Renewable Power Sources


Renewable Power Sources

Renewable power sources deliver clean energy via solar PV, wind turbines, hydroelectric, geothermal, and biomass, enabling grid integration, power electronics, smart inverters, and energy storage for efficient, low-carbon electricity generation and resilient distribution.

 

What Are Renewable Power Sources?

Systems that convert solar, wind, hydro, and biomass into electricity via inverters, power electronics, and grid ties.

✅ Power electronics: MPPT, converters, and smart inverters for PV and wind.

✅ Grid integration: protection, frequency/voltage control, and stability.

✅ Energy storage: batteries, supercapacitors, and power quality management.

 

Renewable Power Sources involve a wide range of modern technologies that do not rely on fossil fuels or non-renewable energy sources to generate electricity

For a broader overview of policies, technologies, and market adoption, the field of renewable power continues to evolve rapidly worldwide.

The following technology risks have been identified for various renewable power sources. The descriptions are based on the outputs from the Needs Assessment, and the results of the Technology, Market and Sustainability analyses.

Understanding these risks also requires situating each technology within the wider ecosystem of renewable energy sources that shape supply, demand, and policy trajectories.

  • Wind Power: Wind turbine power generation is a well-developed technology, especially in the medium/large-sized range. Small units of less than 100 kW to very large units of more than 2MW require further technological research and development. Wind turbine technology is generally finding its most effective application in large scale wind farms with turbines greater than 2MW and whcih are grid-connected.

Grid integration and ancillary services markets are central to scaling wind, as demonstrated by best practices in delivering reliable renewable electricity across diverse regions.

As wind technologies near full market commercialization,the financial and market risks become more important. Specifically,the price point for the produced power, as well as the regulatory acceptance (through appropriate codes and standards) is the key issue. Capital costs are high ($1200-$1500/kW) relative to conventional electricity generation,which are <$1000/kW. Those technologies which help address the cost-competitiveness will be of interest. Comparative analyses of learning curves and procurement models show how renewable power generation can achieve competitive levelized costs under supportive frameworks.

In general, wind power is considered a medium-to-low risk proposition, compared to the other technologies being considered. Given the substantial amount of Canada's energy needs that can be met by wind on our current electrical grid without a major technical challenge, SDTC's wind investment efforts are likely to be weighted towards large-scale technologies. This does not preclude investments in small-scale, non-grid-connected systems, but the net environmental and economic impact would need to be considered.

These considerations also inform deployment pathways alongside microgrids and storage in remote provinces, where flexible alternative energy power solutions can complement existing infrastructure.

  • Solar PV Power: Solar panel development has become quite refined, so the current challenge is to improve the production techniques of the panels in order to reduce overall costs,and the environmental impacts of production. Investments in improved production technologies may still be considered a high risk proposition because few such technologies have so far been identified. In terms of the market, there is fairly wide acceptance of solar technologies, but application is fragmented (residential and remote users), and there is little acceptance and integration on a grid scale. Solar systems are harder to justify economically as major generation sources, so many are being used in individual residential and small commercial applications. Consequently,there are growing aesthetic issues (solar panels on roofs and lawns are facing the same issues that large satellite dishes once had).

Manufacturing innovation and policy incentives continue to shape alternative energy development for PV, influencing supply chains, permitting, and workforce training.

Solar power is not a stand-alone solution for large-scale electricity generation:it requires a form of energy storage or baseload generation. However, in certain niche applications, solar power is quite acceptable. Such solar power applications are likely to have the greatest environmental and economic benefits in the short term. Over the longer term, when time-of-day rates are implemented, peak-shaving applications will become more attractive. Canada should be seeding early applications that demonstrate the benefits of peak-shaving in various classes and installation locations.

On balance, the high financial and market risks result in an overall high risk rating for solar PV for the generation of grid-scale power.

  • Bio-electricity Power: Bio oil and Bio gas technologies are well into the development cycle,but there are only a few major players at this point.Financially,the technology has not yet been proven as a primary power generation source. However,the value proposition shows good potential if the co-products of the technology (heat and downstream bio products) are factored into the financial equation. While there is no evidence of an integrated market infrastructure at this point,the costs and complexities of creating such infrastructure are not considered to be as high as for other forms of renewable energy. This is largely because such systems could be considered as a means to improve efficiency in the agricultural and waste management areas (bio gas) and offer an attractive alternative for power generation in remote communities.

When aligned with waste valorization and district heating, integrated projects contribute meaningfully to renewable alternative energy outcomes that strengthen both resilience and community benefits.

  • Stationary Fuel Cell Power (Hydrogen): Fuels cells still face very high developmental risk as a source of electricity generation (the world's largest installed pilot project of 250 MW is experiencing ongoing technical problems. Material costs are still very high (owing largely to the rare earth materials-mainly platinum-required to make them work), and the market infrastructure is still considered to be in its infancy. This results in an overall high risk rating for power stationary fuel cells that are going to be connected to the power grid. Less expensive hydrogen fuel supply and greater market availability are expected in the future.

 

Related Articles

Related News

Renewable Energy Systems

Renewable energy systems integrate solar PV, wind turbines, battery storage, inverters, and smart grid controls for efficient generation, power conversion, and grid integration, enabling resilient microgrids and low-carbon, distributed electricity.

 

What Are Renewable Energy Systems?

Networks that convert renewable sources to grid-quality power using power electronics, storage, and control systems.

✅ Power electronics: inverters, converters, MPPT for PV and wind

✅ Grid integration: protection, synchronization, and power quality

✅ Energy storage: batteries, EMS, frequency and voltage support

 

Renewable energy systems today can be a cost effective alternative for areas with high electricity connection fees. For an overview of how stand-alone configurations work in remote areas, see this guide to off-grid solar power systems and typical cost considerations.

It is also possible to connect renewable energy power systems to the grid, reducing the amount of electricity you need to purchase, or in some cases, allowing you to export surplus power into the grid. Many homeowners start with a basic solar PV system to offset daytime loads before expanding capacity.

 


 

 

About renewable energy systems

Renewable energy is energy produced from sources which can be replenished or replaced from natural sources. For a deeper introduction, explore this overview of renewable energy and common technologies.

The most common forms of renewable energy used include:

  • photovoltaic modules;
  • wind turbine generators; and
  • micro hydro generators.

Homes usually are serviced with electricity from any of these renewable energy systems on their own or in combination with other electric power systems. Resources on broader renewable alternative energy can help you compare options for your site.

 

Grid-interactive vs. stand-alone power supplies

Since renewable energy systems are often intermittent, (because solar panels only operate during daylight and mostly sunny days) a method of storing the electricity is required. The most common solution for this situation is to incorporate the use of storage batteries. Power from the solar array is used to charge batteries for use later in the day. Because these systems work independently from the electricity grid, they are often referred to as "stand alone power systems". In situations where the cost of connection to the power grid is prohibitive, a stand-alone renewable energy system can be cost effective. Many stand-alone systems use diesel or gasoline generators to recharge batteries during extended period without solar energy.

When planning capacity, it's helpful to weigh the pros and cons of solar power for your climate and usage profile.

An alternative is to use the electricity grid to store the energy. These systems are known as grid-interactive systems. The renewable energy is converted to electricity for use in the household and any surplus power is fed into the grid. Power is drawn from the grid when the renewable energy system is not enough to meet the home's energy demand. Some electric utilities prefer that all of the power from the solar power system is sent directly to the grid and metered separately , which means that all the electricity to the home comes from the grid as it is with conventional homes.

 

Components and features of stand-alone renewable energy systems.

Renewable energy systems consist of several very basic component equipment parts and there are key features which are briefly described and shown on this page.

