BESS: A Clean Energy Solution NY Needs


bess

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

New York BESS advance renewable energy storage, boosting grid reliability and resilience with utility-scale projects, strict safety oversight, and NYPA leadership to meet 6,000 MW by 2030 and 1,500 MW by 2035 targets.

 

Key Points

New York BESS are battery storage projects that balance the grid, enable renewables, and meet strict safety rules.

✅ State targets: 6,000 MW by 2030; 1,500 MW by 2035.

✅ NYPA 20-MW project eases congestion, boosts reliability.

✅ FDNY, NYC DOB, and state agencies enforce stringent safety rules.

 

In the evolving landscape of renewable energy, New York State is making significant advancements through the deployment of Battery Energy Storage Systems (BESS), a trend mirrored by Ontario's plan to rely on battery storage to meet rising demand today. These systems are becoming a crucial component in the shift towards a more sustainable and clean energy future, by providing a solution to one of renewable energy's most significant challenges: storage.

BESS plays a critical role in bridging the gap between energy generation and consumption, and many utilities see benefits in energy storage across their systems today, too. During periods of surplus generation, such as sunny or windy conditions conducive to solar and wind power production, BESS captures and stores excess electricity. This stored energy can then be released back into the grid during times of high demand or when generation is low, ensuring a consistent and reliable energy supply.

Governor Kathy Hochul's administration has been proactive in harnessing this technology. In a landmark move, the state inaugurated its first state-owned, utility-scale BESS facility in Franklin County's Chateaugay, and similar utility procurements, such as SDG&E's Emerald Storage solution, underscore market momentum, signifying a major step towards bolstering New York's BESS infrastructure. This facility, featuring five large enclosures each housing over 19,500 batteries, signifies the beginning of New York's ambitious journey towards expanding its BESS capabilities.

Environmental advocates, including the New York League of Conservation Voters, have lauded these developments, viewing them as essential to meeting New York's climate goals, and they point to community-scale deployments such as a Brooklyn low-income housing microgrid as tangible examples of equitable resilience, too. Currently, New York's BESS capacity stands at approximately 291 megawatts. However, Governor Hochul has set forth bold targets to escalate this capacity to 1,500 megawatts by 2035 and even more ambitiously, to 6,000 megawatts by 2030. Achieving these targets would enable the powering of 1.2 million homes with clean, renewable energy.

"Battery storage is pivotal for the reliability of our electric grid and for the phasing out of pollutive power plants that harm our communities," remarked Pat McClellan, NYLCV’s Policy Director. The implementation of BESS is deemed vital for New York to attain its statutory climate mandates, including achieving 70 percent renewable energy by 2030 and 100 percent clean energy by 2040.

Safety and regulatory oversight are paramount in the proliferation of BESS facilities, especially in densely populated areas like New York City. The state has introduced stringent regulations, overseen by both the NYC Fire Department and the NYC Buildings Department, with state and federal governments also playing a crucial role in ensuring the safe deployment of these technologies, and best practices from jurisdictions focused on enabling storage in Ontario's electricity system can inform ongoing refinements as well.

In a significant announcement last August, Governor Hochul underscored the necessity of state oversight on BESS safety issues. She announced the formation of a new Inter-Agency Fire Safety Working Group tasked with examining energy storage facility fires and safety standards. This group, comprising six state agencies, recently unveiled its findings and recommendations, which will undergo public review.

Governor Hochul emphasized, "The battery energy storage industry is pivotal for communities across New York to transition to a clean energy future, and comprehensive safety standards are critical." The state's proactive stance on adopting these recommendations aims to safeguard New York’s transition to clean energy.

The completion of the Northern New York Energy Storage Project, a 20-MW facility operated by the New York Power Authority, marks a significant milestone in New York's clean energy journey. This project, aimed at alleviating transmission congestion and enhancing grid reliability, serves as a model for integrating clean energy, especially during peak demand periods, as other regions, such as Ontario, are plunging into energy storage to address looming supply crunches.

Located in a region where over 80% of electricity is generated from renewable sources, this project not only supports the state's clean energy grid but also accelerates New York's energy storage and climate objectives. Governor Hochul expressed, “Deploying energy storage technologies enhances our power supply's reliability and resilience, further enabling New York to construct a robust clean energy grid.”

As New York State advances towards its ambitious energy storage and climate goals, the development and deployment of BESS are critical. These systems not only enhance grid reliability and resilience but also support the broader transition to renewable energy sources, including emerging long-duration storage projects that expand flexibility, marking an essential step in New York's commitment to a sustainable and clean energy future.

 

Related News

Related News

B.C. expands EV charging, leads country in going electric

BC EV Charging Network Funding accelerates CleanBC goals with new public fast-charging stations, supporting ZEV adoption, the Electric Highway, and rebates, lowering fuel costs and emissions across British Columbia under the Clean Transportation Action Plan.

 

Key Points

Funding to expand fast-charging stations, grow ZEV adoption, and advance CleanBC and the Electric Highway.

✅ $26M funds ~250 public fast-charging stations.

✅ Supports Electric Highway and remote access.

✅ Drives ZEV sales under CleanBC targets.

 

As British Columbians are embracing zero-emission vehicles faster than any other jurisdiction in Canada, the Province is helping them go electric with new incentives and $26 million in new funding for public charging stations.

“British Columbians are switching to clean energy and cleaner transportation in record numbers as part of our CleanBC plan and leading Canada in the transition to zero emission vehicles,” said Josie Osborne, Minister of Energy, Mines and Low Carbon Innovation, on Tuesday. “The new funding we are announcing today to expand B.C.’s public charging network will help get more EVs on the road, reduce our reliance on fossil fuels, and lower fuel costs for people.”

The Province’s newly released annual report about zero-emission vehicles (ZEV) shows they represented 18.1% of new light-duty passenger vehicles sold in 2022 – the highest percentage for any province or territory. To support British Columbians’ transition to electric vehicles and to help industry lower its emissions, year-end funding of $26 million will go toward the CleanBC Public Charging Program for light-duty vehicle charging.

The new funding will support approximately 250 more public light-duty fast-charging stations, including stations to complete the B.C. Electric Highway, a CleanBC Roadmap to 2030 commitment that will make recharging easier in every corner of the province.

The 2022 ZEV Update report highlights CleanBC Go Electric rebates and programs that have helped drive growth in the number of electric vehicles in B.C. The number of registered light-duty EVs rose from 5,000 in 2016 to more than 100,000 today – a 1,900% increase in the past six years. Last year, 30,004 zero-emission vehicles were bought in B.C., beating the previous record of 24,263 in 2021.

In addition, the report outlines progress in the installation of public charging stations across British Columbia, supported by B.C. Hydro expansion, which now has one of the largest public charging networks in Canada, with more than 3,800 charging stations at the end of 2022. That compares to just 781 charging stations in 2016.

The CleanBC Roadmap to 2030, released in 2021, details a range of expanded actions to accelerate the switch to cleaner transportation, including strengthening the Zero-Emission Vehicles Act to require 26% of light-duty vehicle sales to be ZEV by 2026, 90% by 2030 and 100% by 2035 – five years ahead of the original target, and implementing the Clean Transportation Action Plan.

George Heyman, Minister of Environment and Climate Change Strategy, said: “Transportation accounts for about 40% of emissions in B.C., which is why we are committed to accelerating requirements for ZEVs and setting new standards for medium- and heavy-duty vehicles. To support this uptake, we continue to expand B.C.’s electric vehicle charging network, including faster EV charging options, with a target of having 10,000 public EV charging stations by 2030.”

Blair Qualey, President and CEO, New Car Dealers Association of BC, said: “B.C.’s new car dealers are proud to be involved in a true partnership that has been so instrumental in B.C. establishing and maintaining a leadership position in zero-emission vehicle adoption. Ongoing investments that continue to support the CleanBC Go Electric rebate program, including home and workplace charging rebates, and the availability of adequate charging infrastructure for consumers and businesses will be critical to the Province meeting its ZEV mandate targets, while also creating the promise of a greener and stronger economic future for British Columbians.”

Harry Constantine, President, Vancouver Electric Vehicle Association, said: “Expanding the buildout of the Electric Highway and establishing a network of charging stations are critical steps for moving the adoption of electric vehicles forward as demand ramps up across B.C. This stands to benefit all British Columbians, including remote communities. We are very pleased to see the Province investing in these measures.”

 

Related News

View more

Peer-to-peer energy breakthrough could allow solar and wind energy sources to be shared

Microgrid solar outage algorithms optimize renewable energy during blackouts using grid-forming inverters, islanding control, demand forecasting, and energy storage from batteries and EVs, improving reliability by up to 35% for resilient power sharing.

 

Key Points

Algorithms that island homes, forecast demand, and prioritize critical loads using storage and grid-forming inverters.

✅ Disconnects inverters to form resilient neighborhood microgrids

✅ Forecasts solar, wind, and demand; allocates energy fairly

✅ Uses EVs and batteries; boosts reliability by up to 35%

 

Some people who have solar panels on their roof are under the impression that they can use them to power their home in the case of an outage, but that simply is not the case. Homes do remain connected to the grid during outages, as U.S. power outage risks grow, but the devices tasked with managing solar panels are normally turned off due to safety concerns. This permanent grid connection essentially prevents homeowners from drawing on the power that their own renewable energy resources generate.

This could be about to change, however, thanks to the efforts of a team of University of California San Diego engineers who have come up with algorithms that would enable homes to share and use their power in outages by disconnecting solar inverters from the grid. Their algorithms work with the existing technology and would have the added benefit of boosting the system’s reliability by as much as 35 percent.

The genius of their work lies in the ability of the algorithm to prioritize the distribution of power from the renewable resources in outages. Their equation considers forecasts for wind and solar power generation to address clean energy intermittency challenges and the available energy storage, including batteries and electric vehicles. It combines this information with the projected energy usage of residents and the amount of energy the homes are able to produce. It can be programmed to prioritize in several different ways, the most vital of which is by favoring those who need power urgently, such as those using life support equipment. It could also prioritize those who are willing to pay extra or reward those who typically generate an energy surplus during normal operations.

 

Learning lessons from past outages

Lead author Abdulelah H. Habib said the engineers were inspired to find a way to use the renewable power in outages by the events of Hurricane Sandy. This storm affected more than eight million people on the nation’s East Coast, some of whom were left without power for as long as two weeks.

According to the researchers, most customers prefer sharing community-scale storage systems over having systems in each home because of the lower costs. One of the paper’s senior authors, Raymond de Callafon, said that homes that are connected together are not only more resilient in power outages but they also happen to be more resilient to price fluctuations.

Each home needs to be equipped with special circuit breakers that can be remotely controlled, while utilities would need to install some communications methods so the power systems within a particular residential cluster can communicate amongst themselves. They also need a “grid forming inverter” to help them connect to one another and manage excess solar on networks safely.

One stumbling block that will have to be overcome is the current regulations. Most states do not allow individual homeowners to sell power to other homeowners, so there would have to be some adjustments to make this a reality.

 

Solar power growing in popularity

Solar power’s popularity is currently on the rise, and reductions in cost as the technology improves are only expected to drive this growth even further. REC CEO Steve O’Neil told CNBC that the installation rates of solar double every two years, a trend that informs residential solar economics for homeowners even though just two percent of the planet’s electricity comes from converting sunlight to energy. This means there is plenty of room for expansion. The world’s current solar capacity is 305 gigawatts, compared to just 50 gigawatts in 2010.

In addition, he pointed out that the price of solar energy has dropped by 70 percent since the year 2010 and continues to fall; it costs around eight cents per kilowatt hour at the moment. Another factor that could boost adoption is storage improvements, driven by affordable solar batteries that expand capacity, which will allow solar energy to be used even on overcast days.

 

Related News

View more

Building Energy Celebrates the Beginning of Operations and Electricity Generation

Building Energy Iowa Wind Farm delivers 30 MW of renewable energy near Des Moines, generating 110 GWh annually with wind turbines, a long-term PPA, CO2 reduction, and community benefits like jobs and clean power.

 

Key Points

Building Energy Iowa Wind Farm is a 30 MW project generating 110 GWh a year, cutting CO2 and supporting local jobs.

✅ 30 MW capacity, 10 onshore turbines (3 MW each)

✅ ~110 GWh per year; power for 11,000 households

✅ Long-term PPA; jobs and emissions reductions in Iowa

 

With 110 GWh generated per year, the plant will be beneficial to Iowa's environment, reflecting broader Iowa wind power investment trends, contributing to the reduction of 100,000 tons of CO2 emissions, as well as providing economic benefits to host local communities.

Building Energy SpA, multinational company operating as a global integrated IPP in the Renewable Energy Industry, amid milestones such as Enel's 450 MW U.S. wind project, through its subsidiary Building Energy Wind Iowa LLC, announces the inauguration of its first wind farm in Iowa, which adds up to 30 MW of wind distribution generation capacity. The project, located north of Des Moines, in Story, Boone, Hardin and Poweshiek counties, will generate approximately 110 GWh per year. The beginning of operations has been celebrated on the occasion of the Wind of Life event in Ames, Iowa, in the presence of Andrea Braccialarghe, MD America of Building Energy, Alessandro Bragantini, Chief Operating Officer of Building Energy and Giuseppe Finocchiaro, Italian Consul General.

The overall investment in the construction of the Iowa distribution generation wind farms amounted to $58 million and it sells its energy and related renewable credits under a bundled, long-term power purchase agreement with a local utility, reflecting broader utility investment trends such as WEC Energy's Illinois wind stake in the region.

The wind facility, developed, financed, owned and operated by Building Energy, consists of ten 3.0 MW geared onshore wind turbines, each with a rotor diameter of 125 meters mounted on an 87.5 meter steel tower. The energy generated will satisfy the energy needs of 11,000 U.S. households every year, similar in community impact to North Carolina's first wind farm, while avoiding the emission of about 70,000 tons of CO2 emissions every year, according to US Environmental Protection Agency methodology, which is equivalent to taking 15,000 cars off the road each year.

Besides the environmental benefits, the wind farm also has advantages for the local community, providing it with clean energy and creating jobs for local Iowans. The project involved more than a hundred of local skilled workers during the construction phase. Some of those jobs will be also permanent as necessary for the operation and maintenance activities as well as for additional services such as delivery, transportation, spare parts management, landscape mitigation, and further environmental monitoring studies.

The Company is present in many US states since 2013 with more than 500 MW of projects under development, spread across different renewable energy technologies, and aligning with federal initiatives like DOE wind energy awards that support innovation.

 

Related News

View more

NREL’s Electric Vehicle Infrastructure Projection Tool Helps Utilities, Agencies, and Researchers Predict Hour-by-Hour Impact of Charging on the Grid

EVI-Pro Lite EV Load Forecasting helps utilities model EV charging infrastructure, grid load shapes, and resilient energy systems, factoring home, workplace, and public charging behavior to inform planning, capacity upgrades, and flexible demand strategies.

 

Key Points

A NREL tool projecting EV charging demand and load shapes to help utilities plan the grid and right-size infrastructure.

✅ Visualizes weekday/weekend EV load by charger type.

✅ Tests home, workplace, and public charging access scenarios.

✅ Supports utility planning, demand flexibility, and capacity upgrades.

 

As electric vehicles (EVs) continue to grow in popularity, utilities and community planners are increasingly focused on building resilient energy systems that can support the added electric load from EV charging, including a possible EV-driven demand increase across the grid.

But forecasting the best ways to adapt to increased EV charging can be a difficult task as EV adoption will challenge state power grids in diverse ways. Planners need to consider when consumers charge, how fast they charge, and where they charge, among other factors.

To support that effort, researchers at the National Renewable Energy Laboratory (NREL) have expanded the Electric Vehicle Infrastructure Projection (EVI-Pro) Lite tool with more analytic capabilities. EVI-Pro Lite is a simplified version of EVI-Pro, the more complex, original version of the tool developed by NREL and the California Energy Commission to inform detailed infrastructure requirements to support a growing EV fleet in California, where EVs bolster grid stability through coordinated planning.

EVI-Pro Lite’s estimated weekday electric load by charger type for El Paso, Texas, assuming a fleet of 10,000 plug-in electric vehicles, an average of 35 daily miles traveled, and 50% access to home charging, among other variables, as well as potential roles for vehicle-to-grid power in future scenarios. The order of the legend items matches the order of the series stacked in the chart.

Previously, the tool was limited to letting users estimate how many chargers and what kind of chargers a city, region, or state may need to support an influx of EVs. In the added online application, those same users can take it a step further to predict how that added EV charging will impact electricity demand, or load shapes, in their area at any given time and inform grid coordination for EV flexibility strategies.

“EV charging is going to look different across the country, depending on the prevalence of EVs, access to home charging, and the kind of chargers most used,” said Eric Wood, an NREL researcher who led model development. “Our expansion gives stakeholders—especially small- to medium-size electric utilities and co-ops—an easy way to analyze key factors for developing a flexible energy strategy that can respond to what’s happening on the ground.”

Tools to forecast EV loads have existed for some time, but Wood said that EVI-Pro Lite appeals to a wider audience, including planners tracking EVs' impact on utilities in many markets. The tool is a user-friendly, free online application that displays a clear graphic of daily projected electric loads from EV charging for regions across the country.

After selecting a U.S. metropolitan area and entering the number of EVs in the light-duty fleet, users can change a range of variables to see how they affect electricity demand on a typical weekday or weekend. Reducing access to home charging by half, for example, results in higher electric loads earlier in the day, although energy storage and mobile charging can help moderate peaks in some cases. That is because under such a scenario, EV owners might rely more on public or workplace charging instead of plugging in at home later in the evening or at night.

“Our goal with the lite version of EVI-Pro is to make estimating loads across thousands of scenarios fast and intuitive,” Wood said. “And if utilities or stakeholders want to take that analysis even deeper, our team at NREL can fill that gap through partnership agreements, too. The full version of EVI-Pro can be tailored to develop detailed studies for individual planners, agencies, or utilities.”

 

Related News

View more

Climate change, not renewables, threaten grid

New Mexico Energy Transition Act advances renewable energy, battery storage, energy efficiency, and demand response to boost grid reliability during climate change-fueled heatwaves, reducing emissions while supporting solar and wind deployment.

 

Key Points

A state policy phasing out power emissions, scaling renewables and storage, bolstering grid reliability in extreme heat.

✅ Replaces coal generation with solar plus battery storage

✅ Enhances grid reliability during climate-driven heatwaves

✅ Promotes energy efficiency and demand response programs

 

While temperatures hit record highs across much of the West in recent weeks and California was forced to curb electricity service amid heat-driven grid strain that week, the power stayed on in New Mexico thanks to proactive energy efficiency and conservation measures.

Public Service Company of New Mexico on Aug. 19 did ask customers to cut back on power use during the peak demand time until 9 p.m., to offset energy supply issues due to the record-breaking heatwave that was one of the most severe to hit the West since 2006. But the Albuquerque Journal's Aug. 28 editorial, "PRC should see the light with record heat and blackouts," confuses the problem with the solution. Record temperatures fueled by climate change – not renewable energy – were to blame for the power challenges last month. And thanks to the Energy Transition Act, New Mexico is reducing climate change-causing pollution and better positioned to prevent the worst impacts of global warming.

During those August days, more than 80 million U.S. residents were under excessive heat warnings. As the Journal's editorial pointed out, California experienced blackouts on Aug. 14 and 15 as wildfires swept across the state and temperatures rose. In fact, a recent report by the University of Chicago's Climate Impact Lab found the world has experienced record heat this summer due to climate change, and heat-related deaths will continue to rise in the future.

As the recent California energy incidents show, climate change is a threat to a reliable electricity system and our health as soaring temperatures and heatwaves strain our grid, as seen in Texas grid challenges this year as well. Demand for electricity rises as people depend more on energy-intensive air conditioning. High temperatures also can decrease transmission line efficiency and cause power plant operators to scale back or even temporarily stop electricity generation.

Lobbyists for the fossil fuel industry may claim that the service interruptions and the conservation requests in New Mexico demonstrate the need for keeping fossil-fueled power generation for electricity reliability, echoing policy blame narratives in California that fault climate policies. But fossil fuel combustion still is subject to the factors that cause blackouts – while also driving climate change and making resulting heatwaves more common. After an investigation, California's own energy agencies found no substance to the claim that renewable energy use was a factor in the situation there, and it's not to blame in New Mexico, either.

New Mexico's Energy Transition Act is a bold, necessary step to limit the damage caused by climate change in the future. It creates a reasonable, cost-saving path to eliminating greenhouse gas emissions associated with generating electricity.

The New Mexico Public Regulation Commission properly applied this law when it recently voted unanimously to replace PNM's coal-fired generation at San Juan Generating Station with carbon-free solar energy and battery storage located in the Four Corners communities, a prudent step given California's looming electricity shortage warnings across the West. The development will create jobs and provide resources for the local school district and help ensure a stronger economy and a healthier future for the region.

As we expand solar and wind energy here in New Mexico, we can help ensure reliable electricity service by building out greater battery storage for renewable energy resources. Expanding regional energy markets that can dispatch the lowest-cost energy from across the region to places where it is needed most would make renewable energy more available and reduce costs, despite concerns over policy exports raised by some observers.

Energy efficiency and demand response are important when we are facing extraordinary conditions, and proven strategies to improve electricity reliability show how demand-side tools complement the grid, so it is unfortunate that the Albuquerque Journal made the unsubstantiated claim that a stray cloud will put out the lights. It was hot, supplies were tight on the electric grid, and in those moments, we should conserve. We should not use those moments to turn our back on progress.

 

Related News

View more

Netherlands' Renewables Drive Putting Pressure On Grid

The Netherlands grid crisis exposes how rapid renewable energy growth is straining transmission capacity. Solar, wind, and electric vehicle demand are overloading networks, forcing officials to urge reduced peak-time power use and accelerate national grid modernization plans.

 

Main Points

The Netherlands grid crisis refers to national electricity congestion caused by surging renewable energy generation and rising consumer demand.

✅ Grid congestion from rapid solar and wind expansion

✅ Strained transmission and distribution capacity

✅ National investment in smart grid upgrades

 

The Dutch government is urging households to reduce electricity consumption between 16:00 and 21:00 — a signal that the country’s once-stable power grid is under serious stress. The call comes amid an accelerating shift to wind and solar power that is overwhelming transmission infrastructure and creating “grid congestion” across regions, as seen in Nordic grid constraints this year.

In a government television campaign, a narrator warns: “When everyone uses electricity at the same time, our power grid can become overloaded. That could lead to failures — so please try to use less electricity between 4 pm and 9 pm.” The plea reflects a system where supply occasionally outpaces the grid’s ability to distribute it, with some regions abroad issuing summer blackout warnings already.

According to Dutch energy firm Eneco’s CEO, Kys-Jan Lamo, the root of the problem lies in the mismatch between modern renewable generation and a grid built for centralized fossil fuel plants. He notes that 70% of Eneco’s output already comes from solar and wind, and this “grid congestion is like traffic on the power lines.” Lamo explains:

“The grid congestion is caused by too much demand in some areas of the network, or by too much supply being pushed into the grid beyond what the network can carry.”

He adds that many of the transmission lines in residential areas are narrow — a legacy of when fewer and larger power plants fed electricity through major feeder lines, underscoring grid vulnerabilities seen elsewhere today. Under the new model, renewable generation occurs everywhere: “This means that electricity is now fed into the grid even in peripheral areas with relatively fine lines — and those lines cannot always cope.”

Experts warn that resolving these issues will demand years of planning and immense investment in smarter grid infrastructure over the coming years. Damien Ernst, an electrical engineering professor at Liège University and respected voice on European grids, states that the Netherlands is experiencing a “grid crisis” brought on by “insufficient investment in distribution and transmission networks.” He emphasizes that the speed of renewable deployment has outpaced the grid’s capacity to absorb it.

Eneco operates a “virtual power plant” control system — described by Lamo as “the brain we run” — that dynamically balances supply and demand. During periods of oversupply, the system can curtail wind turbines or shut down solar panels. Conversely, during peak demand, the system can throttle back electricity provision to participating customers in exchange for lower tariffs. However, these techniques only mitigate strain — they cannot replace the need for physical upgrades or bolster resilience to extreme weather outages alone.

The bottleneck has begun limiting new connections: “Consumers often want to install heat pumps or charge electric vehicles, but they increasingly find it difficult to get the necessary network capacity,” Lamo warns. Businesses too are struggling. “Companies often want to expand operations, but cannot get additional capacity from grid operators. Even new housing developments are affected, since there’s insufficient infrastructure to connect whole communities.”

Currently, thousands of businesses are queuing for network access. TenneT, the national grid operator, estimates that 8,000 firms await initial connection approval, and another 12,000 seek to increase their capacity allocations. Stakeholders warn that unresolved congestion risks choking economic growth.

According to Kys-Jan Lamo: “Looking back, almost all of this could have been prevented.” He acknowledges that post-2015 climate commitments placed heavy emphasis on adding generation and on grid modernization costs more broadly, but “we somewhat underestimated the impact on grid capacity.”

In response, the government has introduced a national “Grid Congestion Action Plan,” aiming to accelerate approvals for infrastructure expansions and to refine regulations to promote smarter grid use. At the same time, feed-in incentives for solar power are being scaled back in some regions, and certain areas may even impose charges to integrate new solar systems into the grid.

The scale of what’s needed is vast. TenneT has proposed adding roughly 100,000 km of new power lines by 2050 and investing in doubling or tripling existing capacity in many areas. However, permit processes can take eight years before construction begins, and many projects require an additional two years to complete. As Lamo points out, “the pace of energy transition far exceeds the grid’s existing capacity — and every new connection request simply extends waiting lists.”

Unless grid expansion keeps up, and as climate pressures intensify, the very clean energy future the Netherlands is striving for may remain constrained by the physics of distribution.

 

Related Articles

 

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified