold in the US through December 2021 (about 1.3 million all-electric and 0.8 million plug-in hybrids), equipped with a total of more than 110 GWh of batteries, even as EV sales remain behind gas cars in overall market share.

It's also estimated that 19.1 billion electric miles traveled in 2021 reduced the national gasoline consumption by 700 million gallons of gasoline or 0.54%.

On the other hand, plug-ins consumed some 6.1 terawatt-hours of electricity (6.1 TWh is 6,100 GWh), which sounds like almost 320 Wh/mile (200 Wh/km), aligning with projections that EVs could drive a rise in U.S. electricity demand over time.

The difference between the fuel cost and energy cost in 2021 is estimated at $1.3 billion, with Consumer Reports findings further supporting the total cost advantages.

Cumulatively, 68 billion electric miles since 2010 is worth about 2.5 billion gallons of gasoline. So, the cumulative savings already is several billion dollars.

Those are pretty amazing numbers and let's just imagine that electric cars are just starting to sell in high volume, a trend that mirrors global market growth seen over the past decade. Every year those numbers will be improving, thus tremendously changing the world that we know today.

 

Related News

View more

UK firm plans to operate Vietnam mega wind power project by 2025

ThangLong Wind Project Vietnam targets $12b, 3,400 MW offshore wind in Binh Thuan, aligned with PDP8, 2025-2028 timeline, EVN grid integration, and private transmission lines to support renewable energy growth and local industry.

 

Key Points

A $12b, 3,400 MW offshore wind farm off Binh Thuan, aiming first power by 2025 and full capacity by 2028.

✅ 20-60 km offshore; 30-55 m water depth site

✅ Seeks licenses for private transmission lines, beyond EVN

✅ 50% local spend; boosts supply chain and jobs

 

U.K. energy firm Enterprize Energy, reflecting momentum in UK offshore wind, wants to begin operating its $12-billion offshore wind power project in central Vietnam by the end of 2025.
Company chairman Ian Hatton proposed the company’s ThangLong Wind Project in the central province of Binh Thuan be included in Vietnam’s 8th National Power Development Plan, which is being drafted at present, so that at least part of the project can begin operations by the end of 2025 and all of it by 2028.

Renewable energy is a priority in the development plan that the Ministry of Industry and Trade will submit to the government next month. About 37.5 percent of new energy supply in the next decade will come from renewable energy, aligning with wind leading the power mix trends globally, it envisages.

However, due to concerns of overload to the national grid, and as build-outs like North Sea wind farms show similar coordination needs, Hatton, at a Wednesday meeting with Prime Minister Nguyen Xuan Phuc and U.K. Minister of State for Trade Policy Greg Hands, proposed the government gives Enterprize Energy licenses to develop transmission lines to handle future output.

Developing transmission lines in Vietnam has been the exclusive preserve of the national utility Vietnam Electricity (EVN), and large domestic projects such as the Hoa Binh hydropower expansion have typically aligned with this framework.

The 3,400-megawatt ThangLong Wind Project is to be located between 20 and 60 kilometers off the coast of Binh Thuan, mirroring international interest where Japanese utilities in UK offshore wind have scaled similar assets, at a depth of 30-55 meters. Enterprize Energy had said wind resources in this area exceed its expectations.

The project’s construction is expected to stimulate Vietnam’s economic growth, and experiences from U.S. offshore wind competitiveness suggest improving economics, with 50 percent of construction and operational expenses made locally.

Vietnam needs $133.3 billion over the next decade for building new power plants and expanding the grid to meet the growing demand for electricity, while regional agreements like a Bangladesh power supply deal illustrate rising demand, the ministry has estimated.

 

Related News

View more

4 European nations to build North Sea wind farms

North Sea Offshore Wind Farms will deliver 150 GW by 2050 as EU partners scale renewable energy, offshore turbines, grid interconnectors, and REPowerEU goals to cut emissions, boost energy security, and reduce Russian fossil dependence.

 

Key Points

A joint EU initiative to build 150 GW of offshore wind by 2050, advancing REPowerEU, decarbonization, and energy security.

✅ Targets at least 150 GW of offshore wind by 2050

✅ Backed by Belgium, Netherlands, Germany, and Denmark

✅ Aligns with REPowerEU, grid integration, and emissions cuts

 

Four European Union countries plan to build North Sea wind farms capable of producing at least 150 gigawatts of energy by 2050 to help cut carbon emissions that cause climate change, with EU wind and solar surpassing gas last year, Danish media have reported.

Under the plan, wind turbines would be raised off the coasts of Belgium, the Netherlands, Germany and Denmark, where a recent green power record highlighted strong winds, daily Danish newspaper Jyllands-Posten said.

The project would mean a tenfold increase in the EU's current offshore wind capacity, underscoring how renewables are crowding out gas across Europe today.

“The North Sea can do a lot," Danish Prime Minister Frederiksen told the newspaper, adding the close cooperation between the four EU nations "must start now.”

European Commission President Ursula von der Leyen, German Chancellor Olaf Scholz, Dutch Prime Minister Mark Rutte and Belgian Prime Minister Alexander De Croo are scheduled to attend a North Sea Summit on Wednesday in Esbjerg, 260 kilometers (162 miles) west of Copenhagen.

In Brussels, the European Commission moved Wednesday to jump-start plans for the whole 27-nation EU to abandon Russian energy amid the Kremlin’s war in Ukraine. The commission proposed a nearly 300 billion-euro ($315 billion) package that includes more efficient use of fuels and a faster rollout of renewable power, even as stunted hydro and nuclear output may hobble recovery efforts.

The investment initiative by the EU's executive arm is meant to help the bloc start weaning themselves off Russian fossil fuels this year, even as Europe is losing nuclear power during the transition. The goal is to deprive Russia, the EU’s main supplier of oil, natural gas and coal, of tens of billions in revenue and strengthen EU climate policies.

“We are taking our ambition to yet another level to make sure that we become independent from Russian fossil fuels as quickly as possible,” von der Leyen said in Brussels when announcing the package, dubbed REPowerEU.

The EU has pledged to reduce carbon dioxide emissions by 55% compared with 1990 levels by 2030, and to get to net zero emissions by 2050, with a recent German renewables milestone underscoring the pace of change.

The European Commission has set an overall target of generating 300 gigawatts of offshore energy of by 2050, though grid expansion challenges in Germany highlight hurdles.

Along with climate change, the war in Ukraine has made EU nations eager to reduce their dependency on Russian natural gas and oil. In 2021, the EU imported roughly 40% of its gas and 25% of its oil from Russia.

At a March 11 summit, EU leaders agreed in principle to phase out Russian gas, oil and coal imports by 2027.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified