BESS: A Clean Energy Solution NY Needs


bess

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

New York BESS advance renewable energy storage, boosting grid reliability and resilience with utility-scale projects, strict safety oversight, and NYPA leadership to meet 6,000 MW by 2030 and 1,500 MW by 2035 targets.

 

Key Points

New York BESS are battery storage projects that balance the grid, enable renewables, and meet strict safety rules.

✅ State targets: 6,000 MW by 2030; 1,500 MW by 2035.

✅ NYPA 20-MW project eases congestion, boosts reliability.

✅ FDNY, NYC DOB, and state agencies enforce stringent safety rules.

 

In the evolving landscape of renewable energy, New York State is making significant advancements through the deployment of Battery Energy Storage Systems (BESS), a trend mirrored by Ontario's plan to rely on battery storage to meet rising demand today. These systems are becoming a crucial component in the shift towards a more sustainable and clean energy future, by providing a solution to one of renewable energy's most significant challenges: storage.

BESS plays a critical role in bridging the gap between energy generation and consumption, and many utilities see benefits in energy storage across their systems today, too. During periods of surplus generation, such as sunny or windy conditions conducive to solar and wind power production, BESS captures and stores excess electricity. This stored energy can then be released back into the grid during times of high demand or when generation is low, ensuring a consistent and reliable energy supply.

Governor Kathy Hochul's administration has been proactive in harnessing this technology. In a landmark move, the state inaugurated its first state-owned, utility-scale BESS facility in Franklin County's Chateaugay, and similar utility procurements, such as SDG&E's Emerald Storage solution, underscore market momentum, signifying a major step towards bolstering New York's BESS infrastructure. This facility, featuring five large enclosures each housing over 19,500 batteries, signifies the beginning of New York's ambitious journey towards expanding its BESS capabilities.

Environmental advocates, including the New York League of Conservation Voters, have lauded these developments, viewing them as essential to meeting New York's climate goals, and they point to community-scale deployments such as a Brooklyn low-income housing microgrid as tangible examples of equitable resilience, too. Currently, New York's BESS capacity stands at approximately 291 megawatts. However, Governor Hochul has set forth bold targets to escalate this capacity to 1,500 megawatts by 2035 and even more ambitiously, to 6,000 megawatts by 2030. Achieving these targets would enable the powering of 1.2 million homes with clean, renewable energy.

"Battery storage is pivotal for the reliability of our electric grid and for the phasing out of pollutive power plants that harm our communities," remarked Pat McClellan, NYLCV’s Policy Director. The implementation of BESS is deemed vital for New York to attain its statutory climate mandates, including achieving 70 percent renewable energy by 2030 and 100 percent clean energy by 2040.

Safety and regulatory oversight are paramount in the proliferation of BESS facilities, especially in densely populated areas like New York City. The state has introduced stringent regulations, overseen by both the NYC Fire Department and the NYC Buildings Department, with state and federal governments also playing a crucial role in ensuring the safe deployment of these technologies, and best practices from jurisdictions focused on enabling storage in Ontario's electricity system can inform ongoing refinements as well.

In a significant announcement last August, Governor Hochul underscored the necessity of state oversight on BESS safety issues. She announced the formation of a new Inter-Agency Fire Safety Working Group tasked with examining energy storage facility fires and safety standards. This group, comprising six state agencies, recently unveiled its findings and recommendations, which will undergo public review.

Governor Hochul emphasized, "The battery energy storage industry is pivotal for communities across New York to transition to a clean energy future, and comprehensive safety standards are critical." The state's proactive stance on adopting these recommendations aims to safeguard New York’s transition to clean energy.

The completion of the Northern New York Energy Storage Project, a 20-MW facility operated by the New York Power Authority, marks a significant milestone in New York's clean energy journey. This project, aimed at alleviating transmission congestion and enhancing grid reliability, serves as a model for integrating clean energy, especially during peak demand periods, as other regions, such as Ontario, are plunging into energy storage to address looming supply crunches.

Located in a region where over 80% of electricity is generated from renewable sources, this project not only supports the state's clean energy grid but also accelerates New York's energy storage and climate objectives. Governor Hochul expressed, “Deploying energy storage technologies enhances our power supply's reliability and resilience, further enabling New York to construct a robust clean energy grid.”

As New York State advances towards its ambitious energy storage and climate goals, the development and deployment of BESS are critical. These systems not only enhance grid reliability and resilience but also support the broader transition to renewable energy sources, including emerging long-duration storage projects that expand flexibility, marking an essential step in New York's commitment to a sustainable and clean energy future.

 

Related News

Related News

Tesla’s Solar Installations Hit New Low, but Musk Predicts Huge Future for Energy Business

Tesla Q2 2020 earnings highlight resilient electric vehicles as production and deliveries outpace legacy automakers, while Gigafactory Austin advances, solar installations slump, and energy storage, Megapack, and free cash flow expand despite COVID-19 disruptions.

 

Key Points

Tesla posted a fourth consecutive profit, strong cash, EV resilience, solar slump, and rising energy storage.

✅ Fourth straight profit and $418M free cash flow

✅ EV output and deliveries fell just 5% year over year

✅ Solar hit record low; storage rose 61% to 419 MWh

 

Tesla survived the throes of the coronavirus pandemic relatively unscathed, chalking up its fourth sequential quarterly profit for the first time on Wednesday.

On the energy front, however, things were much more complicated: Tesla reported its worst-ever quarter for solar installations but huge growth in its battery business, amid expectations for cheaper, more powerful batteries expected in coming years. CEO Elon Musk nevertheless predicted the energy business will one day rival its car division in scale.

But today, Tesla's bottom line is all about electric vehicles, and the temporary halt of activity at Tesla's Fremont factory due to local health orders didn’t put much of a dent in vehicle production and delivery. Both figures declined 5 percent compared to the same quarter in 2019. In contrast, Q2 vehicle sales at legacy carmakers Ford, GM and Fiat Chrysler declined by one-third or more year-over-year, even as the U.S. EV market share dipped in early 2024 for context.

The costs of factory closures and a $101 million CEO award milestone for Elon Musk didn’t stop Tesla from achieving $418 million in free cash flow, a major improvement over the prior quarter. Cash and cash equivalents grew by $535 million to $8.6 billion during the quarter.


Musk praised his employees for “exceptional execution.” 

“There were so many challenges, too numerous to name, but they got it done,” he said on an investor call Wednesday.

Musk also confirmed that Tesla will build a new Gigafactory in Austin, Texas, five minutes from the airport. The 2,000-acre campus will abut the Colorado River and is “basically going to be an ecological paradise,” he said. The new Texas factory will build the Cybertruck, Semi, Model 3 and Model Y for the Eastern half of North America. Fremont, California will produce the S and X, and make Model 3 and Model Y for the West, in a state where EVs exceed 20% of sales according to recent data.

 

Return of the Tesla solar slump

This was the first entire quarter affected by the coronavirus response, which threw the rooftop solar industry into turmoil by cutting off in-person sales. Other installers scrambled to shift to digital-first sales strategies, but Tesla had already done so months before lockdowns were imposed.

Q2, then, offers a test case on whether Tesla’s pivot to passive online sales made it better able to deal with stay-at-home orders than its peers. The other publicly traded solar installers have not yet reported their Q2 performance, but Tesla delivered its worst-ever quarterly solar figures: Installations totaled just 27 megawatts. That’s a 7 percent decline from Q2 2019, its previous worst quarter ever for solar.

Musk did not address that weak performance in his remarks to investors, opting instead to highlight the company’s late-June decision to offer the cheapest solar pricing in the country. “We’re the company to go to,” he said of rooftop solar. “It’s only going to get better later this year.”

But the sales slump indicates Tesla’s online sales model could not withstand a historically tough season for residential solar.

"Every single residential installer in the country is going to have a bad Q2 because of the initial impacts of COVID on the market," said Austin Perea, senior solar analyst at Wood Mackenzie. "It's hard to disaggregate the impacts of COVID from their own individual strategies."

Tesla's 23 percent decline in quarter-over-quarter solar installations was not as bad as the expected Q2 decline across the rooftop solar industry, Perea added.

On the vehicle side, Tesla’s sales declined less than did those of major automakers. It’s possible that the same pattern will hold for solar; a less severe drop than those seen by Sunrun or Vivint could be claimed as a victory of sorts. But this quarter made clear that Q2 2019 was not the bottom for Tesla’s solar operation, which once led the residential market as SolarCity but significantly diminished since Tesla acquired it in 2016.


Tesla currently stands in third place for residential solar installers. But No. 1 installer Sunrun said this month that it will acquire No. 2 installer Vivint Solar, making Tesla the second-largest installer by default. That major consolidation in the rooftop solar market went unremarked upon in Tesla's investor call.

Solar and energy storage revenue currently equate to just 7 percent of the company's automotive revenue. But Musk reiterated his prediction that this won’t always be the case. “Long term, Tesla Energy will be roughly the same size as Tesla Automotive,” he said on Wednesday's call.

The grid storage business offered more reason for optimism: Capacity deployed grew 61 percent from the first quarter, rising to 419 megawatt-hours. The prepackaged, large-format Megapack product turned its first profit that quarter.

 

"Difficult to predict" performance in the second half of 2020
Tesla withdrew its financial guidance last quarter in light of the upheaval across the global economy. It refrained from setting new guidance now.

“Although we have successfully ramped vehicle production back to prior levels, it remains difficult to predict whether there will be further operational interruptions or how global consumer sentiment will evolve, given risks to the EV boom noted by analysts, in the second half of 2020,” the earnings report notes.

The company asserted it will still deliver 500,000 vehicles this year regardless of externalities, a goal that aligns with broader EV sales momentum in 2024 trends. It already has sufficient production capacity installed to reach that, Tesla said. But with 179,387 cars delivered so far, Tesla faces an uphill climb to ship more cars in the second half.

Wall Street maintained its buoyant confidence in Tesla's share price, despite rising competition in China noted by rivals. It closed at $1,592 before the earnings announcement, rising to $1,661 in after-hours trading.

 

Related News

View more

UK Electric Vehicle Sales Surge to Record High

UK electric vehicle sales reached a record high in September, with battery and hybrid cars making up over half of new registrations. SMMT credits carmaker discounts, new models, and a £3,750 EV grant for driving strong demand across the UK market.

 

Why are UK Electric Vehicle Sales Surging to a Record High?

UK electric vehicle sales are surging to a record high because automakers are offering major discounts, more models are available than ever, and the government’s new £3,750 EV grant is making electric cars more affordable and appealing to both fleets and private buyers.

✅ BEV sales up nearly one-third in September

✅ Over half of all new cars are now electrified

✅ £3,750 EV grants boost consumer confidence

 

Electric vehicle (EV) sales in the United Kingdom reached a record high last month, marking a significant milestone in the country’s transition to cleaner transportation. According to the latest figures from the Society of Motor Manufacturers and Traders (SMMT), sales of pure battery electric vehicles (BEVs) surged by nearly one-third to 72,779 units in September, while plug-in hybrid registrations grew even faster.

The combined total of fully electric and hybrid vehicles accounted for more than half of all new car registrations, underscoring the growing appeal of electrified transport, alongside global EV market growth, among both businesses and private consumers. In total, 312,887 new vehicles were registered across the country — the strongest September performance since 2020, according to SMMT data.

SMMT chief executive Mike Hawes said the surge in electrified vehicle sales showed that “electrified vehicles are powering market growth after a sluggish summer.” He credited carmaker incentives, a wider choice of models, and government support for helping accelerate adoption, though U.S. EV market share dipped in Q1 2024 by comparison. “Industry investment in electric vehicles is paying off,” Hawes added, even as he acknowledged that “consumer demand still trails ambition.”

The UK government’s new electric car grant scheme has played a significant role in the rebound. The program offers buyers discounts of up to £3,750 on eligible EVs priced under £37,000. So far, more than 20,000 motorists have benefited, with 36 models approved for reductions of at least £1,500. Participating manufacturers include Ford, Toyota, Vauxhall, and Citroën.

Ian Plummer, chief commercial officer at Autotrader, said the grant had given a “real lift to the market,” echoing fuel-crisis EV inquiry surge in the UK. He noted that “since July, enquiries for new electric vehicles on Autotrader are up by almost 50%. For models eligible for the grant, interest has more than doubled.”

While the majority of BEVs — about 71.4% — were purchased by companies and fleets, the number of private buyers has also been increasing. Zero-emission vehicles now account for more than one in five (22.1%) new car registrations so far in 2025, similar to France’s 20% EV share record, highlighting the growing mainstream appeal of electric mobility.

The surge comes amid a challenging backdrop for the automotive sector, even as U.S. EV sales soared into 2024 across the Atlantic. The UK car industry is still reeling from the effects of US trade tariffs and recent disruptions, such as Jaguar Land Rover’s production shutdown following a cyberattack. Despite these hurdles, the strong September figures have boosted confidence in the industry’s recovery trajectory, and EU EV share grew during lockdown months offers precedent for resilience.

Among individual models, the Kia Sportage, Ford Puma, and Nissan Qashqai led overall sales, while two Chinese vehicles — the Jaecoo 7 and BYD Seal U — entered the top ten, reflecting China’s growing footprint in the UK market. Analysts say the arrival of competitively priced Chinese EVs could further intensify competition and drive prices lower for consumers.

With electrified vehicles now dominating new registrations and fresh government incentives in place, industry observers believe the UK is gaining momentum toward its long-term net-zero goals. The challenge, however, remains converting business fleet enthusiasm into sustained private-buyer confidence through affordable models, with UK consumer price concerns still a factor, reliable charging infrastructure, and continued policy support.

 

Related Articles

 

View more

CO2 output from making an electric car battery isn't equal to driving a gasoline car for 8 years

EV Battery Manufacturing Emissions debunk viral claims with lifecycle analysis, showing lithium-ion production CO2 depends on grid mix and is offset by zero tailpipe emissions and renewable-energy charging over typical vehicle miles.

 

Key Points

EV lithium-ion pack production varies by grid mix; ~1-2 years of driving, then offset by zero tailpipe emissions.

✅ Battery CO2 depends on electricity mix and factory efficiency.

✅ 75 kWh pack ~4.5-7.5 t CO2; not equal to 8 years of driving.

✅ Lifecycle analysis: EVs cut GHG vs gas, especially with renewables.

 

Electric vehicles are touted as an environmentally friendly alternative to gasoline powered cars, but one Facebook post claims that the benefits are overblown, despite fact-checks of charging math to the contrary, and the vehicles are much more harmful to the planet than people assume.

A cartoon posted to Facebook on April 29, amid signs the EV era is arriving in many markets, shows a car in one panel with "diesel" written on the side and the driver thinking "I feel so dirty." In another panel, a car has "electric" written on its side with the driver thinking "I feel so clean."

However, the electric vehicle is shown connected to what appears to be a factory that’s blowing dark smoke into the air.

Below the cartoon is a caption that claims "manufacturing the battery for one electric car produces the same amount of CO2 as running a petrol car for eight years."

This isn’t a new line of criticism against electric vehicles, and reflects ongoing opinion on the EV revolution in the media. Similar Facebook posts have taken aim at the carbon dioxide produced in the manufacturing of electric cars — specifically the batteries — to make the case that zero emissions vehicles aren’t necessarily clean.

Full electric vehicles require a large lithium-ion battery to store energy and power the motor that propels the car, according to Insider. The lithium-ion battery packs in an electric car are chemically similar to the ones found in cell phones and laptops.

Because they require a mix of metals that need to be extracted and refined, lithium-ion batteries take more energy to produce than the common lead-acid batteries used in gasoline cars to help start the engine.

How much CO2 is emitted in the production depends on where the lithium-ion battery is made — or specifically, how the electricity powering the factory is generated, and national electricity profiles such as Canada's 2019 mix help illustrate regional differences — according to Zeke Hausfather, a climate scientist and director of climate and energy at the Breakthrough Institute, an environmental research think tank.

Producing a 75 kilowatt-hour battery for a Tesla Model 3, considered on the larger end of batteries for electric vehicles, would result in the emission of 4,500 kilograms of CO2 if it was made at Tesla's battery factory in Nevada. That’s the emissions equivalent to driving a gas-powered sedan for 1.4 years, at a yearly average distance of 12,000 miles, Hausfather said.

If the battery were made in Asia, manufacturing it would produce 7,500 kg of carbon dioxide, or the equivalent of driving a gasoline-powered sedan for 2.4 years — but still nowhere near the eight years claimed in the Facebook post. Hausfather said the larger emission amount in Asia can be attributed to its "higher carbon electricity mix." The continent relies more on coal for energy production, while Tesla’s Nevada factory uses some solar energy. 

"More than half the emissions associated with manufacturing the battery are associated with electricity use," Hausfather said in an email to PolitiFact. "So, as the electricity grid decarbonizes, emissions associated with battery production will decline. The same is not true for sedan tailpipe emissions."

The Facebook post does not mention the electricity needs and CO2 impact of factories that build gasoline or diesel cars and their components. 

Another thing the Facebook post omits is that the CO2 emitted in the production of the battery can be offset over a short time in an electric car by the lack of tailpipe emissions when it’s in operation. 

The Union of Concerned Scientists found in a 2015 report that taking into account electricity sources for charging, which have become greener in all states since then, an electric vehicle ends up reducing greenhouse gas emissions by about 50% compared with a similar size gas-powered car.

A midsize vehicle completely negates the carbon dioxide its production emits by the time it travels 4,900 miles, according to the report. For full size cars, it takes 19,000 miles of driving.

The U.S. Energy Department’s Office of Energy Efficiency and Renewable Energy also looked at the life cycle of electric vehicles — which includes a car’s production, use and disposal — and concluded they produce less greenhouse gases and smog than gasoline-powered vehicles, a conclusion consistent with independent analyses from consumer and energy groups.

The agency also found drivers could further lower CO2 emissions by charging with power generated by a renewable energy source, and drivers can also save money in the long run with EV ownership. 

Our ruling
A cartoon shared on Facebook claims the carbon dioxide emitted from the production of one electric car battery is the equivalent to driving a gas-powered vehicle for eight years.

The production of lithium-ion batteries for electric cars emits a significant amount of carbon dioxide, but nowhere near the level claimed in the cartoon. The emissions from battery production are equivalent to driving a gasoline car for one or two years, depending on where it’s produced, and those emissions are effectively offset over time by the lack of tailpipe emissions when the car is on the road. 

We rate this claim Mostly False.    

 

Related News

View more

Whooping cranes steer clear of wind turbines when selecting stopover sites

Whooping crane migration near wind turbines shows strong avoidance of stopover habitat within 5 km, reshaping Great Plains siting decisions, reducing collision risk, and altering routes across croplands, grasslands, and wetlands.

 

Key Points

It examines cranes avoiding stopovers within 5 km of turbines, reshaping habitat use and routing across the Great Plains.

✅ Cranes 20x likelier to rest >5 km from turbines.

✅ About 5% of high-quality stopover habitat is impacted.

✅ Findings guide wind farm siting across Great Plains wetlands.

 

As gatherings to observe whooping cranes join the ranks of online-only events this year, a new study offers insight into how the endangered bird is faring on a landscape increasingly dotted with wind turbines across regions. The paper, published this week in Ecological Applications, reports that whooping cranes migrating through the U.S. Great Plains avoid “rest stop” sites that are within 5 km of wind-energy infrastructure.

Avoidance of wind turbines can decrease collision mortality for birds, but can also make it more difficult and time-consuming for migrating flocks to find safe and suitable rest and refueling locations. The study’s insights into migratory behavior could improve future siting decisions as wind energy infrastructure continues to expand, despite pandemic-related investment risks for developers.

“In the past, federal agencies had thought of impacts related to wind energy primarily associated with collision risks,” said Aaron Pearse, the paper’s first author and a research wildlife biologist for the U.S. Geological Survey’s Northern Prairie Wildlife Research Center in Jamestown, N.D. “I think this research changes that paradigm to a greater focus on potential impacts to important migration habitats.”

Some policymakers have also rejected false health claims about wind turbines and cancer in public debate, underscoring the need for evidence-based decisions.

The study tracked whooping cranes migrating across the Great Plains, a region that encompasses a mosaic of croplands, grasslands and wetlands. The region has seen a rapid proliferation of wind energy infrastructure in recent years: in 2010, there were 2,215 wind towers within the whooping crane migration corridor that the study focused on; by 2016, when the study ended, there were 7,622 wind towers within the same area.

Pearse and his colleagues found that whooping cranes migrating across the study area in 2010 and 2016 were 20 times more likely to select “rest stop” locations at least 5 km away from wind turbines than those closer to turbines, a pattern with implications for developers as solar incentive changes reshape wind market dynamics according to industry analyses.

The authors estimated that 5% of high-quality stopover habitat in the study area was affected by presence of wind towers. Siting wind infrastructure outside of whooping cranes’ migration corridor would reduce the risk of further habitat loss not only for whooping cranes, but also for millions of other birds that use the same land for breeding, migration, and wintering habitat, and real-world siting controversies, such as an Alberta wind farm cancellation, illustrate how local factors shape outcomes for wildlife.

 

Related News

View more

B.C. expands EV charging, leads country in going electric

BC EV Charging Network Funding accelerates CleanBC goals with new public fast-charging stations, supporting ZEV adoption, the Electric Highway, and rebates, lowering fuel costs and emissions across British Columbia under the Clean Transportation Action Plan.

 

Key Points

Funding to expand fast-charging stations, grow ZEV adoption, and advance CleanBC and the Electric Highway.

✅ $26M funds ~250 public fast-charging stations.

✅ Supports Electric Highway and remote access.

✅ Drives ZEV sales under CleanBC targets.

 

As British Columbians are embracing zero-emission vehicles faster than any other jurisdiction in Canada, the Province is helping them go electric with new incentives and $26 million in new funding for public charging stations.

“British Columbians are switching to clean energy and cleaner transportation in record numbers as part of our CleanBC plan and leading Canada in the transition to zero emission vehicles,” said Josie Osborne, Minister of Energy, Mines and Low Carbon Innovation, on Tuesday. “The new funding we are announcing today to expand B.C.’s public charging network will help get more EVs on the road, reduce our reliance on fossil fuels, and lower fuel costs for people.”

The Province’s newly released annual report about zero-emission vehicles (ZEV) shows they represented 18.1% of new light-duty passenger vehicles sold in 2022 – the highest percentage for any province or territory. To support British Columbians’ transition to electric vehicles and to help industry lower its emissions, year-end funding of $26 million will go toward the CleanBC Public Charging Program for light-duty vehicle charging.

The new funding will support approximately 250 more public light-duty fast-charging stations, including stations to complete the B.C. Electric Highway, a CleanBC Roadmap to 2030 commitment that will make recharging easier in every corner of the province.

The 2022 ZEV Update report highlights CleanBC Go Electric rebates and programs that have helped drive growth in the number of electric vehicles in B.C. The number of registered light-duty EVs rose from 5,000 in 2016 to more than 100,000 today – a 1,900% increase in the past six years. Last year, 30,004 zero-emission vehicles were bought in B.C., beating the previous record of 24,263 in 2021.

In addition, the report outlines progress in the installation of public charging stations across British Columbia, supported by B.C. Hydro expansion, which now has one of the largest public charging networks in Canada, with more than 3,800 charging stations at the end of 2022. That compares to just 781 charging stations in 2016.

The CleanBC Roadmap to 2030, released in 2021, details a range of expanded actions to accelerate the switch to cleaner transportation, including strengthening the Zero-Emission Vehicles Act to require 26% of light-duty vehicle sales to be ZEV by 2026, 90% by 2030 and 100% by 2035 – five years ahead of the original target, and implementing the Clean Transportation Action Plan.

George Heyman, Minister of Environment and Climate Change Strategy, said: “Transportation accounts for about 40% of emissions in B.C., which is why we are committed to accelerating requirements for ZEVs and setting new standards for medium- and heavy-duty vehicles. To support this uptake, we continue to expand B.C.’s electric vehicle charging network, including faster EV charging options, with a target of having 10,000 public EV charging stations by 2030.”

Blair Qualey, President and CEO, New Car Dealers Association of BC, said: “B.C.’s new car dealers are proud to be involved in a true partnership that has been so instrumental in B.C. establishing and maintaining a leadership position in zero-emission vehicle adoption. Ongoing investments that continue to support the CleanBC Go Electric rebate program, including home and workplace charging rebates, and the availability of adequate charging infrastructure for consumers and businesses will be critical to the Province meeting its ZEV mandate targets, while also creating the promise of a greener and stronger economic future for British Columbians.”

Harry Constantine, President, Vancouver Electric Vehicle Association, said: “Expanding the buildout of the Electric Highway and establishing a network of charging stations are critical steps for moving the adoption of electric vehicles forward as demand ramps up across B.C. This stands to benefit all British Columbians, including remote communities. We are very pleased to see the Province investing in these measures.”

 

Related News

View more

Electric-ready ferry for Kootenay Lake to begin operations in 2023

Kootenay Lake Electric-Ready Ferry advances clean technology in BC, debuting as a hybrid diesel-electric vessel with shore power conversion planned, capacity and terminal upgrades to cut emissions, reduce wait times, and modernize inland ferry service.

 

Key Points

Hybrid diesel-electric ferry replacing MV Balfour, boosting capacity, and aiming for full electric conversion by 2030.

✅ Doubles vehicle capacity; runs with MV Osprey 2000 in summer

✅ Hybrid-ready systems installed; shore power to enable full electric

✅ Terminal upgrades at Balfour and Kootenay Bay improve reliability

 

An electric-ready ferry for Kootenay Lake is scheduled to begin operations in 2023, aligning with first electric passenger flights planned by Harbour Air, the province announced in a Sept. 3 press release.

Construction of the $62.9-million project will begin later this year, which will be carried out by Western Pacific Marine Ltd., reflecting broader CIB-supported ferry investments in B.C. underway.

“With construction beginning here in Canada on the new electric-ready ferry for Kootenay Lake, we are building toward a greener future with made-in-Canada clean technology,” said Catherine McKenna, the federal minister of infrastructure and communities.

The new ferry — which is designed to provide passengers with a cleaner vessel informed by advances in electric ships and more accessibility — will replace and more than double the capacity of the MV Balfour, which will be retired from service.

“This is an exciting milestone for a project that will significantly benefit the Kootenay region as a whole,” said Michelle Mungall, MLA for Nelson-Creston. “The new, cleaner ferry will move more people more efficiently, improving community connections and local economies.”

Up to 55 vehicles can be accommodated on the new ship, and will run in tandem with the larger MV Osprey 2000 to help reduce wait times, a strategy also seen with Washington State Ferries hybrid-electric upgrades, during the summer months.

“The vessel will be fully converted to electric propulsion by 2030, once shore power is installed and reliability of the technology advances for use on a daily basis, as demonstrated by Harbour Air's electric aircraft testing on B.C.'s coast,” said the province.

They noted that they are working to electrify their inland ferry fleet by 2040, as part of their CleanBC initiative.

“The new vessel will be configured as a hybrid diesel-electric with all the systems, equipment and components for electric propulsion,” they said.

Other planned projects include upgrades to the Balfour and Kootenay Bay terminals, and minor dredging has been completed in the West Arm.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.