What is Tidal Energy? Explained

By William Conklin, Associate Editor


What is Tidal Energy

Tidal energy is a renewable power source that harnesses ocean tides through the use of turbines and barrages. Utilizing predictable tidal cycles, it supports clean electricity generation, reduces dependence on fossil fuels, and strengthens sustainable energy systems.

 

What is tidal energy?

Tidal energy is the conversion of ocean tides into electricity using turbines, barrages, or tidal stream systems, offering a predictable and sustainable renewable resource.

✅ Harnesses predictable tidal cycles for renewable power

✅ Reduces reliance on fossil fuels and lowers emissions

✅ Supports clean, sustainable electricity generation

 

It is a renewable power harnessed from the rise and fall of the ocean's tides. The ocean's vast power is one of the most promising resources, capable of generating electricity to meet the needs of communities worldwide. With the growing demand for clean, sustainable sources, tide-generated power has been thrust into the spotlight as an effective and environmentally friendly option. Understanding tidal power highlights how Renewable Power Generation technologies are diversifying to create a more sustainable grid.


 

What is Tidal Energy? It is an ocean energy resource; tide-generated power is extracted from the natural ebb and flow of coastal tides. The key difference between tidal energy and other renewable sources, such as wind and solar power, lies in the predictability and reliability of the high tides. Additionally, the water in the ocean is approximately 800 times denser than air, making it a more concentrated and efficient power source compared to wind turbines. Governments worldwide are encouraging clean projects like tidal power through Renewable Energy Tax Credits, which lower the cost of adoption.

 

Tidal Barrage Systems for Renewable Power

Two primary methods of capturing tidal energy are tidal barrage and tidal stream generators. A tidal barrage is a large-scale engineering project that involves constructing a dam across a tidal estuary or bay. Then, as the water level changes during the high and low tidal barrage, water flows through turbines, generating electricity. The most notable tidal barrage projects include La Rance in France and the Sihwa Lake tide-generated Power Station in South Korea. 

 

Tidal Stream Generators and Ocean Turbines

Tidal stream generators, on the other hand, utilize underwater turbines positioned in tidal streams to harness the kinetic energy of the moving water. Like wind turbines, tide-generated turbines rotate as water flows over their blades, converting it into electricity. This technology is less intrusive to the environment and marine life than tidal barrage systems.

 

Advantages of Tidal Energy for Clean Electricity

There are numerous advantages to utilizing it as a renewable source. First, tidal energy is predictable, making planning for power generation and grid integration easier. Additionally, tide-generated power is environmentally friendly, as it produces no greenhouse gas emissions or air pollution during operation. This makes it a desirable option for reducing dependence on fossil fuels and combating climate change.

 

Disadvantages and Challenges of Tidal Power

However, it also has its disadvantages. The initial cost of constructing large-scale tidal power plants, particularly large-scale tidal barrage projects, can be substantial. This kind of generation is also limited to specific coastal locations with sufficient range and appropriate topography. Furthermore, concerns exist about the potential impact on marine life and coastal ecosystems, although research is ongoing to develop more sustainable and less disruptive technologies.

 

Tidal Energy vs Wind and Solar Power

Regarding efficiency, it is competitive with other renewable power sources, such as wind and solar power. In addition, the density of water makes tidal power generation more efficient in terms of power output per unit of installed capacity. However, the technology's scalability and geographic limitations make it challenging to deploy tidal energy globally. Tide-generated systems complement other clean technologies featured in our articles on Biomass Renewable Energy and Clean Renewable Energy.

 

Environmental Impact of Tidal Power Plants

The environmental impact is generally considered to be low, with minimal greenhouse gas emissions, air pollution, or waste production. However, localized effects on marine ecosystems and sediment transport may occur, depending on the type and scale of the project. Therefore, it is crucial to perform thorough environmental assessments and monitoring to minimize the potential negative effects of tide-generated power installations. To see how tidal power contributes to decarbonization efforts, visit our Renewable Electricity and Renewable Power Sources guides.

 

Global Examples of Tidal Power Stations

The best locations for generating tidal energy are areas with a high tidal range, strong tidal currents, and suitable coastal topography. Some of the world's most promising sites include the Bay of Fundy in Canada, the Bristol Channel in the United Kingdom, and the northwest coast of Australia. In addition, countries such as France, South Korea, and the UK are already home to some of the largest tide-generated power stations and continue to invest in this renewable power technology. As part of global Renewable Energy Projects, tide-generated power installations provide reliable baseload power alongside solar and wind.

 

Future of Tidal Energy in Renewable Systems

What is Tidal Energy? Tidal energy is a promising renewable resource with significant potential for generating clean, sustainable electricity. While there are challenges to overcome, such as high initial costs and site-specific limitations, ongoing research and technological advancements aim to make tide-generated electricity a more accessible and environmentally friendly option for the future. For a deeper comparison beyond 'What is Tidal Energy,' explore our article on 'What is Distributed Generation?' which shows how local systems, such as tidal plants, strengthen energy resilience.

 

Related Articles

 

Related News

Renewable Power Sources

Renewable power sources deliver clean energy via solar PV, wind turbines, hydroelectric, geothermal, and biomass, enabling grid integration, power electronics, smart inverters, and energy storage for efficient, low-carbon electricity generation and resilient distribution.

 

What Are Renewable Power Sources?

Systems that convert solar, wind, hydro, and biomass into electricity via inverters, power electronics, and grid ties.

✅ Power electronics: MPPT, converters, and smart inverters for PV and wind.

✅ Grid integration: protection, frequency/voltage control, and stability.

✅ Energy storage: batteries, supercapacitors, and power quality management.

 

Renewable Power Sources involve a wide range of modern technologies that do not rely on fossil fuels or non-renewable energy sources to generate electricity

For a broader overview of policies, technologies, and market adoption, the field of renewable power continues to evolve rapidly worldwide.

The following technology risks have been identified for various renewable power sources. The descriptions are based on the outputs from the Needs Assessment, and the results of the Technology, Market and Sustainability analyses.

Understanding these risks also requires situating each technology within the wider ecosystem of renewable energy sources that shape supply, demand, and policy trajectories.

  • Wind Power: Wind turbine power generation is a well-developed technology, especially in the medium/large-sized range. Small units of less than 100 kW to very large units of more than 2MW require further technological research and development. Wind turbine technology is generally finding its most effective application in large scale wind farms with turbines greater than 2MW and whcih are grid-connected.

Grid integration and ancillary services markets are central to scaling wind, as demonstrated by best practices in delivering reliable renewable electricity across diverse regions.

As wind technologies near full market commercialization,the financial and market risks become more important. Specifically,the price point for the produced power, as well as the regulatory acceptance (through appropriate codes and standards) is the key issue. Capital costs are high ($1200-$1500/kW) relative to conventional electricity generation,which are <$1000/kW. Those technologies which help address the cost-competitiveness will be of interest. Comparative analyses of learning curves and procurement models show how renewable power generation can achieve competitive levelized costs under supportive frameworks.

In general, wind power is considered a medium-to-low risk proposition, compared to the other technologies being considered. Given the substantial amount of Canada's energy needs that can be met by wind on our current electrical grid without a major technical challenge, SDTC's wind investment efforts are likely to be weighted towards large-scale technologies. This does not preclude investments in small-scale, non-grid-connected systems, but the net environmental and economic impact would need to be considered.

These considerations also inform deployment pathways alongside microgrids and storage in remote provinces, where flexible alternative energy power solutions can complement existing infrastructure.

  • Solar PV Power: Solar panel development has become quite refined, so the current challenge is to improve the production techniques of the panels in order to reduce overall costs,and the environmental impacts of production. Investments in improved production technologies may still be considered a high risk proposition because few such technologies have so far been identified. In terms of the market, there is fairly wide acceptance of solar technologies, but application is fragmented (residential and remote users), and there is little acceptance and integration on a grid scale. Solar systems are harder to justify economically as major generation sources, so many are being used in individual residential and small commercial applications. Consequently,there are growing aesthetic issues (solar panels on roofs and lawns are facing the same issues that large satellite dishes once had).

Manufacturing innovation and policy incentives continue to shape alternative energy development for PV, influencing supply chains, permitting, and workforce training.

Solar power is not a stand-alone solution for large-scale electricity generation:it requires a form of energy storage or baseload generation. However, in certain niche applications, solar power is quite acceptable. Such solar power applications are likely to have the greatest environmental and economic benefits in the short term. Over the longer term, when time-of-day rates are implemented, peak-shaving applications will become more attractive. Canada should be seeding early applications that demonstrate the benefits of peak-shaving in various classes and installation locations.

On balance, the high financial and market risks result in an overall high risk rating for solar PV for the generation of grid-scale power.

  • Bio-electricity Power: Bio oil and Bio gas technologies are well into the development cycle,but there are only a few major players at this point.Financially,the technology has not yet been proven as a primary power generation source. However,the value proposition shows good potential if the co-products of the technology (heat and downstream bio products) are factored into the financial equation. While there is no evidence of an integrated market infrastructure at this point,the costs and complexities of creating such infrastructure are not considered to be as high as for other forms of renewable energy. This is largely because such systems could be considered as a means to improve efficiency in the agricultural and waste management areas (bio gas) and offer an attractive alternative for power generation in remote communities.

When aligned with waste valorization and district heating, integrated projects contribute meaningfully to renewable alternative energy outcomes that strengthen both resilience and community benefits.

  • Stationary Fuel Cell Power (Hydrogen): Fuels cells still face very high developmental risk as a source of electricity generation (the world's largest installed pilot project of 250 MW is experiencing ongoing technical problems. Material costs are still very high (owing largely to the rare earth materials-mainly platinum-required to make them work), and the market infrastructure is still considered to be in its infancy. This results in an overall high risk rating for power stationary fuel cells that are going to be connected to the power grid. Less expensive hydrogen fuel supply and greater market availability are expected in the future.

 

Related Articles

View more

Renewable Electricity Technology

Renewable electricity enables grid integration of solar, wind, and hydro via power electronics, inverters, and converters; optimized by SCADA, EMS, and storage for frequency regulation, reliability, decarbonization, and resilient microgrids across transmission.

 

What Is Renewable Electricity?

Renewable electricity is grid power from solar and wind, enabled by power electronics, storage, and control systems.

✅ Power converters and inverters synchronize renewables to the AC grid.

✅ Energy storage mitigates intermittency and supports frequency regulation.

✅ SCADA, protection relays, and EMS ensure stability and safety.

 

Renewable Electricity Renewable electricity (RE) policy is an important subset of industrial and energy policy, and thus needs to be aligned with the energy policy priorities of sustainability, competitiveness, and security. Our common and only long-term natural advantage in the energy sector stems from renewable electricity resources such as wind, biomass, and ocean energy. For a concise overview, see what is renewable energy for context.

Climate change mitigation and security of supply have become the focus of many recent national electricity policies. Renewable energy resources can play an important part in addressing both of these concerns. Additional background on key renewable energy sources can clarify technology options.

Against this background of increasing fossil fuel prices and remarkable energy growth demand, this page focuses on renewable electricity. Readers can also learn the facts about renewable energy to understand policy implications.

Consumers demand secure, dependable and competitively priced electricity and producers must be responsive to these market requirements. Well-designed renewable energy systems help meet these expectations.

The combination of increased demand for renewable electricity and security of supply is a very powerful driver of major power sector change worldwide. Currently, for example, about 50 per cent of energy demand is met with imported fuel and there are projections that this could rise to about 70 per cent in future decades. Economic development and increasing consumption of electricity-consuming equipment will increase the demand for future electricity. Comparative insights into renewable alternative energy highlight pathways for reducing import dependence.

Alongside electricity demand and security of supply issues, climate change also poses a global threat. Large scale decarbonisation of electricity generation and many other sectors will have to occur if the planet is to stay within the 2 degree C target for limiting global warming effects. Scaling clean renewable energy remains central to achieving these targets.

The key components of such a vision are:

  • A regional power system based on a SuperSmart Grid;
  • The rapid scaling up of all forms of renewable power, with the ultimate goal of decarbonising electricity generation in Europe and North Africa;
  • A unified European power market that is united with the North African one, allowing for the free trading of electricity between all countries;
  • The production of renewable electricity at the most suitable sites by the most suitable renewable electricity technologies

     

    Renewable Electricity Resources

    Resources and technological applications that may qualify as a source for Clean or Renewable Electricity production are listed below:

    In many markets, renewable energy credits support project economics and tracking of environmental attributes.

    Biogas Energy - refers to renewable electricity produced from a plant that mostly captures biogas for conversion to electric power. Biogas refers to the gaseous constituents (mostly methane and carbon dioxide) are produced from solid organic waste. Facilities producing biogas fuel include municipal garbage landfill sites, common sewage treatment facilities, and anaerobic deterioration of organic waste processing plants.

    Biomass Energy - refers to renewable electricity generated from the burning of organic materials. Biomass includes, but is not limited to:

    • Clean wood biomass, which translates into
    • wood residue
    • wood leftover debris from logging activities
    • organic residue from pulp and paper production plants
    • timber infectedd with mountain pine beetle
    • Liquid fuel that comes from biomass sources such as bio-oil, ethanol, methanol, etc.
    • Dedicated energy crop sources such as corn
    • Clean burning and organically sourced material which has been separated from municipal solid waste

    Energy Recovery Generation (ERG ) - refers to renewable electricity generated from the recovery of industrial waste energy that would otherwise be emitted into the atmosphere. ERG represents a net environmental benefit relative to existing energy production because it uses the waste output of other industrial processes to generate electricity. Therefore, all energy output from an ERG plant is considered renewable.

    Geothermal Energy - refers to renewable electricity produced using the natural heat of the earth, including steam, water and water vapour as well as all materials dissolved in the steam, water or water vapour.

 

Related Articles

View more

Biomass Renewable Energy

Biomass renewable energy converts organic feedstocks into electricity via gasification, biogas, and CHP systems, integrating with microgrids, power electronics, inverters, and grid-tied generators for reliable, low-carbon baseload and frequency support.

 

What Is Biomass Renewable Energy?

Energy from organic feedstocks converted to power via gasification, biogas, and CHP, integrated with grid electronics.

✅ High-efficiency CHP improves capacity factor and voltage stability.

✅ Power electronics, inverters, and protection enable grid-tie.

✅ Supports frequency control, reactive power, and microgrid resiliency.

 

Biomass Renewable Energy is an important source of energy for majority of the world’s population. The use of biomass renewable energy is expected to increase in the near future, with growth in population. In many under developed nations (most especially areas such as parts of Africa, conventional biomass renewable energy dominates national energy strategies, leading to negative impacts on human health and the environment. There are, however, opportunities for developing improved and modern biomass energy technologies, which offer substantial benefits in terms of enhanced quality of energy services and reduction in negative health and environmental impacts. For a concise overview of feedstocks, conversion technologies, and benefits, see this biomass energy overview to understand core concepts.

In addition, the sustainable harvesting of biomass renewable energy resources is essential for ensuring the continued availability of this important energy source particularly for the world’s poor.

Sustainable harvesting practices also align with broader categories of renewable energy sources that emphasize resource regeneration.

Biomass renewable energy plays a vital role in meeting local energy demand in many regions of the developing world. Biomass is a primary source of electrical energy for about two billion people in developing countries. Therefore, it's available to the world’s impoverished nations while providing a suitable energy for cooking and heating. Also, biomass energy-based industries are a chief source of economic development in terms of job creation in rural areas. Modern biomass renewable energy technologies are being widely used in many developing countries as well as in certain parts of the developed world. With proper energy management strategies, supported by appropriate environmental practices, modern biomass renewable energy projects can be a sustainable source of electric power production as well as providing liquid and gaseous fuels. Biomass is therefore not only a central alternative energy source but is probably an important future sustainable energy source. These outcomes contribute to the goals of clean renewable energy that balance access, affordability, and environmental performance.

Growing interest in biomass renewable energy is driven by the following facts among others:

  • It can contribute to lessening poverty in developing countries;
  • Biomass renewable energy meets power needs without expensive conversion equipment;
  • It can deliver biomass renewable energy in all forms that countries need for electricity and heating (in all forms of liquid and gaseous fuels)
  • It is carbon dioxide-neutral because as much biomass can be grown as burned
  • Biomass renewable energy helps to restore unproductive and degraded lands.

For definitions, policy basics, and key technologies, this guide to renewable energy offers helpful background.

Available statistics indicate that the share of biomass renewable energy in the global energy consumption has remained roughly the same over the last 30 years. Biomass renewable energy accounted for an estimated 14% and 11% of the world’s final energy consumption in 2000 and 2001 respectively (IEA, 1998 and IEA, 2003). The International Energy Agency (IEA) estimates that at global level, the share of biomass in total final energy consumption is comparable to that of electricity (15%) and gas (16%). These figures parallel developments in renewable electricity that are influencing investment and grid planning.

Modern biomass renewable energy technologies have the potential to provide improved energy services based on available biomass resources and agricultural residues19. Widespread use of combined heat and power generation biomass renewable energy options in rural areas can address multiple social, economic and environmental issues that now constrain local development. The availability of low cost biomass power in rural areas could help provide cleaner, more efficient energy services to support local development, promote environmental protection, provide better domestic fuel sources and improve rural life. Bioenergy technologies based on sustainable biomass supply are considered "carbon neutral" and may lead to net carbon dioxide emission reduction if used to replace fossil fuels. For comparative emissions data and lifecycle insights, consult this overview on renewable energy facts to understand trade-offs.

In addition, modern biomass renewable energy technologies can contribute to better bio-waste management. For example, land-fill gas can assist urban waste management, while bagasse-based co-generation reduces the problem of safe disposal of bagasse at sugar plantations. Another advantage of modern biomass renewable energy is its job generation potential – a very important attraction for many developing countries faced with chronic levels of unemployment or under-employment. Existing studies indicate that, in comparison to other primary energy sources, the job generation potential of modern biomass is among the highest. For example, in Brazil, the annual production of 14 billion litres of ethanol from sugarcane is responsible for the creation of 462,000 direct and 1,386,000 indirect jobs in the country, corresponding to a rate of 263,000 annual jobs per MTOE generated. Collectively, these pathways situate biomass within broader renewable alternative energy strategies that enhance resilience and jobs.

 

Related Articles

View more

Wind Turbine Theft: An Emerging Threat to Renewable Energy Infrastructure

Wind Turbine Theft an Emerging Threat to Renewable Energy Infrastructure drives copper theft, SCADA breaches, and component vandalism, undermining grid reliability, power electronics, asset monitoring, and substation security via weak telemetry and inadequate intrusion detection.

 

Why Is Wind Turbine Theft an Emerging Threat to Renewable Energy Infrastructure?

It compromises SCADA, power electronics, and grid protection, causing outages, safety risks, and costly downtime.

✅ Targets copper, rare-earths, converters; degrades power quality.

✅ Exposes SCADA/PLC networks; weak auth and unpatched firmware.

✅ Disrupts protection relays, yaw/pitch control, and grid code compliance.

 

As the global energy landscape shifts towards sustainability, wind power has emerged as a cornerstone of renewable energy. However, a growing concern is threatening the integrity of this clean energy source: the theft of wind turbine components. This issue not only undermines the efficiency of wind farms but also poses significant economic and operational challenges. As stakeholders evaluate risk, understanding the fundamentals of renewable energy provides perspective on how theft disrupts larger decarbonization goals.

The Scope of the Problem

Wind turbines are complex machines composed of various valuable components, including copper wiring, rare earth magnets, and electronic systems. These materials are attractive targets for thieves due to their high resale value. Incidents of theft have been reported globally, with turbines being dismantled and parts sold on the black market. In some cases, entire turbines have been stolen, leading to substantial financial losses for operators. Industry primers such as renewable energy facts outline why critical materials attract theft in secondary markets.

Economic Implications

The financial impact of turbine theft is multifaceted. Beyond the immediate loss of equipment, operators face increased insurance premiums, higher maintenance costs, and potential fines for non-compliance with safety regulations. The theft of components also leads to extended downtimes as replacements are sourced, further affecting energy production and revenue. These losses ripple into PPA obligations and grid forecasts, as disruptions reduce expected renewable power output during peak demand windows.

Security Measures and Challenges

To combat this growing threat, wind farm operators are implementing enhanced security measures. These include installing surveillance cameras, employing security personnel, and utilizing GPS tracking systems for turbine components. Despite these efforts, the vast and often remote locations of wind farms make them difficult to monitor effectively. This challenge is compounded by the rapid pace of technological advancement, which can outstrip the implementation of security protocols. Blended approaches that pair physical hardening with community engagement have proven effective across other renewable power sources in similarly remote locations.

Legal and Regulatory Responses

Governments and regulatory bodies are beginning to recognize the severity of turbine theft. In some regions, legislation has been introduced to regulate the sale of second-hand turbine components and to impose stricter penalties for theft. However, enforcement remains inconsistent, and the international nature of the wind energy supply chain complicates efforts to track and recover stolen goods. Clearer resale controls also protect consumer confidence in certified renewable electricity markets and warranty frameworks.

Broader Implications for Renewable Energy

The theft of wind turbine components highlights a broader issue within the renewable energy sector: the vulnerability of infrastructure to criminal activity. As the industry grows, so too does the potential for exploitation by organized crime. This underscores the need for comprehensive security strategies that encompass not only physical protection but also cyber defenses to safeguard against a range of threats. Coordinated intelligence sharing across operators of diverse renewable energy sources can expose cross-site patterns and organized groups.

Conclusion

While wind energy remains a cornerstone of the global push towards sustainability, the theft of turbine components presents a significant challenge that must be addressed. Through a combination of enhanced security measures, stricter regulations, and international cooperation, the renewable energy sector can mitigate this threat and continue to provide clean, reliable power for the future. Doing so strengthens public trust in clean renewable energy systems that communities increasingly rely upon.

 

Related Articles

View more

Renewable Energy Credits

Renewable energy credits certify MWh-scale green generation, enabling GHG accounting, Scope 2 reductions, RPS compliance, and PPA hedging via registries like WREGIS, GATS, and M-RETS for grid decarbonization and utility procurement strategies.

 

What Are Renewable Energy Credits?

Tradable 1 MWh certificates for renewable generation, used in Scope 2 accounting, RPS compliance, and decarbonization.

✅ Verifies MWh via meter data and ISO/RTO registry tracking

✅ Enables Scope 2 reductions for facilities and microgrids

✅ Supports RPS compliance and PPA procurement strategies

 

Renewable Energy Credits, otherwise known as Renewable Electricity Certificates, or Tradable Renewable Certificates (TRCs), are tradable, non-tangible energy commodities that represent proof that 1 megawatt-hour (MWh) of electricity was generated from an eligible renewable energy resource (renewable electricity). For context on how clean generation is delivered and tracked, see renewable electricity fundamentals and related attributes.

Renewable Energy Credits can be sold and traded or bartered, and the owner of the REC can claim to have purchased renewable energy. While traditional carbon emissions trading programs promote low-carbon technologies by increasing the cost of emitting carbon, RECs can incentivize carbon-neutral renewable energy by providing a production subsidy to electricity generated from renewable sources. It is important to understand that the energy associated with a REC is sold separately and is used by another party. The consumer of a REC receives only a certificate. These market incentives often complement policies such as renewable energy tax credits that influence project financing.

In states and provinces that have a REC programs, a green energy provider (such as a wind farm) is credited with one REC for every 1,000 kWh or 1 MWh of electricity it produces (for reference, an average residential customer consumes about 800 kWh in a month). A certifying agency gives each REC a unique identification number to make sure it doesn't get double-counted. The green energy is then fed into the electrical grid (by mandate), and the accompanying REC can then be sold on the open market. Understanding the range of renewable energy systems that can issue RECs helps stakeholders assess performance and eligibility.

Renewable energy power companies benefit from RECs because they serve as an incentive. Many non-renewable energy sources are subsidized, making it difficult for green energy companies to survive. By being able to sell the power and RECs, the company can afford to thrive in the market. Prices for RECs vary widely, just like other commodities, and they are available for sale in numerous locations. Price signals can also vary with the mix of local renewable energy sources and transmission constraints.

By purchasing Renewable Energy Credits, consumers can claim that they are supporting green energy. While a consumer would ideally also purchase renewable energy for his or her home, this is not always possible. RECs allow companies and individuals to support power in areas which do not offer it directly. Consumers should also, of course, practice conservation and work to get green power in their area, but RECs are a good place to start. For companies, they are an important part of doing business responsibly, while thinking about future generations. For households unable to procure green tariffs, RECs align with broader clean renewable energy practices and ongoing efficiency efforts.

Along with carbon offsets and other incentive programs, Renewable Energy Credits are part of a growing movement which acknowledges that even small changes make a big difference. By supporting green energy, consumers show that there is a demand for it, and companies can build more plants or accelerate production with the funds raised through the sale of RECs. Organizations which promote programs like this hope to eventually see everyone's ecological footprint, meaning the amount of resources and space needed to support a particular lifestyle, greatly reduced. Clear explanations of what is renewable energy empower buyers to request credible products and disclosures.

 

What's the difference between a REC and a Carbon Offset?

All RECs from qualifying new generators represent the environmental attributes of renewable power, principally the fact that producing that power causes less, or no, pollution. When you buy an amount of wind-generated Renewable Energy Credits equal to your electricity consumption, you are legally entitled to claim that you are wind powered, and that your electricity use does not contribute to global warming. In other words, all wind Renewable Energy Credits can convert your electricity to wind power. However, for a REC to be used to offset emissions from driving, flying or heating your home, it must be from a project that would not have been implemented without the opportunity to realize revenues for the carbon reductions (in other words, it must be "additional" to business-as-usual - see "what's the importance of additionality, below"), and not all renewable energy projects can say that. To evaluate such claims confidently, consult resources that present renewable energy facts and common verification methods.

 

Related Articles

View more

Renewable Energy Systems

Renewable energy systems integrate solar PV, wind turbines, battery storage, inverters, and smart grid controls for efficient generation, power conversion, and grid integration, enabling resilient microgrids and low-carbon, distributed electricity.

 

What Are Renewable Energy Systems?

Networks that convert renewable sources to grid-quality power using power electronics, storage, and control systems.

✅ Power electronics: inverters, converters, MPPT for PV and wind

✅ Grid integration: protection, synchronization, and power quality

✅ Energy storage: batteries, EMS, frequency and voltage support

 

Renewable energy systems today can be a cost effective alternative for areas with high electricity connection fees. For an overview of how stand-alone configurations work in remote areas, see this guide to off-grid solar power systems and typical cost considerations.

It is also possible to connect renewable energy power systems to the grid, reducing the amount of electricity you need to purchase, or in some cases, allowing you to export surplus power into the grid. Many homeowners start with a basic solar PV system to offset daytime loads before expanding capacity.

 


 

 

About renewable energy systems

Renewable energy is energy produced from sources which can be replenished or replaced from natural sources. For a deeper introduction, explore this overview of renewable energy and common technologies.

The most common forms of renewable energy used include:

  • photovoltaic modules;
  • wind turbine generators; and
  • micro hydro generators.

Homes usually are serviced with electricity from any of these renewable energy systems on their own or in combination with other electric power systems. Resources on broader renewable alternative energy can help you compare options for your site.

 

Grid-interactive vs. stand-alone power supplies

Since renewable energy systems are often intermittent, (because solar panels only operate during daylight and mostly sunny days) a method of storing the electricity is required. The most common solution for this situation is to incorporate the use of storage batteries. Power from the solar array is used to charge batteries for use later in the day. Because these systems work independently from the electricity grid, they are often referred to as "stand alone power systems". In situations where the cost of connection to the power grid is prohibitive, a stand-alone renewable energy system can be cost effective. Many stand-alone systems use diesel or gasoline generators to recharge batteries during extended period without solar energy.

When planning capacity, it's helpful to weigh the pros and cons of solar power for your climate and usage profile.

An alternative is to use the electricity grid to store the energy. These systems are known as grid-interactive systems. The renewable energy is converted to electricity for use in the household and any surplus power is fed into the grid. Power is drawn from the grid when the renewable energy system is not enough to meet the home's energy demand. Some electric utilities prefer that all of the power from the solar power system is sent directly to the grid and metered separately , which means that all the electricity to the home comes from the grid as it is with conventional homes.

 

Components and features of stand-alone renewable energy systems.

Renewable energy systems consist of several very basic component equipment parts and there are key features which are briefly described and shown on this page.

  1. Electric Power Generating Equipment
  2. PV modules, wind turbines, micro-hydro generators, or a petrol or diesel generator can provide electric power production on their own or in concert with other systems.
  3. Control and regulation equipment
  4. Various types of power regulators, controllers, power meters and power circuit breakers may be used to control battery charging and to provide power protection.
  5. Energy storage
  6. Specialized large capacity batteries are usually used to store otherwise lost energy so that a reliable source of power can be available when needed.
  7. Inverters
  8. These devices convert electricity from the batteries or renewable energy source to the electricity used by household appliances (240 V AC).
  9. Specialized “grid-interactive” inverters are able to feed electricity produced by renewable sources into the electricity grid without disruption to the household electricity supply.
  10. Control Box
  11. Wiring and electrical accessories

Well-designed renewable energy systems should include special wiring that is capable of keeping energy losses to an absolute minimum. Adequate power fusing, electrical grounding, lightning protection and other measures should be used in the renewable energy system.

  • Home design, lighting and various appliances

     

    TNew home designs should incorporate useful energy efficiency features. Also, high efficienct lighting systems and appliances can be selected and specified to keep the energy load to a bare minimum, thus aiding to reduce the cost of such systems.

    Grid-interactive renewable energy power systems

    In addition to stand-alone systems, which require batteries to store energy, REPS can operate in conjunction with the mains electricity system. These are known as grid-interactive or grid-connected systems.

    How do they work?

    In grid-interactive renewable energy systems electricity is still generated from a renewable energy source in the same way as a stand-alone system. The electricity generated then passes through a specially approved power inverter, which converts electric energy into conventional 240 V which in turn is used by home appliances. When there is surplus electricity generated, it will be sent back through the inverter into the power grid. If the home consumes more electricity than your renewable energy system is producing, the power provider automatically will supply the balance of the energy required without any disruption to home appliances. Selecting a certified solar power inverter ensures grid compliance and optimal performance.

    Your power meter measures the level of outgoing and incoming electricity. This provides a net usage amount for your house. In the majority of cases, surplus electricity which is fed back to the electric utility is credited back to you. The net amount that is actual consumption is charged for that billing period. In reality, your power meter can become a cash register. Specialized "smart" meters are sometimes used where more detailed power monitoring is required. As there are variations to this process, check with your electricity supplier for more information on equipment and metering details for your property.

    What are the benefits?

    The major benefit of grid-interactive renewable energy systems is that they produce power from clean, renewable solar energy, allowing householders to reduce greenhouse gas emissions and improve our environment. As renewable energy systems use the main electricity grid as a back-up, power is always available and systems can be sized according to the customer’s requirements and budget. For background on technologies and policy, review renewable energy facts for informed decision-making.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.