Vancouver seaplane airline completes first point-to-point flight with prototype electric aircraft


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Harbour Air Electric Seaplane completes a point-to-point test flight, showcasing electric aircraft innovation, zero-emission short-haul travel, H55 battery technology, and magniX propulsion between Vancouver and Victoria, advancing sustainable aviation and urban air mobility.

 

Key Points

Retrofitted DHC-2 Beaver testing zero-emission short-haul flights with H55 batteries and magniX propulsion.

✅ 74 km in 24 minutes, Vancouver to Victoria test route

✅ H55 battery pack and magniX electric motor integration

✅ Aims to certify short-haul, zero-emission commercial service

 

A seaplane airline in Vancouver says it has achieved a new goal in its development of an electric aircraft.

Harbour Air Seaplanes said in a release about its first electric passenger flights timeline that it completed its first direct point-to-point test flight on Wednesday by flying 74 kilometres in 24 minutes from a terminal on the Fraser River near Vancouver International Airport to a bay near Victoria International Airport.

"We're really excited about this project and what it means for us and what it means for the electric aviation revolution to be able to keep pushing that forward," said Erika Holtz, who leads the project for the company.

Harbour Air, founded in 1982, uses small propeller planes to fly commercial flights between the Lower Mainland, Seattle, Vancouver Island, the Gulf Islands and Whistler.

In the last few years it has turned its attention to becoming a leader in green urban mobility, as seen with electric ships on the B.C. coast, which would do away with the need to burn fossil fuels, a major contributor to climate change, for air travel.

In December 2019, a pilot flew one of Harbour Air's planes — a more than 60-year-old DHC-2 de Havilland Beaver floatplane that had been outfitted with a Seattle-based company's electric propulsion system, magniX — for three minutes over Richmond.

Since then, the company has continued to fine-tune the plane and conduct test flights in order to meet federally regulated criteria for Canada's first commercial electric flight, showing it can safely fly with passengers.

Harbour Air's new fully electric seaplane flew over the Fraser River for three minutes today in its debut test flight.
Holtz said flying point-to-point this week was a significant step forward.

"Having this electric aircraft be able to prove that it can do scheduled flights, it moves us that step closer to being able to completely convert our entire fleet to electric," she said.

All the test flights so far have been made with only a pilot on board.

Vancouver seaplane company to resume test flights with electric commercial airplane
The ePlane will stay in Victoria for the weekend as part of an open house put on by the B.C. Aviation Museum before returning to Richmond.

A yellow seaplane flies over a body of water with the Vancouver skyline visible in the background.
A prototype all-electric floatplane made by B.C.'s Harbour Air Seaplanes on a test flight in Vancouver in 2021. (Harbour Air Seaplanes)
Early in Harbour Air's undertaking to develop an all-electric airplane, experts who study the aviation sector said Harbour Air would have to find a way to make the plane light enough to carry heavy lithium batteries and passengers, without exceeding weight limits for the plane.

Werner Antweiler, a professor of economics at UBC's Sauder School of Business who studies the commercialization of novel technologies around mobility, said in 2021 that Harbour Air's challenge would be proving to regulators that the plane was safe to fly and the batteries powerful enough to complete short-haul flights with power to spare.

In April 2021 Harbour Air partnered with Swiss company H55 to incorporate its battery technology, reflecting ongoing research investment to limit weight and improve the distance the plane could fly.

Shawn Braiden, a vice-president with Harbour Air, said the company is trying to get as much power as possible from the lightest possible batteries, a challenge shared by BC Ferries' hybrid ships as well. 

"It's a balancing act," he said.

In December, Harbour Air announced it had begun work on converting a second de Havilland Beaver to an all-electric airplane, copying the original prototype.

The plan is to retrofit version two of the ePlane with room for a pilot plus three passengers. If certified for commercial use, it could become one of the first all-electric commercial passenger planes operating in the world.

Seth Wynes, a post-doctoral fellow at Concordia University who has studied how to de-carbonize the aviation industry, said Harbour Air's progress on its eplane project won't solve the pollution problem of long-haul flights, but could inspire other short-haul airlines to follow suit, alongside initiatives like electric ferries in B.C. that expand low-carbon transportation. 

"It's also just really helpful to pilot these technologies and get them going where they can be scaled up and used in a bunch of different places around the world," he said. "So that's why Harbour Air making progress on this front is exciting."

 

Related News

Related News

Requests for Proposal launched for purchase of clean electricity in Alberta

Canada Clean Electricity Procurement advances federal operations with renewable energy in Alberta, leveraging RECs, competitive sourcing, Indigenous participation, and grid decarbonization to cut greenhouse gas emissions and stimulate new clean power infrastructure.

 

Key Points

A plan to procure clean power and RECs, cutting emissions in Alberta and attributing use where renewables are absent.

✅ RFPs to source new clean electricity in Alberta

✅ RECs from net new Canadian renewable generation

✅ Mandatory Indigenous participation via equity or set-asides

 

Public Services and Procurement Canada (PSPC) is taking concrete steps to meet the Government of Canada's commitment in the Greening Government Strategy to reduce greenhouse gas emissions from federal government buildings, vehicle fleets and other operations, aligning with broader vehicle electrification trends across Canada.

The Honourable Anita Anand, Minister of Public Services and Procurement, announced the Government of Canada has launched Requests for Proposal to buy new clean electricity in the province of Alberta, which is moving ahead with the retirement of coal power to clean its grid, to power federal operations there.

As well, Canada will purchase Renewable Energy Certificates (REC) from new clean energy generation in Canada. This will enable Canada to attribute its energy consumption as clean in regions where new clean renewable sources are not yet available. The Government of Canada is excited about this opportunity to stimulate net new Canadian clean electricity generation through the procurement of RECs and complementary power purchase agreements that secure long-term supply for federal demand.

Together, these contracts will help to ensure Canada is reducing its greenhouse gas footprint by approximately 133 kilotonnes or 56% of total real property emissions in Alberta. Additionally, the contracts will displace approximately 41 kilotonnes of greenhouse gas emissions from electricity use in the rest of Canada, supporting progress toward 2035 clean electricity goals even as challenges remain.

Through these open, fair and transparent competitive procurement processes, PSPC will be a key purchaser of clean electricity and will support the growth of new clean electricity and renewable power infrastructure, such as recent turbine investments in Manitoba that expand capacity.

The Government of Canada's Clean Electricity Initiative plans to use 100% clean electricity by 2022, where available, in alignment with evolving net-zero electricity regulations that shape supply choices, to reduce greenhouse gas emissions and stimulate growth in clean renewable power infrastructure. PSPC has applied the goals of the Government of Canada's Clean Electricity Initiative to its specific requirement for net new clean electricity generation to power federal operations in Alberta.  

These procurements will support economic opportunities for Indigenous businesses by encouraging participation in the move towards clean energy, seen in provincial shifts toward clean power in Ontario that broaden markets. Each Request for Proposal incorporates mandatory requirements for Indigenous participation through equity holdings or set-asides under the Procurement Strategy for Aboriginal Business.

 

Related News

View more

Bus depot bid to be UK's largest electric vehicle charging hub

First Glasgow Electric Buses will transform the Caledonia depot with 160 charging points, zero-emission operations, grid upgrades, and rapid charging, supported by Transport Scotland funding and Alexander Dennis manufacturing for cleaner urban routes by 2023.

 

Key Points

Electric single-deckers at Caledonia depot with 160 chargers and upgrades, delivering zero-emission service by 2023

✅ 160 charging points; 4-hour rapid recharge capability

✅ Grid upgrades to power a fleet equal to a 10,000-person town

✅ Supported by Transport Scotland; built by Alexander Dennis

 

First Bus will install 160 charging points and replace half its fleet with electric buses at its Caledonia depot in Glasgow.

The programme is expected to be completed in 2023, similar to Metro Vancouver's battery-electric rollout milestones, with the first 22 buses arriving by autumn.

Charging the full fleet will use the same electricity as it takes to power a town of 10,000 people.

The scale of the project means changes are needed to the power grid, a challenge highlighted in global e-bus adoption analysis, to accommodate the extra demand.

First Glasgow managing director Andrew Jarvis told BBC Scotland: "We've got to play our part in society in changing how we all live and work. A big part of that is emissions from vehicles.

"Transport is stubbornly high in terms of emissions and bus companies need to play their part, and are playing their part, in that zero emission journey."

First Bus currently operates 337 buses out of its largest depot with another four sites across Glasgow.

The new buses will be built by Alexander Dennis at its manufacturing sites in Falkirk and Scarborough.

The transition requires a £35.6m investment by First with electric buses costing almost double the £225,000 bill for a single decker running on diesel.

But the company says maintenance and running costs, as seen in St. Albert's electric fleet results, are then much lower.

The buses can run on urban routes for 16 hours, similar to Edmonton's first e-bus performance, and be rapidly recharged in just four hours.

This is a big investment which the company wouldn't be able to achieve on its own.

Government grants only cover 75% of the difference between the price of a diesel and an electric bus, similar to support for B.C. electric school buses programmes, so it's still a good bit more expensive for them.

But they know they have to do it as a social responsibility, and large-scale initiatives like US school bus conversions show the direction of travel, and because the requirements for using Low Emissions Zones are likely to become stricter.

The SNP manifesto committed to electrifying half of Scotland's 4,000 or so buses within two years.

Some are questioning whether that's even achievable in the timescale, though TTC's large e-bus fleet offers lessons, given the electricity grid changes that would be necessary for charging.

But it's a commitment that environmental groups will certainly hold them to.

Transport Scotland is providing £28.1m of funding to First Bus as part of the Scottish government's commitment to electrify half of Scotland's buses in the first two years of the parliamentary term.

Net Zero Secretary Michael Matheson said: "It's absolute critical that we decarbonise our transport system and what we have set out are very ambitious plans of how we go about doing that.

"We've set out a target to make sure that we decarbonise as many of the bus fleets across Scotland as possible, at least half of it over the course of the next couple of years, and we'll set out our plans later on this year of how we'll drive that forward."

Transport is the single biggest source of greenhouse gas emissions in Scotland which are responsible for accelerating climate change.

In 2018 the sector was responsible for 31% of the country's net emissions.

Electric bus
First Glasgow has been trialling two electric buses since January 2020.

Driver Sally Smillie said they had gone down well with passengers because they were much quieter than diesel buses.

She added: "In the beginning it was strange for them not hearing them coming but they adapt very easily and they check now.

"It's a lot more comfortable. You're not feeling a gear change and the braking's smoother. I think they're great buses to drive."

 

Related News

View more

Electric vehicles can fight climate change, but they’re not a silver bullet: U of T study

EV Adoption Limits highlight that electric vehicles alone cannot meet emissions targets; life cycle assessment, carbon budgets, clean grids, public transit, and battery materials constraints demand broader decarbonization strategies, city redesign, and active travel.

 

Key Points

EV Adoption Limits show EVs alone cannot hit climate targets; modal shift, clean grids, and travel demand are essential.

✅ 350M EVs by 2050 still miss 2 C goals without major mode shift

✅ Grid demand rises 41%, requiring clean power and smart charging

✅ Battery materials constraints need recycling, supply diversification

 

Today there are more than seven million electric vehicles (EVs) in operation around the world, compared with only about 20,000 a decade ago. It’s a massive change – but according to a group of researchers at the University of Toronto’s Faculty of Applied Science & Engineering, it won’t be nearly enough to address the global climate crisis. 

“A lot of people think that a large-scale shift to EVs will mostly solve our climate problems in the passenger vehicle sector,” says Alexandre Milovanoff, a PhD student and lead author of a new paper published in Nature Climate Change. 

“I think a better way to look at it is this: EVs are necessary, but on their own, they are not sufficient.” 

Around the world, many governments are already going all-in on EVs. In Norway, for example, where EVs already account for half of new vehicle sales, the government has said it plans to eliminate sales of new internal combustion vehicles by 2025. The Netherlands aims to follow suit by 2030, with France and Canada's EV goals aiming to follow by 2040. Just last week, California announced plans to ban sales of new internal combustion vehicles by 2035.

Milovanoff and his supervisors in the department of civil and mineral engineering – Assistant Professor Daniel Posen and Professor Heather MacLean – are experts in life cycle assessment, which involves modelling the impacts of technological changes across a range of environmental factors. 

They decided to run a detailed analysis of what a large-scale shift to EVs would mean in terms of emissions and related impacts. As a test market, they chose the United States, which is second only to China in terms of passenger vehicle sales. 

“We picked the U.S. because they have large, heavy vehicles, as well as high vehicle ownership per capita and high rate of travel per capita,” says Milovanoff. “There is also lots of high-quality data available, so we felt it would give us the clearest answers.” 

The team built computer models to estimate how many electric vehicles would be needed to keep the increase in global average temperatures to less than 2 C above pre-industrial levels by the year 2100, a target often cited by climate researchers. 

“We came up with a novel method to convert this target into a carbon budget for U.S. passenger vehicles, and then determined how many EVs would be needed to stay within that budget,” says Posen. “It turns out to be a lot.” 

Based on the scenarios modelled by the team, the U.S. would need to have about 350 million EVs on the road by 2050 in order to meet the target emissions reductions. That works out to about 90 per cent of the total vehicles estimated to be in operation at that time. 

“To put that in perspective, right now the total proportion of EVs on the road in the U.S. is about 0.3 per cent,” says Milovanoff. 

“It’s true that sales are growing fast, but even the most optimistic projections of an electric-car revolution suggest that by 2050, the U.S. fleet will only be at about 50 per cent EVs.” 

The team says that, in addition to the barriers of consumer preferences for EV deployment, there are technological barriers such as the strain that EVs would place on the country’s electricity infrastructure, though proper grid management can ease integration. 

According to the paper, a fleet of 350 million EVs would increase annual electricity demand by 1,730 terawatt hours, or about 41 per cent of current levels. This would require massive investment in infrastructure and new power plants, some of which would almost certainly run on fossil fuels in some regions. 

The shift could also impact what’s known as the demand curve – the way that demand for electricity rises and falls at different times of day – which would make managing the national electrical grid more complex, though vehicle-to-grid strategies could help smooth peaks. Finally, there are technical challenges stemming from the supply of critical materials for batteries, including lithium, cobalt and manganese. 

The team concludes that getting to 90 per cent EV ownership by 2050 is an unrealistic scenario. Instead, what they recommend is a mix of policies, rather than relying solely on a 2035 EV sales mandate as a singular lever, including many designed to shift people out of personal passenger vehicles in favour of other modes of transportation. 

These could include massive investment in public transit – subways, commuter trains, buses – as well as the redesign of cities to allow for more trips to be taken via active modes such as bicycles or on foot. They could also include strategies such as telecommuting, a shift already spotlighted by the COVID-19 pandemic. 

“EVs really do reduce emissions, which are linked to fewer asthma-related ER visits in local studies, but they don’t get us out of having to do the things we already know we need to do,” says MacLean. “We need to rethink our behaviours, the design of our cities, and even aspects of our culture. Everybody has to take responsibility for this.” 

The research received support from the Hatch Graduate Scholarship for Sustainable Energy Research and the Natural Sciences and Engineering Research Council of Canada.

 

Related News

View more

Why Electric Vehicles Are "Greener" Than Ever In All 50 States

UCS EV emissions study shows electric vehicles produce lower life-cycle emissions than gasoline cars across all states, factoring tailpipe, grid mix, power plant sources, and renewable energy, delivering mpg-equivalent advantages nationwide.

 

Key Points

UCS study comparing EV and gas life-cycle emissions, finding EVs cleaner than new gas cars in every U.S. region.

✅ Average EV equals 93 mpg gas car on emissions.

✅ Cleaner than 50 mpg gas cars in 97% of U.S.

✅ Regional grid mix included: tailpipe to power plant.

 

One of the cautions cited by electric vehicle (EV) naysayers is that they merely shift emissions from the tailpipe to the local grid’s power source, implicating state power grids as a whole, and some charging efficiency claims get the math wrong, too. And while there is a kernel of truth to this notion—they’re indeed more benign to the environment in states where renewable energy resources are prevalent—the average EV is cleaner to run than the average new gasoline vehicle in all 50 states. 

That’s according to a just-released study conducted the Union of Concerned Scientists (UCS), which determined that global warming emissions related to EVs has fallen by 15 percent since 2018. For 97 percent of the U.S., driving an electric car is equivalent or better for the planet than a gasoline-powered model that gets 50 mpg. 

In fact, the organization says the average EV currently on the market is now on a par, environmentally, with an internal combustion vehicle that’s rated at 93 mpg. The most efficient gas-driven model sold in the U.S. gets 59 mpg, and EV sales still trail gas cars despite such comparisons, with the average new petrol-powered car at 31 mpg.

For a gasoline car, the UCS considers a vehicle’s tailpipe emissions, as well as the effects of pumping crude oil from the ground, transporting it to a refinery, creating gasoline, and transporting it to filling stations. For electric vehicles, the UCS’ environmental estimates include both emissions from the power plants themselves, along with those created by the production of coal, natural gas or other fossil fuels used to generate electricity, and they are often mischaracterized by claims about battery manufacturing emissions that don’t hold up. 

Of course the degree to which an EV ultimately affects the atmosphere still varies from one part of the country to another, depending on the local power source. In some parts of the country, driving the average new gasoline car will produce four to eight times the emissions of the average EV, a fact worth noting for those wondering if it’s the time to buy an electric car today. The UCS says the average EV driven in upstate New York produces total emissions that would be equivalent to a gasoline car that gets an impossible 255-mpg. In even the dirtiest areas for generating electricity, EVs are responsible for as much emissions as a conventionally powered car that gets over 40 mpg.

 

Related News

View more

GE to create 300 new jobs at French offshore wind blade factory

LM Wind Power Cherbourg Recruitment 2021 targets 300 new hires for offshore wind manufacturing, wind turbine blade production, Haliade-X components, and operations in France, with Center of Excellence training and second 107-meter blade mold expansion.

 

Key Points

A hiring drive to add 300 staff for offshore wind blade manufacturing in Cherbourg, with Center of Excellence training.

✅ 300 hires to scale offshore wind blade production

✅ 6-week Center of Excellence training for all recruits

✅ Second 107-meter blade mold boosts capacity

 

GE Renewable Energy plans to recruit 300 employees in 2021 at its LM Wind Power wind turbine blade factory in Cherbourg, France / Opened almost three years ago in April 2018, the factory today counts more than 450 employees / Every new hire will go through an intensive training program at the factory's ‘Center of Excellence' to learn wind turbine blade manufacturing processes / Site has produced the first offshore wind turbine blade longer than 100 meters, 107-meters long / Second 107-meter blade manufacturing mold is being installed at the plant today

GE Renewable Energy announced today its plan to recruit 300 employees at its LM Wind Power wind turbine blade manufacturing site in Cherbourg, France, in 2021. Every new hire will go through an intensive training program at the factory's ‘Center of Excellence' to learn wind turbine blade manufacturing processes supporting offshore wind energy growth in Europe. The expanded production workforce will allow LM Wind Power to meet the growing industry demand for offshore wind equipment, including emerging offshore green hydrogen applications across the sector.

The factory currently has more than 450 employees, with 34 percent being women. The facility became the first wind turbine blade manufacturing site in France when it was opened almost three years ago in April 2018, while Spanish wind factories faced temporary closures due to COVID-19 restrictions.

The facility has produced the first offshore wind turbine blade longer than 100 meters, a 107-meters long blade that will be used in GE’s Haliade-X offshore wind turbine. A second 107-meter blade manufacturing mold is currently being installed at the plant to support growing project pipelines like those planned off Massachusetts' South Coast in the U.S.

Florence Martinez Flores, the site’s Human Resources Director, said: "The arrival of the second mold within the factory marks an increased activity for LM Wind Power in Cherbourg, and we are happy to welcome a large wave of new employees, allowing us to participate in social development and create more jobs in the surrounding community, but also to bring new skills to the region."

Recent investments such as EDF Irish offshore wind stake news underscore the broader market momentum.

The Cherbourg team is mostly looking to expand its production workforce, with positions that are open to all profiles and backgrounds. Every new employee will be trained to manufacture wind turbine blades through LM Wind Power's ‘Center of Excellence' training program – a six-week theoretical and practical training course, which will develop the skills and technical expertise required to produce high-quality wind turbine blades and support wind turbine operations and maintenance across the industry. The site will also be looking for production supervisors, quality controllers and maintenance technicians.

 

Related News

View more

Europe's Green Surge: Renewables Soar, Emissions Plummet, but Challenges Remain

EU Renewable Energy Transition accelerates wind and solar growth, slashes fossil fuels and carbon emissions via the ETS, strengthens energy security with LNG diversification, and advances grid resilience toward 2030 climate targets.

 

Key Points

EU shift to wind, solar, and efficiency that cuts fossil fuels while boosting energy security and grid stability

✅ Fossil fuels at 29% of EU power in 2023, coal and gas down sharply

✅ Renewables hit 44% share; wind 18%, solar 9% and rising

✅ ETS, LNG diversification, and efficiency cut demand and emissions

 

Europe's energy landscape is undergoing a dramatic transformation, fueled by a surge in renewable energy and a corresponding decline in fossil fuel dependence. This shift, documented in both a report from the energy think tank Ember and the European Commission's State of the Energy Union report, paints a picture of progress, but also highlights the challenges that lie ahead on the path to a sustainable future.

 

Fossil Fuels Facing an Unprecedented Decline:

Fossil fuels dipped to their lowest point in recorded history, making up only 29% of EU electricity generation in 2023. This represents a significant 19% decrease in both fossil fuel generation and carbon emissions compared to 2022, exceeding even the reductions witnessed during the pandemic. Coal, the dirtiest fossil fuel, saw the steepest decline, dropping by 26%, while gas generation fell by 15%. This decline is attributed to a combination of factors, including:

Increased deployment of renewables: As renewable energy sources like wind and solar become more affordable and efficient, they are increasingly displacing fossil fuels in the energy mix.

Carbon pricing: The EU's Emissions Trading System (ETS) puts a price on carbon emissions, incentivizing generators to switch to cleaner sources of energy.

Geopolitical tensions: The war in Ukraine and subsequent sanctions on Russia have accelerated Europe's efforts to diversify its energy sources away from Russian fossil fuels across the bloc.


Renewables Ascending to New Heights:

Renewable energy is now the dominant force in the EU, as renewables surpassed fossil fuels in the power mix, contributing a record-breaking 44% of the electricity mix. Wind energy leads the charge, generating 18% of electricity – the equivalent of France's entire demand – and surpassing gas for the first time. Solar power also continues to grow, reaching a 9% share, as solar reshapes electricity prices in Northern Europe and hydropower recovered from its 2022 dry spell. This remarkable growth is driven by factors such as:

Favorable policy frameworks: The EU has set ambitious renewable energy targets and implemented supportive policies, including feed-in tariffs and auctions.

