Electric cars won't solve our pollution problems – Britain needs a total transport rethink


electric cars

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

UK Transport Policy Overhaul signals bans on petrol and diesel cars, rail franchising reform, 15-minute cities, and active travel, tackling congestion, emissions, microplastics, urban sprawl, and public health with systemic, multimodal planning.

 

Key Points

A shift toward EVs, rail reform, and 15-minute cities to reduce emissions, congestion, and health risks.

✅ Phase-out of petrol and diesel car sales by 2030

✅ National rail franchising replaced with integrated operations

✅ Urban design: 15-minute cities, cycling, and active travel

 

Could it be true? That this government will bring all sales of petrol and diesel cars to an end by 2030, even as a 2035 EV mandate in Canada is derided by critics? That it will cancel all rail franchises and replace them with a system that might actually work? Could the UK, for the first time since the internal combustion engine was invented, really be contemplating a rational transport policy? Hold your horses.

Before deconstructing it, let’s mark this moment. Both announcements might be a decade or two overdue, but we should bank them as they’re essential steps towards a habitable nation.

We don’t yet know exactly what they mean, as the government has delayed its full transport announcement until later this autumn. But so far, nothing that surrounds these positive proposals makes any sense, and the so-called EV revolution often proves illusory in practice.

If the government has a vision for transport, it appears to be plug and play. We’ll keep our existing transport system, but change the kinds of vehicles and train companies that use it. But when you have a system in which structural failure is embedded, nothing short of structural change will significantly improve it.

A switch to electric cars will reduce pollution, though the benefits depend on the power mix; in Canada, Canada’s grid was 18% fossil-fuelled in 2019, for example. It won’t eliminate it, as a high proportion of the microscopic particles thrown into the air by cars, which are highly damaging to our health, arise from tyres grating on the surface of the road. Tyre wear is also by far the biggest source of microplastics pouring into our rivers and the sea. And when tyres, regardless of the engine that moves them, come to the end of their lives, we still have no means of properly recycling them.

Cars are an environmental hazard long before they leave the showroom. One estimate suggests that the carbon emissions produced in building each one equate to driving it for 150,000km. The rise in electric vehicle sales has created a rush for minerals such as lithium and copper, with devastating impacts on beautiful places. If the aim is greatly to reduce the number of vehicles on the road, and replace those that remain with battery-operated models, alongside EV battery recycling efforts, then they will be part of the solution. But if, as a forecast by the National Grid proposes, the current fleet is replaced by 35m electric cars, a University of Toronto study warns they are not a silver bullet, and we’ll simply create another environmental disaster.

Switching power sources does nothing to address the vast amount of space the car demands, which could otherwise be used for greens, parks, playgrounds and homes. It doesn’t stop cars from carving up community and turning streets into thoroughfares and outdoor life into a mortal hazard. Electric vehicles don’t solve congestion, or the extreme lack of physical activity that contributes to our poor health.

So far, the government seems to have no interest in systemic change. It still plans to spend £27bn on building even more roads, presumably to accommodate all those new electric cars. An analysis by Transport for Quality of Life suggests that this road-building will cancel out 80% of the carbon savings from a switch to electric over the next 12 years. But everywhere, even in the government’s feted garden villages and garden towns, new developments are being built around the car.

Rail policy is just as irrational, even though lessons from large electric bus fleets offer cleaner mass transit options. The construction of HS2, now projected to cost £106bn, has accelerated in the past few months, destroying precious wild places along the way, though its weak business case has almost certainly been destroyed by coronavirus.

If one thing changes permanently as a result of the pandemic, it is likely to be travel. Many people will never return to the office. The great potential of remote technologies, so long untapped, is at last being realised. Having experienced quieter cities with cleaner air, few people wish to return to the filthy past.

Like several of the world’s major cities, our capital is being remodelled in response, though why electric buses haven’t taken over remains a live question. The London mayor – recognising that, while fewer passengers can use public transport, a switch to cars would cause gridlock and lethal pollution – has set aside road space for cycling and walking. Greater Manchester hopes to build 1,800 miles of protected pedestrian and bicycle routes.

Cycling to work is described by some doctors as “the miracle pill”, massively reducing the chances of early death: if you want to save the NHS, get on your bike. But support from central government is weak and contradictory, and involves a fraction of the money it is spending on new roads. The major impediment to a cycling revolution is the danger of being hit by a car.

Even a switch to bicycles (including electric bikes and scooters) is only part of the answer. Fundamentally, this is not a vehicle problem but an urban design problem. Or rather, it is an urban design problem created by our favoured vehicle. Cars have made everything bigger and further away. Paris, under its mayor Anne Hidalgo, is seeking to reverse this trend, by creating a “15-minute city”, in which districts that have been treated by transport planners as mere portals to somewhere else become self-sufficient communities – each with their own shops, parks, schools and workplaces, within a 15-minute walk of everyone’s home.

This, I believe, is the radical shift that all towns and cities need. It would transform our sense of belonging, our community life, our health and our prospects of local employment, while greatly reducing pollution, noise and danger. Transport has always been about much more than transport. The way we travel helps to determine the way we live. And at the moment, locked in our metal boxes, we do not live well.

Related News

Feds announce $500M contract with Edmonton company for green electricity

Canada Renewable Energy Partnerships advance wind power and clean electricity in Alberta and Saskatchewan, cutting emissions and supporting net-zero goals through Capital Power and SaskPower agreements with Indigenous participation and 25-year supply contracts.

 

Key Points

Government-backed deals with Capital Power and SaskPower to deliver clean electricity and reduce emissions.

✅ 25-year renewable supply for federal facilities

✅ New Halkirk 2 Wind project in Alberta

✅ Emissions cuts with Indigenous participation

 

The Government of Canada has partnered with two major energy providers in Western Canada (Prairie provinces) on renewable energy projects.

Tourism Minister Randy Boissonnault appeared in Edmonton on Friday to announce a new Alberta wind-generation facility in partnership with Capital Power.

It's one of two new energy partnerships in Western Canada as part of the 2030 emissions reduction plan by Public Services and Procurement Canada.

On Jan. 1, the federal government awarded a contract worth up to $500 million to Capital Power to provide all federal facilities in Alberta with renewable electricity as part of Alberta's renewable energy surge for 25 years.

"We're proud to partner with the government of Canada to help them reach their 100 per cent clean electricity by 2025 goal," said Jason Comandante, Capital Power vice president of commercial services.

The agreement also includes opportunities for Indigenous participation, including facility development partnerships and employment and training opportunities.

"At Capital Power, we are committed to net-zero by 2045, and are proud to take action against climate change. Collaborative agreements like this help support our net-zero goals, provide us opportunities to meaningfully engage Indigenous communities, and help decarbonize Alberta's power grid," Comandante said.

Capital Power will provide around 250,000 megawatt-hours of electricity each year through existing renewable energy credits while the new Capital Power Halkirk 2 Wind facility is being developed.

Located near Paintearth, Alta., the proposed wind farm will have up to 35 turbines and generate enough power for the average yearly electricity needs of more than 70,000 Alberta homes.

The project is currently awaiting regulatory approval, within Alberta's energy landscape, with construction projected to begin this summer. When complete, it will supply 49 per cent of its output to the federal government.

"Through the agreement, the federal government is supporting the ongoing development of renewable energy infrastructure development within the province," Boissonnault said.

The new partnership will join another in Saskatchewan and complement Alberta solar facilities that have been contracted at lower cost than natural gas.

In 2022, the federal government signed an agreement with SaskPower to supply clean electricity to the approximately 600 federal facilities in Saskatchewan. That wind project is expected to come online by 2024.

Boissonnault said the two initiatives combined will reduce carbon dioxide emissions in Alberta and Saskatchewan by about 166 kilotonnes.

"That is the equivalent of the emissions from more than 50,000 cars driven for one year. So, if you think about that, that's a great reduction right here in Alberta and Saskatchewan," he said.

"These are concrete steps to ensuring that Canada remains a leader of renewable energy on the global stage and grid modernization projects to help the fight against climate change." 

 

Related News

View more

Low-emissions sources are set to cover almost all the growth in global electricity demand in the next three years

IEA Electricity Market Outlook 2023-2025 projects faster demand growth as renewables and nuclear dominate supply, stabilizing power-sector carbon emissions, with Asia leading expansion despite energy crisis shocks and weather-driven volatility.

 

Key Points

IEA forecast for 2023-2025 electricity demand: renewables and nuclear meet growth as power-sector emissions hold steady.

✅ Asia drives >70% of demand growth

✅ Renewables and nuclear meet most new supply

✅ CO2 intensity declines; grid flexibility vital

 

The world’s electricity demand growth slowed only slightly in 2022, despite headwinds from the energy crisis, and is expected to accelerate in the years ahead

Renewables are set to dominate the growth of the world’s electricity supply over the next three years as, renewables eclipse coal in global generation, together with nuclear power they meet the vast majority of the increase in global demand through to 2025, making significant rises in the power sector’s carbon emissions unlikely, according to a new IEA report.

After slowing slightly last year to 2% amid the turmoil of the global energy crisis and exceptional weather conditions in some regions, the growth in world electricity demand is expected to accelerate to an average of 3% over the next three years, the IEA’s Electricity Market Report 2023 finds. Emerging and developing economies in Asia are the driving forces behind this faster pace, which is a step up from average growth of 2.4% during the years before the pandemic and above pre-pandemic levels globally.

More than 70% of the increase in global electricity demand over the next three years is expected to come from China, India and Southeast Asia, as Asia’s power use nears half of the world by mid-decade, although considerable uncertainties remain over trends in China as its economy emerges from strict Covid restrictions. China’s share of global electricity consumption is currently forecast to rise to a new record of one-third by 2025, up from one-quarter in 2015. At the same time, advanced economies are seeking to expand electricity use to displace fossil fuels in sectors such as transport, heating and industry.

“The world’s growing demand for electricity is set to accelerate, adding more than double Japan’s current electricity consumption over the next three years,” said IEA Executive Director Fatih Birol. “The good news is that renewables and nuclear power are growing quickly enough to meet almost all this additional appetite, suggesting we are close to a tipping point for power sector emissions. Governments now need to enable low-emissions sources to grow even faster and drive down emissions so that the world can ensure secure electricity supplies while reaching climate goals.”

While natural gas-fired power generation in the European Union is forecast to fall in the coming years, as wind and solar outpaced gas in 2022, based on current trends, significant growth in the Middle East is set to partly offset this decrease. Sharp spikes in natural gas prices amid the energy crisis have in turn fuelled soaring electricity prices in some markets, particularly in Europe, prompting debate in policy circles over reforms to power market design.

Meanwhile, expected declines in coal-fired generation in Europe and the Americas are likely to be matched by a rise in the Asia-Pacific region, despite increases in nuclear power deployment and restarts of plants in some countries such as Japan. This means that after reaching an all-time high in 2022, carbon dioxide (CO2) emissions from global power generation are set to remain around the same level through 2025.

The strong growth of renewables means their share of the global power generation mix is forecast to rise from 29% in 2022 to 35% in 2025, with the shares of coal- and gas-fired generation falling. As a result, the CO2 intensity of global power generation will continue to decrease in the coming years. Europe bucked this global trend last year, however. The CO2 intensity of Europe’s power generation increased as a result of higher use of coal and gas amid steep drops in output from both hydropower, due to drought, and nuclear power, due to plant closures and maintenance. This setback will be temporary, though, as Europe’s power generation emissions are expected to decrease on average by about 10% a year through 2025.

Electricity demand trends varied widely by region in 2022. India’s electricity consumption rose strongly, while China’s growth was more subdued due to its zero-Covid policy weighing heavily on economic activity. The United States recorded a robust increase in demand, driven by economic activity and higher residential use amid hotter summer weather and a colder-than-normal winter, even as electricity sales projections continue to decline according to some outlooks.

Demand in the European Union contracted due to unusually mild winter weather and a decline in electricity consumption in the industrial sector, which significantly scaled back production because of high energy prices and supply disruptions caused by Russia’s invasion of Ukraine. The 3.5% decrease in EU demand was its second largest percentage decline since the global financial crisis in 2009, with the largest being the exceptional contraction due to the COVID-19 shock in 2020.

The new IEA report notes that electricity demand and supply worldwide are becoming increasingly weather dependent, with extreme conditions a recurring theme in 2022. In addition to the drought in Europe, there were heatwaves in India, resulting in the country’s highest ever peak in power demand. Similarly, central and eastern regions of China were hit by heatwaves and drought, which caused demand for air conditioning to surge amid reduced hydropower generation in Sichuan province. The United States also saw severe winter storms in December, triggering massive power outages.

These highlight the need for faster decarbonisation and accelerated deployment of clean energy technologies, the report says. At the same time, as the clean energy transition gathers pace, the impact of weather events on electricity demand will intensify due to the increased electrification of heating, while the share of weather-dependent renewables will continue to grow in the generation mix. In such a world, increasing the flexibility of power systems, which are under growing strain across grids and markets, while ensuring security of supply and resilience of networks will be crucial.

 

Related News

View more

Can food waste be turned into green hydrogen to produce electricity?

Food Waste to Green Hydrogen uses biological production to create clean energy, enabling waste-to-energy, decarbonization, and renewable hydrogen for electricity, industrial processes, and transport fuels, developed at Purdue University Northwest with Purdue Research Foundation licensing.

 

Key Points

A biological process converting food waste into renewable hydrogen for clean energy, electricity, industry, and transport.

✅ Enables rapid, scalable waste-to-hydrogen deployment

✅ Supports grid power, industrial heat, and mobility fuels

✅ Backed by patents, DOE grants, and licensing deals

 

West Lafayette, Indiana-based Purdue Research Foundation recently completed a licensing agreement with an international energy company – the name of which was not disclosed – for the commercialization of a new process discovered at Purdue University Northwest (PNW) for the biological production of green hydrogen from food waste. A second licensing agreement with a company in Indiana is under negotiation.


Food waste into green hydrogen
Researchers say that this new process, which uses food waste to biologically produce hydrogen, can be used as a clean energy source for producing electricity, as well as for chemical and industrial processes like green steel production or as a transportation fuel.

Robert Kramer, professor of physics at PNW and principal investigator for the research, says that more than 30% of all food, amounting to $48 billion, is wasted in the United States each year. That waste could be used to create hydrogen, a sustainable energy source alongside municipal solid waste power options. When hydrogen is combusted, the only byproduct is water vapor.

The developed process has a high production rate and can be implemented quickly to support large H2 energy systems in practice. The process is robust, reliable, and economically viable for local energy production and processes.

The research team has received five grants from the US Department of Energy and the Purdue Research Foundation totaling around $800,000 over the last eight years to develop the science and technology that led to this process, much like advances in advanced nuclear reactors drive clean energy innovation.

Two patents have been issued, and a third patent is currently in the final stages of approval. Over the next nine months, a scale-up test will be conducted, reflecting how power-to-gas storage can integrate with existing infrastructure. Based upon test results, it is anticipated that construction could start on the first commercial prototype within a year.

Last week, a facility designed to turn non-recyclable plastics into green hydrogen was approved in the UK, as other innovations like the seawater power concept progress globally. It is the second facility of its kind there.

 

Related News

View more

What the U.S. can learn from the U.K. about wind power

U.S. Offshore Wind Power Strategy leverages UK offshore wind lessons, contract auctions, and supply chains to scale renewable energy, build wind farms, cut emissions, create jobs, and modernize the grid to meet 2030 climate goals.

 

Key Points

U.S. plan to scale offshore wind via UK-style contracts, turbines, and supply chains to meet 2030 clean energy goals

✅ Contract-for-difference price guarantees de-risk projects

✅ Scale turbines and ports to cut LCOE and boost capacity

✅ Build coastal grids, transmission, and workforce by 2030

 

As President Joe Biden’s administration puts its muscle behind wind power with plans to develop large-scale wind farms along the entire United States coastline, the administration can look at how the windiest nation in Europe is transforming its energy grid for an example of how to proceed.

In the search for renewable sources of energy, the United Kingdom has embraced wind power. In 2020, the country generated as much as 24 percent of its electricity from wind power across the grid — enough to supply 18.5 million homes, according to government statistics. 

With usually reliable winds, the U.K. currently has the highest number of offshore turbines installed in the world, with China at a close second.

Experts and industry leaders say it offers valuable lessons on creating a viable market for wind power at the ambitious scale the Biden administration hopes to meet in order to confront climate change and help transition the U.S. economy to renewable energy.

“The U.S. is going to benefit hugely from the early investment that European governments have put into offshore wind,” said Oliver Metcalfe, a wind power analyst at BloombergNEF in London, an independent research group.

Big American plans
On Oct. 13, the White House announced ambitious offshore wind plans to lease federal waters off of the East and West Coasts and Gulf of Mexico to develop commercial wind farms.

The move is part of Biden’s goal to have 30,000 megawatts of offshore wind power produced in the United States by 2030, with projects such as New York's record-setting approval highlighting the momentum. The White House says that would generate enough electricity to power more than 10 million homes and in the process create 77,000 jobs. 

But there is a chasm between where the U.S. is now and where it wants to be within the next decade when it comes to offshore wind power.

“We’re the first generation to understand the science and implications of climate change and we’re the last generation to be able to do something about it.”

The U.S. is not new to wind power; onshore wind in states such as Texas, Oklahoma and Iowa supplied 8.2 percent of the country’s total electricity generation in 2020, according to the U.S. Department of Energy. 

But despite its long coastlines, offshore wind has been a largely untapped resource in the U.S. With a population of about 332 million people, the U.S. currently has just two operational offshore wind farms — off Rhode Island and Virginia — with the capacity to produce 42 megawatts of electricity between them, far from the 1 gigawatt on-grid milestone many are watching. 

In contrast, the U.K., with a population of 67 million people, has 2,297 offshore wind turbines with the capacity to produce 10,415 megawatts of electricity.

Power station or a park?
Just outside of central Glasgow, the host city for the U.N. climate change conference known as COP26, the fruits of years of effort to move away from fossil fuels can be seen and heard

International financiers, including the World Bank are helping developing countries scale wind projects to meet climate goals.

Whitelee Windfarm, the U.K.’s largest onshore wind farm, spreads across 30 square miles on the Eaglesham Moor and includes more than 80 miles of trails for walking, cycling and horseback riding.

With its 539 megawatt capacity, it generates enough electricity for 350,000 homes — more than half the population of Glasgow. 

On a recent gusty fall day, Ian and Fiona Gardner, both 71, were walking their dogs among the wind farm’s 360-foot-tall turbines  

“This is a major contribution to Scotland, to become independent from oil by 2035,” Ian Gardner, an accountant, said. 

Thanks to the rapid technological advances in turbine technology, this wind farm that was completed in 2009, is now practically old school. The latest crop of onshore turbines typically generate double the current capacity of Whitelee’s turbines.

“It took us 20 years to build 2 gigawatts of power. And we’re going to double that in five  years,” said McQuade, an economist. “We can do that because machines are big, efficient, cheap and the supply chain is there.” 

The biggest operational offshore wind farm in the world right now, Hornsea Project One, is about 75 miles off England’s Yorkshire coast in the North Sea.

Owned and operated by Orsted, a former Danish oil and gas giant, in partnership with Global Infrastructure Partners, its 174 turbines have the capacity to generate 1.2 gigawatts — enough to power over 1 million homes and roughly equivalent to a nuclear power plant. 

Benj Sykes, Vice President of U.K. Offshore Wind at Orsted, called Hornsea One a “game changer” in a recent phone interview, citing it as an example of how the industry has scaled up its output to compete with traditional power plants.

But massive projects like Hornsea One took decades to get up and running, as well as government help. According to Malte Jansen, a research associate at the Centre of Environmental Policy at Imperial College London, the British government helped facilitate a “paradigm shift” in renewable energy in 2013.

The electricity market reform policy set up a framework to incentivize investment in offshore wind farms by creating an auction system that guarantees electricity prices to developers in 15-year contracts, alongside new contract awards that add 10 GW to the U.K. grid. 

This means there is no upside in terms of market price fluctuation, but there is no downside either. The policy essentially “de-risked the investment,” Jansen said.

The state contracts allowed the industry to innovate and learn how to develop even larger and more efficient turbines with blades that stretch as long as 267 feet, about three-quarters the size of a U.S. football field. 

While this approach helped companies and investors, it will also have an unintended beneficiary — the U.S., Metcalfe from BloombergNEF said. 

Developers are “taking the lessons they’ve learned building projects in Europe, the cost reductions that they’ve achieved building projects in Europe and are now bringing those to the U.S. market,” he said.

 

Related News

View more

Bus depot bid to be UK's largest electric vehicle charging hub

First Glasgow Electric Buses will transform the Caledonia depot with 160 charging points, zero-emission operations, grid upgrades, and rapid charging, supported by Transport Scotland funding and Alexander Dennis manufacturing for cleaner urban routes by 2023.

 

Key Points

Electric single-deckers at Caledonia depot with 160 chargers and upgrades, delivering zero-emission service by 2023

✅ 160 charging points; 4-hour rapid recharge capability

✅ Grid upgrades to power a fleet equal to a 10,000-person town

✅ Supported by Transport Scotland; built by Alexander Dennis

 

First Bus will install 160 charging points and replace half its fleet with electric buses at its Caledonia depot in Glasgow.

The programme is expected to be completed in 2023, similar to Metro Vancouver's battery-electric rollout milestones, with the first 22 buses arriving by autumn.

Charging the full fleet will use the same electricity as it takes to power a town of 10,000 people.

The scale of the project means changes are needed to the power grid, a challenge highlighted in global e-bus adoption analysis, to accommodate the extra demand.

First Glasgow managing director Andrew Jarvis told BBC Scotland: "We've got to play our part in society in changing how we all live and work. A big part of that is emissions from vehicles.

"Transport is stubbornly high in terms of emissions and bus companies need to play their part, and are playing their part, in that zero emission journey."

First Bus currently operates 337 buses out of its largest depot with another four sites across Glasgow.

The new buses will be built by Alexander Dennis at its manufacturing sites in Falkirk and Scarborough.

The transition requires a £35.6m investment by First with electric buses costing almost double the £225,000 bill for a single decker running on diesel.

But the company says maintenance and running costs, as seen in St. Albert's electric fleet results, are then much lower.

The buses can run on urban routes for 16 hours, similar to Edmonton's first e-bus performance, and be rapidly recharged in just four hours.

This is a big investment which the company wouldn't be able to achieve on its own.

Government grants only cover 75% of the difference between the price of a diesel and an electric bus, similar to support for B.C. electric school buses programmes, so it's still a good bit more expensive for them.

But they know they have to do it as a social responsibility, and large-scale initiatives like US school bus conversions show the direction of travel, and because the requirements for using Low Emissions Zones are likely to become stricter.

The SNP manifesto committed to electrifying half of Scotland's 4,000 or so buses within two years.

Some are questioning whether that's even achievable in the timescale, though TTC's large e-bus fleet offers lessons, given the electricity grid changes that would be necessary for charging.

But it's a commitment that environmental groups will certainly hold them to.

Transport Scotland is providing £28.1m of funding to First Bus as part of the Scottish government's commitment to electrify half of Scotland's buses in the first two years of the parliamentary term.

Net Zero Secretary Michael Matheson said: "It's absolute critical that we decarbonise our transport system and what we have set out are very ambitious plans of how we go about doing that.

"We've set out a target to make sure that we decarbonise as many of the bus fleets across Scotland as possible, at least half of it over the course of the next couple of years, and we'll set out our plans later on this year of how we'll drive that forward."

Transport is the single biggest source of greenhouse gas emissions in Scotland which are responsible for accelerating climate change.

In 2018 the sector was responsible for 31% of the country's net emissions.

Electric bus
First Glasgow has been trialling two electric buses since January 2020.

Driver Sally Smillie said they had gone down well with passengers because they were much quieter than diesel buses.

She added: "In the beginning it was strange for them not hearing them coming but they adapt very easily and they check now.

"It's a lot more comfortable. You're not feeling a gear change and the braking's smoother. I think they're great buses to drive."

 

Related News

View more

New Brunswick announces rebate program for electric vehicles

New Brunswick EV Rebates deliver stackable provincial and federal incentives for electric vehicles, used EVs, and home chargers, supporting NB Power infrastructure, lower GHG emissions, and climate goals with fast chargers across the province.

 

Key Points

Stackable provincial and federal incentives up to $10,000 for EV purchases, plus support for home charging.

✅ $5,000 new EVs; $2,500 used; stackable with federal $5,000

✅ 50% home charger rebate up to $750 through NB Power

✅ Supports GHG cuts, charging network growth, climate targets

 

New Brunswickers looking for an electric vehicle (EV) can now claim up to $10,000 in rebates from the provincial and federal governments.

The three-year provincial program was announced Thursday and will give rebates of $5,000 on new EVs and $2,500 on used ones. It closely mirrors the federal program and is stackable, meaning new owners will be able to claim up to $5,000 from the feds as well.

Minister of Environment and Climate Change Gary Crossman said the move is hoped to kickstart the province’s push toward a target of having 20,000 EVs on the road by 2030.

“This incentive has to make a positive difference,” Crossman said.

“I truly believe people have been waiting for it, they’ve been asking about it, and this will make a difference from today moving forward to put new or used cars in their hands.”

The first year of the program will cost $1.95 million, which will come from the $36 million in the Climate Change Fund and will be run by NB Power, whose public charging network has been expanding across the province. The department says if the full amount is used this year it could represent a reduction of 850 tonnes of greenhouse gasses (GHGs) annually.

Both the Liberal and Green parties welcomed the move calling it long overdue, but Green MLA Kevin Arseneau said it’s not a “miracle solution.”

“Yes, we need to electrify cars, but this kind of initiative without proper funding of public transportation, urban planning for biking … without this kind of global approach this is just another swipe of a sword in water,” he said.

Liberal environment critic Francine Landry says she hopes this will make the difference for those considering the purchase of an EV and says the government should consider further methods of incentivization like waiving registration fees.

The province’s adoption of EVs has not been overly successful so far, reflecting broader Atlantic EV buying interest trends across the region. At the end of 2020, there were 646 EVs registered in the province, far short of the 2,500 target set out in the Climate Action Plan. That was up significantly from the 437 at the end of 2019, but still a long way from the goal.

New Brunswick has a fairly expansive network of charging stations across the province, claiming to be the first “fully-connected province” in the country, and had hoped that the available infrastructure, including plans for new fast-charging stations on the Trans-Canada, would push adoption of non-emitting vehicles.

“In 2017 we had 11 chargers in the province, so we’ve come a long way from an infrastructure standpoint which I think is critical to promoting or having an electric vehicle network, or a number of electric vehicles operating in the province, and neighbouring N.L.’s fast-charging network shows similar progress,” said Deputy Minister of Natural Resources Tom Macfarlane at a meeting of the standing committee on climate change and environmental stewardship in January of 2020.

There are now 172 level two chargers and 83 fast chargers, while Labrador’s EV infrastructure still lags in neighbouring N.L. today. Level two chargers take between six and eight hours to charge a vehicle, while the fast chargers take about half an hour to get to 80 per cent charge.

The newly announced program will also cover 50 per cent of costs for a home charging station up to $750, similar to B.C. charger rebates that support home infrastructure, to further address infrastructure needs.

The New Brunswick Lung Association is applauding the rebate plan.

President and CEO Melanie Langille said about 15,000 Canadians, including 40 people from New Brunswick, die prematurely each year from air pollution. She said vehicle emissions account for about 30 per cent of the province’s air pollution.

“Electric vehicles are critical to reducing our greenhouse gas emissions,” said Langille. “New Brunswick has one of the highest per capita GHG emissions in Canada. But, because our electricity source in New Brunswick is primarily from non-emitting sources and regional initiatives like Nova Scotia’s vehicle-to-grid pilot are advancing grid integration, switching to an EV is an effective way for New Brunswickers to lower their GHG emissions.”

Langille said the lung association has been part of an electric vehicles advisory group in the province since 2014 and its research has shown this type of program is needed.

“The major barrier that is standing in the way of New Brunswickers adopting electric vehicles is the upfront costs,” Langille said. “So today’s announcement, and that it can be stacked on top of the existing federal rebates, is a huge step forward for us.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.