  1. Electric Power Generating Equipment
  2. PV modules, wind turbines, micro-hydro generators, or a petrol or diesel generator can provide electric power production on their own or in concert with other systems.
  3. Control and regulation equipment
  4. Various types of power regulators, controllers, power meters and power circuit breakers may be used to control battery charging and to provide power protection.
  5. Energy storage
  6. Specialized large capacity batteries are usually used to store otherwise lost energy so that a reliable source of power can be available when needed.
  7. Inverters
  8. These devices convert electricity from the batteries or renewable energy source to the electricity used by household appliances (240 V AC).
  9. Specialized “grid-interactive” inverters are able to feed electricity produced by renewable sources into the electricity grid without disruption to the household electricity supply.
  10. Control Box
  11. Wiring and electrical accessories

Well-designed renewable energy systems should include special wiring that is capable of keeping energy losses to an absolute minimum. Adequate power fusing, electrical grounding, lightning protection and other measures should be used in the renewable energy system.

  • Home design, lighting and various appliances

     

    TNew home designs should incorporate useful energy efficiency features. Also, high efficienct lighting systems and appliances can be selected and specified to keep the energy load to a bare minimum, thus aiding to reduce the cost of such systems.

    Grid-interactive renewable energy power systems

    In addition to stand-alone systems, which require batteries to store energy, REPS can operate in conjunction with the mains electricity system. These are known as grid-interactive or grid-connected systems.

    How do they work?

    In grid-interactive renewable energy systems electricity is still generated from a renewable energy source in the same way as a stand-alone system. The electricity generated then passes through a specially approved power inverter, which converts electric energy into conventional 240 V which in turn is used by home appliances. When there is surplus electricity generated, it will be sent back through the inverter into the power grid. If the home consumes more electricity than your renewable energy system is producing, the power provider automatically will supply the balance of the energy required without any disruption to home appliances. Selecting a certified solar power inverter ensures grid compliance and optimal performance.

    Your power meter measures the level of outgoing and incoming electricity. This provides a net usage amount for your house. In the majority of cases, surplus electricity which is fed back to the electric utility is credited back to you. The net amount that is actual consumption is charged for that billing period. In reality, your power meter can become a cash register. Specialized "smart" meters are sometimes used where more detailed power monitoring is required. As there are variations to this process, check with your electricity supplier for more information on equipment and metering details for your property.

    What are the benefits?

    The major benefit of grid-interactive renewable energy systems is that they produce power from clean, renewable solar energy, allowing householders to reduce greenhouse gas emissions and improve our environment. As renewable energy systems use the main electricity grid as a back-up, power is always available and systems can be sized according to the customer’s requirements and budget. For background on technologies and policy, review renewable energy facts for informed decision-making.

 

Related Articles

View more

What Is Renewable Energy?

What is renewable energy? Electricity from solar, wind, hydro, and geothermal converted via generators and power electronics, integrated with grid infrastructure, energy storage, and smart controls to deliver sustainable, low-carbon power with reliability and efficiency.

 

What Is Renewable Energy?

Renewable energy is electricity from renewable sources using electronics, storage and controls for low-carbon power.

✅ Sources: solar PV, wind turbines, hydro, geothermal generation

✅ Integration: grid codes, inverter control, frequency and voltage support

✅ Enablers: power electronics, energy storage, microgrids, SCADA

 

What Is Renewable Energy? Renewable Energy is popularly considered as any source of sustainable energy that has as its source the renewable, natural environment. Most souces of renewable energy include wind energy, solar energy, water energy and biomass energy, as well as geothermal energy. In most cases, renewable energies are replenished by the natural environment. Non renewable energy resources, such as fossil fuels, cannot be replenished. After all, it took eons of time to create deposits of fossil fuels sources and these deposits are in very limited supply and cannot be replaced. For a deeper overview of definitions and key concepts, see this guide on what renewable energy is and why it matters today.

Wind energy, solar energy, water energy and biomass and geothermal energies comprise most of the plantet's renewable energy sources. Solar energy can be turned into electric power through the use of photovoltaic panels. This electric power can be consumed by many electrical appliances. To explore the main types and how they work, review these detailed summaries of renewable energy sources across different technologies.

What Is Renewable Energy? These are systems that are a key part of the portfolio of electricity solutions. For example, today, traditional biomass represents the most important source of power in the developing world, with a 36 per cent share of total electricity consumption. Used in a sustainable way, biomass and other RE sources do not generate additional greenhouse gas emissions. For context on how clean generation is integrated into modern grids, learn more about renewable electricity and its role in power systems.

RE solutions offer many advantages. Since they use indigenous energy sources like wind, the sun, and rivers of water, they contribute to supply security by reducing reliance on electricity imports. There are a variety of national situations in terms of needs and resources, but renewable ernergy resources are largely available in most developing and developed countries. Creating an enabling environment which contributes directly to local economic development. Renewable energy installations bring jobs, capital, and sources of revenue to local communities, often to rural areas where these benefits are needed most. If you are comparing options beyond conventional fuels, this overview of renewable alternative energy explains pathways for communities and planners.

In certain remote locations, where electricity and/or fossil fuel infrastructure does not reach, RE systems can be the only cost effective option. In addition, modern renewable energy systems generate far less air pollution and greenhouse gas emissions than fossil energy systems thus reducing the threat of climate change and health risks. Depending on the installation, renewable ener gy projects may be smaller in scale and not as technically complex to operate and maintain as conventional energy projects. For all of these reasons, renewable energy is a valuable resource in addressing the world’s growing electricity needs. These benefits are central to the case for clean renewable energy as a public health and climate solution.

RE form a relatively small part of the commercial energy portfolio today, but the costs of developing, installing, and delivering renewable energy to consumers have been falling, due largely to improvements in system designs and manufacturing techniques. In many applications, particularly in those instances where gaining access to conventional energy systems is difficult or costly, the market share of RE has been growing steadily in recent years. As deployment scales, modern renewable energy systems are becoming more efficient and accessible for diverse users.

What Is Renewable Energy? Characterising the impact of cost reductions and market share increases is the “learning curve.” Simply speaking, RE manufacturers and developers gain valuable experience with each new installation. The level of industrial experience with conventional energy systems is many decades longer than that for renewable energy systems. With modern research, development, and technology transfer techniques at their disposal, the RE industries have achieved progress. But because of this relative immaturity of some ernergy sources, many industry analysts expect cost reductions and performance improvements to continue at a faster pace in the RE sector, thus gaining greater competitiveness and increasing the likelihood that RE uptake will expand in the future. This accelerating experience base is steadily improving renewable power performance, reliability, and competitiveness.

 

Related Articles

View more

Renewable Power Sources

Renewable power sources deliver clean energy via solar PV, wind turbines, hydroelectric, geothermal, and biomass, enabling grid integration, power electronics, smart inverters, and energy storage for efficient, low-carbon electricity generation and resilient distribution.

 

What Are Renewable Power Sources?

Systems that convert solar, wind, hydro, and biomass into electricity via inverters, power electronics, and grid ties.

✅ Power electronics: MPPT, converters, and smart inverters for PV and wind.

✅ Grid integration: protection, frequency/voltage control, and stability.

✅ Energy storage: batteries, supercapacitors, and power quality management.

 

Renewable Power Sources involve a wide range of modern technologies that do not rely on fossil fuels or non-renewable energy sources to generate electricity

For a broader overview of policies, technologies, and market adoption, the field of renewable power continues to evolve rapidly worldwide.

The following technology risks have been identified for various renewable power sources. The descriptions are based on the outputs from the Needs Assessment, and the results of the Technology, Market and Sustainability analyses.

Understanding these risks also requires situating each technology within the wider ecosystem of renewable energy sources that shape supply, demand, and policy trajectories.

  • Wind Power: Wind turbine power generation is a well-developed technology, especially in the medium/large-sized range. Small units of less than 100 kW to very large units of more than 2MW require further technological research and development. Wind turbine technology is generally finding its most effective application in large scale wind farms with turbines greater than 2MW and whcih are grid-connected.

Grid integration and ancillary services markets are central to scaling wind, as demonstrated by best practices in delivering reliable renewable electricity across diverse regions.

As wind technologies near full market commercialization,the financial and market risks become more important. Specifically,the price point for the produced power, as well as the regulatory acceptance (through appropriate codes and standards) is the key issue. Capital costs are high ($1200-$1500/kW) relative to conventional electricity generation,which are <$1000/kW. Those technologies which help address the cost-competitiveness will be of interest. Comparative analyses of learning curves and procurement models show how renewable power generation can achieve competitive levelized costs under supportive frameworks.

In general, wind power is considered a medium-to-low risk proposition, compared to the other technologies being considered. Given the substantial amount of Canada's energy needs that can be met by wind on our current electrical grid without a major technical challenge, SDTC's wind investment efforts are likely to be weighted towards large-scale technologies. This does not preclude investments in small-scale, non-grid-connected systems, but the net environmental and economic impact would need to be considered.

These considerations also inform deployment pathways alongside microgrids and storage in remote provinces, where flexible alternative energy power solutions can complement existing infrastructure.

  • Solar PV Power: Solar panel development has become quite refined, so the current challenge is to improve the production techniques of the panels in order to reduce overall costs,and the environmental impacts of production. Investments in improved production technologies may still be considered a high risk proposition because few such technologies have so far been identified. In terms of the market, there is fairly wide acceptance of solar technologies, but application is fragmented (residential and remote users), and there is little acceptance and integration on a grid scale. Solar systems are harder to justify economically as major generation sources, so many are being used in individual residential and small commercial applications. Consequently,there are growing aesthetic issues (solar panels on roofs and lawns are facing the same issues that large satellite dishes once had).

Manufacturing innovation and policy incentives continue to shape alternative energy development for PV, influencing supply chains, permitting, and workforce training.

Solar power is not a stand-alone solution for large-scale electricity generation:it requires a form of energy storage or baseload generation. However, in certain niche applications, solar power is quite acceptable. Such solar power applications are likely to have the greatest environmental and economic benefits in the short term. Over the longer term, when time-of-day rates are implemented, peak-shaving applications will become more attractive. Canada should be seeding early applications that demonstrate the benefits of peak-shaving in various classes and installation locations.

On balance, the high financial and market risks result in an overall high risk rating for solar PV for the generation of grid-scale power.

  • Bio-electricity Power: Bio oil and Bio gas technologies are well into the development cycle,but there are only a few major players at this point.Financially,the technology has not yet been proven as a primary power generation source. However,the value proposition shows good potential if the co-products of the technology (heat and downstream bio products) are factored into the financial equation. While there is no evidence of an integrated market infrastructure at this point,the costs and complexities of creating such infrastructure are not considered to be as high as for other forms of renewable energy. This is largely because such systems could be considered as a means to improve efficiency in the agricultural and waste management areas (bio gas) and offer an attractive alternative for power generation in remote communities.

When aligned with waste valorization and district heating, integrated projects contribute meaningfully to renewable alternative energy outcomes that strengthen both resilience and community benefits.

  • Stationary Fuel Cell Power (Hydrogen): Fuels cells still face very high developmental risk as a source of electricity generation (the world's largest installed pilot project of 250 MW is experiencing ongoing technical problems. Material costs are still very high (owing largely to the rare earth materials-mainly platinum-required to make them work), and the market infrastructure is still considered to be in its infancy. This results in an overall high risk rating for power stationary fuel cells that are going to be connected to the power grid. Less expensive hydrogen fuel supply and greater market availability are expected in the future.

 

Related Articles

View more

Renewable Energy Projects - Technical Solutions

Renewable energy projects optimize power systems with grid integration, solar PV, wind turbines, battery storage, inverters, and power electronics, enhancing smart grid reliability, microgrids, transmission, and distribution through modeling, protection, and control engineering.

 

What Are Renewable Energy Projects?

Projects that design, integrate, and control solar, wind, and storage for reliable, efficient electric power systems.

? Grid integration studies: load flow, stability, and protection schemes.

? Power electronics and inverter control for MPPT and grid codes.

? SCADA, forecasting, and storage optimization in microgrids.

 

Renewable Energy Projects seem to have survived the first cycle of the world economic recession. In fact, late 2008 and all of 2009 seemed better than many economists had recently expected. After a slowdown in global investment activity at the end of 2008, sustainable energy projects rebounded during the final three quarters of 2010. For readers seeking a concise overview, the concept of what renewable energy is underpins these investment trends today.

The result was a total new investment in worldwide Renewable Energy Projects reached about $162 billion in 2009, down slightly from the revised target of $173 billion for 2008. This was still the second-highest annual figure ever recorded and nearly four times the total investment level of 2004. This performance demonstrated that Renewable Energy Projects were certainly not a typical bubble created by the so-called "credit boom", but were rather an investment story that will continue to be important for years to come. Understanding the mix of renewable energy sources helps explain the durability of capital flows in this sector.


 

The visual underscores how renewable power markets can rebound quickly when financing conditions stabilize.

While many policy-makers have increased their focus on encouraging the growth of Renewable Energy Projects (partly to stimulate job creation and offset the forces of recession), projects received new support. From the financial crisis of autumn 2008 until the spring of 2010, the world's chief economies set aside about $188 billion of “green stimulus” programs for Renewable Energy Projects. And since that time, the money has started to be spent. The United States recently announced a large grant scheme to assist the financing of renewable energy projects, and other countries followed the example of Germany, Spain and other European countries by commencing feed-in tariff programs to encourage and stimulate investment in Renewable Energy Projects.. Such measures are pivotal as governments scale clean renewable energy deployment across sectors and regions worldwide.

The major development banks, led by Germany’s KfW and the European Investment Bank, also became important actors in helping Renewable Energy Projects to weather the storm and expand into new markets. However, Renewable Energy Projects often face a bumpy path.

Blended finance vehicles increasingly target diverse renewable power sources to spread risk and accelerate grid integration across emerging markets.

The story of 2009, however, was one of resilience for Renewable Energy Projects. While there were areas of weakness, such as project development in the US and financing for biofuel plants, there was also a decisive shift in the balance of investment towards developing countries, particularly China. Renewable Energy Projects in China was the strongest feature of the year by far, although other areas of strength worldwide in 2009 included offshore wind investment in the North Sea and the financing of power storage and electric vehicle technology companies. There was also a marked improvement in the cost competitiveness of renewable power generation compared to fossil-fuel electricity generation. These shifts align with the fundamentals described in renewable energy facts, which clarify cost trends and technology learning curves.

New investment in Renewable Energy Projects in 2009 was $162 billion, down from a revised $173 billion in 2008. The 7% fall reflected the impact of the recession on investment in Europe and North America in particular, with renewable energy projects and companies finding it harder to access finance:

  • China saw a surge in investment in Renewable Energy Projects. Of the $119 billion invested worldwide by the financial sector in clean energy companies and utility-scale projects, $33.7 billion was invested in China, up 53% from 2008. Financial investment in Europe was down 10% at $43.7 billion, while that in Asia and Oceania, at $40.8 billion, exceeded that in the Americas, at $32.3 billion, for the first time.

  • Clean energy share prices rose almost 40% in 2009, reversing around a third of the losses they experienced in 2008. The WilderHill New Energy Global Innovation Index, or NEX, which tracks the performance of 88 sustainable energy stocks worldwide, nearly doubled to 248.68 from its low of 132.03 reached on 9 March 2009.

  • Major economies began to spend some of the estimated $188 billion in Renewable Energy Projects they announced in the months after the collapse of Lehman Brothers in September 2008. However, the wheels of administration turn slowly, and even at the end of 2009, only about 9% of the money had been spent. A larger share of the stimulus funds is likely to be spent in 2010 and 2011.

  • Total investment in Renewable Energy Projects by venture capital funds was $2.7 billion in 2009, down 36% from 2008. VC players found it harder to raise new money due to general investor caution and the difficulty of achieving exits amid weak stock markets.

Amid these fluctuations, the long-term outlook for renewable electricity remains strong, driven by policy support and improving economics.

 

Related Articles

View more

Renewable Energy Sources Explained

Renewable energy sources power modern grids via solar photovoltaics, wind turbines, and hydropower, using power electronics, inverters, smart grid controls, and energy storage to enhance reliability, grid integration, load balancing, and efficient transmission.

 

What Are Renewable Energy Sources?

Systems that convert solar, wind, and hydro energy into electricity using inverters and controls for grid compatibility.

✅ Employs power electronics: MPPT, PWM inverters, and converters

✅ Integrates with smart grids for frequency, voltage, and VAR control

✅ Requires storage (batteries, flywheels) for intermittency mitigation

 

Renewable Energy Sources are any renewable energy source that can be turned into the generation of electricity. Most renewable energy systems depend on natural souces of energy such as solar energy, wave energy, water energy, wind energy, etc that takes advantage of these energy souces to facilitate the conversion of those energies through the mechanical action of a generator to manufacture electricity. Also energy in the form of heat from deep in the crust of the Earth can be converted into electric power. This is known as "geothermal energy" production. There are other instances in which electricity can be generated from biofuel energy and fuel cell technology. The main advantage of renewable energy sources is that they are considered non-polluting but some can be unreliable, depending on when the sun shines and the wind blows, which is not how electricity is consumed. For a broader overview of definitions and technologies, see this guide to what renewable energy entails for additional context.

Despite inherent problems with the technology behind renewable energy sources, increasing environmental pressure is forcing development at an increasing pace. By the end of 2002, worldwide wind-power generation had exceeded 30 megawatts and had reached an annual growth rate of 25 per cent. Further insights into generation trends are summarized in this overview of renewable electricity with data on deployment.

 

Renewable Energy Sources

For readers comparing technologies, this summary of the main forms of alternative energy outlines typical applications.

Wind Energy Wind Energy Researchers recently calculated wind power's global potential. They have concluded that wind at many specific locations could produce more than enough electric power to meet world electricity demand. Comparative resource maps and case studies are available in this overview of alternative energy sources for deeper exploration.

 

Solar Energy The amount of solar energy by any measure is also enormous. Every hour more energy strikes the surface of the Earth than is consumed globally in a year.14 According to the DOE’s Solar Energy Technologies Program, there is on average between 2.8 and 6.2 kilowatt-hours (kWh) of sunlight available per square meter (m2) each day.15 The exact amount of sunlight depends on the region and the season. In the United States, the annual average is 4.8 kWh/m2 per day. Regional insolation data and technology basics are summarized in this renewable energy facts explainer for reference.

 

Advanced Hydro Hydro-electric power generation currently produces 10 per cent of the electricity production in the United States and is a clean source of renewable energy. However, mega dams and stations have a history of causing negative environmental impacts. Emerging fish-friendly designs and storage options are profiled in this overview of alternative energy solutions addressing environmental trade-offs.

 

Biomass Biomass is the burning of organic matter – typically agricultural crops and grasses – to produce heat or electricity. Biomass, which is different than solar and wind energy, does contribute significantly to world carbon dioxide emission levels. These emissions, on the other hand, can be offset through plantations of new crops and forests, which absorb carbon dioxide. For biomass to be a significant source of non-carbon emitting renewable energy, plants must be raised with little cultivation and fertilizer, and then transported over short distances, and harvested by methods that do not spoil the environment. Broader market trends and policy drivers are discussed in this guide to renewable alternative energy with practical examples.

Importantly, renewable energy sources produce virtually no greenhouse gas emissions and can effectively address climate change. If unchecked, the disruption of the earth’s atmosphere poses the greatest threat to humankind in our lifetimes. Continuing to fill the atmosphere with greenhouse gases will melt the ice caps, increase sea levels around the world, bring on more intense weather patterns, and adversely affect and disrupt food production, while destroying vast areas of the biosphere. Millions of inhabitants may be without food, shelter and clean water, which could cause political and social revolution and chaos. According to a studies, renewable energy souces, combined with industrial, commercial and institutional energy efficiency measures could decrease greenhouse gas emission pollution by as much as 70 per cent. With relatively little capital and short times for deployment, renewable energy sources could start to positively address global climate issues more rapidly than, say, nuclear power.

 

Related Articles

View more

Renewable Electricity Technology

Renewable electricity enables grid integration of solar, wind, and hydro via power electronics, inverters, and converters; optimized by SCADA, EMS, and storage for frequency regulation, reliability, decarbonization, and resilient microgrids across transmission.

 

What Is Renewable Electricity?

Renewable electricity is grid power from solar and wind, enabled by power electronics, storage, and control systems.

✅ Power converters and inverters synchronize renewables to the AC grid.

✅ Energy storage mitigates intermittency and supports frequency regulation.

✅ SCADA, protection relays, and EMS ensure stability and safety.

 

Renewable Electricity Renewable electricity (RE) policy is an important subset of industrial and energy policy, and thus needs to be aligned with the energy policy priorities of sustainability, competitiveness, and security. Our common and only long-term natural advantage in the energy sector stems from renewable electricity resources such as wind, biomass, and ocean energy. For a concise overview, see what is renewable energy for context.

Climate change mitigation and security of supply have become the focus of many recent national electricity policies. Renewable energy resources can play an important part in addressing both of these concerns. Additional background on key renewable energy sources can clarify technology options.

Against this background of increasing fossil fuel prices and remarkable energy growth demand, this page focuses on renewable electricity. Readers can also learn the facts about renewable energy to understand policy implications.

Consumers demand secure, dependable and competitively priced electricity and producers must be responsive to these market requirements. Well-designed renewable energy systems help meet these expectations.

The combination of increased demand for renewable electricity and security of supply is a very powerful driver of major power sector change worldwide. Currently, for example, about 50 per cent of energy demand is met with imported fuel and there are projections that this could rise to about 70 per cent in future decades. Economic development and increasing consumption of electricity-consuming equipment will increase the demand for future electricity. Comparative insights into renewable alternative energy highlight pathways for reducing import dependence.

Alongside electricity demand and security of supply issues, climate change also poses a global threat. Large scale decarbonisation of electricity generation and many other sectors will have to occur if the planet is to stay within the 2 degree C target for limiting global warming effects. Scaling clean renewable energy remains central to achieving these targets.

The key components of such a vision are:

  • A regional power system based on a SuperSmart Grid;
  • The rapid scaling up of all forms of renewable power, with the ultimate goal of decarbonising electricity generation in Europe and North Africa;
  • A unified European power market that is united with the North African one, allowing for the free trading of electricity between all countries;
  • The production of renewable electricity at the most suitable sites by the most suitable renewable electricity technologies

     

    Renewable Electricity Resources

    Resources and technological applications that may qualify as a source for Clean or Renewable Electricity production are listed below:

    In many markets, renewable energy credits support project economics and tracking of environmental attributes.

    Biogas Energy - refers to renewable electricity produced from a plant that mostly captures biogas for conversion to electric power. Biogas refers to the gaseous constituents (mostly methane and carbon dioxide) are produced from solid organic waste. Facilities producing biogas fuel include municipal garbage landfill sites, common sewage treatment facilities, and anaerobic deterioration of organic waste processing plants.

    Biomass Energy - refers to renewable electricity generated from the burning of organic materials. Biomass includes, but is not limited to:

    • Clean wood biomass, which translates into
    • wood residue
    • wood leftover debris from logging activities
    • organic residue from pulp and paper production plants
    • timber infectedd with mountain pine beetle
    • Liquid fuel that comes from biomass sources such as bio-oil, ethanol, methanol, etc.
    • Dedicated energy crop sources such as corn
    • Clean burning and organically sourced material which has been separated from municipal solid waste

    Energy Recovery Generation (ERG ) - refers to renewable electricity generated from the recovery of industrial waste energy that would otherwise be emitted into the atmosphere. ERG represents a net environmental benefit relative to existing energy production because it uses the waste output of other industrial processes to generate electricity. Therefore, all energy output from an ERG plant is considered renewable.

    Geothermal Energy - refers to renewable electricity produced using the natural heat of the earth, including steam, water and water vapour as well as all materials dissolved in the steam, water or water vapour.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.