Technological advancements: Advancements in wind turbine and solar panel technologies have made them more efficient and cost-effective.
Public support: There is growing public support for renewable energy, driven by concerns about climate change and energy security.

Beyond generation, energy efficiency is playing a critical role in reducing overall energy demand. Electricity demand in the EU fell by 3.4% in 2023, thanks to factors such as improved building insulation and more efficient appliances.

 

EU on Track to Quit Russian Fossil Fuels:

The report underscores Europe's progress in reducing dependence on Russian fossil fuels. Imports of Russian gas have plummeted to 40-45 billion cubic metres, compared to a staggering 155 bcm in 2021. This represents a remarkable 70% reduction in just one year. This shift has been achieved through a combination of increased LNG imports, diversification of gas suppliers, and accelerated deployment of renewable energy sources.

Overall greenhouse gas emissions decreased by 3% in 2022, putting the EU on track to achieve its ambitious 55% reduction target by 2030. These achievements demonstrate the EU's commitment to climate action and its ability to respond decisively to geopolitical challenges.

 

Success, But Not Complacency:

Despite the positive developments, the Commission warns against complacency. Energy markets remain volatile, fossil fuel subsidies are rising in some countries, and critical infrastructure vulnerabilities persist, while some advocates call for a fossil fuel lockdown to accelerate the transition. The bloc needs to accelerate renewable energy expansion to reach the legally binding 42.5% target by 2030. Additionally, ensuring affordability and security of energy supply will be crucial to maintaining public support for the transition.

 

Challenges and Opportunities:

While some countries like Denmark, Finland, and the Netherlands fall short of EU climate and energy goals, others like Spain, Portugal, and Belgium showcase success with renewables. The Commission is taking action with a plan to support the wind industry, where investments in European wind continue, even as it faces challenges from high inflation and increasing competition from China. Additionally, ensuring timely updates to national energy and climate plans is crucial for achieving the EU's overall objectives.

 

NGOs Urge Faster Action:

NGOs like the Climate Action Network (CAN) express concern about the adequacy of national plans, highlighting the gap between ambition and concrete action. They urge member states to accelerate efforts to meet the 2030 targets and avoid a "lost decade" in climate action. CAN emphasizes the need for more ambitious national energy and climate plans, increased investment in renewables, and accelerated energy efficiency measures.

Europe's energy transition is progressing rapidly, with renewables taking center stage and emissions declining. However, significant challenges remain, necessitating continued commitment, national-level action, and a focus on affordability, security, and sustainability. As 2030 approaches, Europe's green surge must translate into concrete results to secure a climate-neutral future.

 

Looking ahead, several key areas will define the success of Europe's energy transition:

  • Accelerating renewable energy deployment: The EU needs to maintain its momentum in building wind, solar, and other renewable energy sources. This requires sustained clean energy investment, streamlined permitting processes, and addressing grid integration challenges.
  • Ensuring affordability and security of supply: The energy transition must be just and inclusive, ensuring that energy remains affordable for all citizens and businesses. Additionally, diversifying energy sources and enhancing grid resilience are crucial to guarantee energy security.
  • Enhancing energy efficiency: Reducing energy demand remains crucial to achieving climate goals and reducing reliance on fossil fuels. This requires continued investments in building energy efficiency, promoting energy-efficient appliances and technologies, and encouraging behavioral changes.
  • International cooperation: Climate change and energy security are global challenges. The EU must continue to lead by example as renewables exceed 30% globally and collaborate with other countries on technological advancements, policy innovations, and financial support for developing nations undergoing their own energy transitions.

Europe's green surge is a testament to its ambition and collective action. By addressing the remaining challenges and seizing the opportunities ahead, the EU can pave the way for a sustainable and secure energy future for itself and the world.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified