Massachusetts Issues Energy Storage Solicitation Offering $10M


Energy Storage

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Massachusetts Energy Storage Solicitation offers grants and matching funds via MassCEC and DOER for grid-connected, behind-the-meter projects, utility partners, and innovative business models, targeting 600 MW, clean energy leadership, and ratepayer savings.

 

Key Points

MassCEC and DOER matching-fund program for grid-connected storage pilots, advancing innovation and ratepayer savings.

✅ $100k-$1.25M matching funds; 50% cost share required

✅ Grid-connected, utility-partnered and behind-the-meter eligible

✅ 10-15 awards; proposals due June 9; install within 18 months

 

Massachusetts released a much-awaited energy storage solicitation on Thursday offering up to $10 million for new projects.

Issued by the Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER), the solicitation makes available $100,000 to $1.25 million in matching funds for each chosen project.

The solicitation springs from a state report issued last year that found Massachusetts could save electricity ratepayers $800 million by incorporating 600 MW of energy storage projects. The state plans to set a specific energy storage goal, now the subject of a separate proceeding before the DOER.

The state is offering money for projects that showcase examples of future storage deployment, help to grow the state’s energy storage economy, and contribute to the state’s clean energy innovation leadership.

MassCEC anticipates making about 10-15 awards. Applicants must supply at least 50 percent of total project cost.

The state is offering money for projects that showcase examples of future storage deployment, help to grow the state’s energy storage economy, and contribute to the state’s clean energy innovation leadership.

MassCEC anticipates making about 10-15 awards. Applicants must supply at least 50 percent of total project cost.

The state plans to allot about half of the money from the energy storage solicitation to projects that include utility partners. Both distribution scale and behind-the-meter projects, including net-zero buildings among others, will be considered, but must be grid connected.

The solicitation seeks innovative business models that showcase the commercial value of energy storage in light of the specific local energy challenges and opportunities in Massachusetts.

Projects also should demonstrate multiple benefits/value streams to ratepayers, the local utility, or wholesale market.

And finally, projects should help uncover market and regulatory issues as well as monetization and financing barriers.

The state anticipates teams forming to apply for the grants. Teams may include public and private entities and are are encouraged to include the local utility.

Proposals are due June 9. The state expects to notify winners September 8, with contracts issued within the following month. Projects must be installed within 18 months of receiving contracts.

 

 

Related News

Related News

Building Energy Celebrates the Beginning of Operations and Electricity Generation

Building Energy Iowa Wind Farm delivers 30 MW of renewable energy near Des Moines, generating 110 GWh annually with wind turbines, a long-term PPA, CO2 reduction, and community benefits like jobs and clean power.

 

Key Points

Building Energy Iowa Wind Farm is a 30 MW project generating 110 GWh a year, cutting CO2 and supporting local jobs.

✅ 30 MW capacity, 10 onshore turbines (3 MW each)

✅ ~110 GWh per year; power for 11,000 households

✅ Long-term PPA; jobs and emissions reductions in Iowa

 

With 110 GWh generated per year, the plant will be beneficial to Iowa's environment, reflecting broader Iowa wind power investment trends, contributing to the reduction of 100,000 tons of CO2 emissions, as well as providing economic benefits to host local communities.

Building Energy SpA, multinational company operating as a global integrated IPP in the Renewable Energy Industry, amid milestones such as Enel's 450 MW U.S. wind project, through its subsidiary Building Energy Wind Iowa LLC, announces the inauguration of its first wind farm in Iowa, which adds up to 30 MW of wind distribution generation capacity. The project, located north of Des Moines, in Story, Boone, Hardin and Poweshiek counties, will generate approximately 110 GWh per year. The beginning of operations has been celebrated on the occasion of the Wind of Life event in Ames, Iowa, in the presence of Andrea Braccialarghe, MD America of Building Energy, Alessandro Bragantini, Chief Operating Officer of Building Energy and Giuseppe Finocchiaro, Italian Consul General.

The overall investment in the construction of the Iowa distribution generation wind farms amounted to $58 million and it sells its energy and related renewable credits under a bundled, long-term power purchase agreement with a local utility, reflecting broader utility investment trends such as WEC Energy's Illinois wind stake in the region.

The wind facility, developed, financed, owned and operated by Building Energy, consists of ten 3.0 MW geared onshore wind turbines, each with a rotor diameter of 125 meters mounted on an 87.5 meter steel tower. The energy generated will satisfy the energy needs of 11,000 U.S. households every year, similar in community impact to North Carolina's first wind farm, while avoiding the emission of about 70,000 tons of CO2 emissions every year, according to US Environmental Protection Agency methodology, which is equivalent to taking 15,000 cars off the road each year.

Besides the environmental benefits, the wind farm also has advantages for the local community, providing it with clean energy and creating jobs for local Iowans. The project involved more than a hundred of local skilled workers during the construction phase. Some of those jobs will be also permanent as necessary for the operation and maintenance activities as well as for additional services such as delivery, transportation, spare parts management, landscape mitigation, and further environmental monitoring studies.

The Company is present in many US states since 2013 with more than 500 MW of projects under development, spread across different renewable energy technologies, and aligning with federal initiatives like DOE wind energy awards that support innovation.

 

Related News

View more

Why a green recovery goes far deeper than wind energy

Scotland Green Recovery Strategy centers on renewable energy, onshore wind, energy efficiency, battery storage, hydrogen, and electric vehicles, alongside public transport and digital infrastructure, local manufacturing, and grid flexibility to decarbonize industry and communities.

 

Key Points

A plan to cut emissions by scaling renewables, efficiency, storage, and infrastructure for resilient, low-carbon growth.

✅ Prioritize energy efficiency retrofits in homes and workplaces

✅ Invest in battery storage, hydrogen, and EV charging networks

✅ Support local manufacturing and circular economy supply chains

 

THE “green recovery” joins the growing list of Covid-era political maxims, while green energy investment could drive recovery, suggesting a bright and environmentally sustainable post-pandemic future lies ahead.

The Prime Minister once again alluded to it recently when he expressed his ambition to see the UK become the “world leader in clean wind energy”. In his typically bombastic style, Boris Johnson declared that everything from our kettles to electric vehicles, with offshore wind energy central to that vision, will be powered by “breezes that blow around these islands” by the next decade.

These comments create a misleading impression about how we can achieve a green recovery, particularly as Covid-19 hit renewables and exposed systemic challenges. While wind turbines have a key role to play, they are just one part of a comprehensive solution requiring a far more in-depth focus on how and why we use energy. We must concentrate our efforts and resources on reducing our overall consumption and increasing energy capture.

This includes making significant energy efficiency improvements to the buildings where we live and work and grasping the lessons of lockdown, including proposals for a fossil fuel lockdown to accelerate climate action, to ensure we operate in a more effective and less environmentally-damaging fashion. Do we really want to return to a world where people commute daily half way across the country for work or fly to New York for a two-hour meeting?

Businesses will need to adapt to new ways of operating outwith the traditional nine-to-five working week to reduce congestion and pollution levels. To make this possible requires Government investment in critical areas such as public transport and digital infrastructure, alongside more pylons to strengthen the grid, across all parts of Scotland to decentralise the economy and enable more people to live and work outside the main cities.

A Government-supported green recovery must rest on making it financially viable for businesses to manufacture here to reduce our reliance on imported goods. This includes processing recycleable materials here rather than shipping them abroad. It also means using locally generated energy to support local jobs and industry. We miss a trick if Scotland simply becomes a power generator for the rest of the UK.

MOVING transport from fossil fuels to renewable fuels will require a step-change that also requires support across all levels. The increased use of electric vehicles and hydrogen fuel cells are all encouraging developments, but these will rely on investment in infrastructure throughout the country if we’re to achieve significant benefits to our environment and our economy.

This brings us to the role of onshore wind power; still the cheapest form of renewable energy, and a sector marked by wind growth despite Covid-19 around the world today. Repowering existing sites with newer and more efficient turbines will certainly increase capacity rapidly, but we must also invest into development projects that will further enhance the capacity and efficiency of existing equipment. This includes improving on the current practice of the National Grid paying operators to switch off wind turbines when excess electricity is produced and instead developing new and innovative means to capture this energy. Government-primed investment into battery storage could help ensure we achieve and further reduce our reliance on traditional, non-sustainable sources.

We need a level playing field so that all forms of energy are judged on their lifetime cost in terms of emissions as well as construction and decommissioning costs to ensure fiscal incentives are applied on a fairer basis.

Turning the maxim of a green recovery into reality will require more than extra wind turbines, and the UK's wind lessons underscore the importance of policy and scale. We need a significant investment and commitment from business and government to limit existing emissions and ensure we capture and use energy more efficiently.

Andy Drane is projects partner and head of renewables at law firm Davidson Chalmers Stewart.

 

Related News

View more

BWE - Wind power potential even higher than expected

German Wind Power 2030 Outlook highlights onshore and offshore growth, repowering, higher full-load hours, and efficiency gains. Deutsche WindGuard, BWE, and LEE NRW project 200+ TWh, potentially 500 TWh, covering rising electricity demand.

 

Key Points

Forecast: efficiency and full-load gains could double onshore wind to 200+ TWh; added land could lift output to 500 TWh.

✅ Modern turbines and repowering boost full-load hours and yields

✅ Onshore generation could hit 200+ TWh on existing areas by 2030

✅ Expanding land to 2% may enable 500 TWh; offshore adds more

 

Wind turbines have become more and more efficient over the past two decades, a trend reflected in Denmark's new green record for wind-powered generation.

A new study by Deutsche WindGuard calculates the effect on the actual generation volumes for the first time, underscoring Germany's energy transition balancing act as targets scale. Conclusion of the analysis: The technical progress enables a doubling of the wind power generation by 2030.

Progressive technological developments make wind turbines more powerful and also enable more and more full-load hours, with wind leading the power mix in many markets today. This means that more electricity can be generated continuously than previously assumed. This is shown by a new study by Deutsche WindGuard, which was commissioned by the Federal Wind Energy Association (BWE) and the State Association of Renewable Energies NRW (LEE NRW).

The study 'Full load hours of wind turbines on land - development, influences, effects' describes in detail for the first time the effects of advances in wind energy technology on the actual generation volumes. It can thus serve as the basis for further calculations and potential assessments, reflecting milestones like UK wind surpassing coal in 2016 in broader analyses.

The results of the investigation show that the use of modern wind turbines with higher full load hours alone on the previously designated areas could double wind power generation to over 200 terawatt hours (TWh) by 2030. With an additional area designation, generation could even be increased to 500 TWh. If the electricity from offshore wind energy is added, the entire German electricity consumption from wind energy could theoretically be covered, and renewables recently outdelivered coal and nuclear in Germany as a sign of momentum: The current electricity consumption in Germany is currently a good 530 TWh, but will increase in the future.

Christian Mildenberger, Managing Director of LEE NRW: 'Wind can do much more: In the past 20 years, technology has made great leaps and bounds. Modern wind turbines produce around ten times as much electricity today as those built at the turn of the millennium. This must also be better reflected in potential studies by the federal and state governments. '

Wolfram Axthelm, BWE Managing Director: 'We need a new look at the existing areas and the repowering. Today in Germany not even one percent of the area is designated for wind energy inland. But even with this we could cover almost 40 percent of the electricity demand by 2030. If this area share were increased to only 2 percent of the federal area, it would be almost 100 percent of the electricity demand! Wind energy is indispensable for a CO2-neutral future. This requires a clever provision of space in all federal states. '

Dr. Dennis Kruse, Managing Director of Deutsche WindGuard: 'It turns out that the potential of onshore wind energy in Germany is still significantly underestimated. Modern wind turbines achieve a significantly higher number of full load hours than previously assumed. That means: The wind can be used more and more efficiently and deliver more income. '

On the areas already designated today, numerous older systems will be replaced by modern ones by 2030 (repowering). However, many old systems will still be in operation. According to Windguard's calculations, the remaining existing systems, together with around 12,500 new, modern wind systems, could generate 212 TWh in 2030. If the area backdrop were expanded from 0.9 percent today to 2 percent of the land area, around 500 TWh would be generated by inland wind, despite grid expansion challenges in Europe that shape deployment.

The ongoing technological development must also be taken into account. The manufacturers of wind turbines are currently working on a new class of turbines with an output of over seven megawatts that will be available in three to five years. According to calculations by the LEE NRW, by 2040 the same number of wind turbines as today could produce over 700 TWh of electricity inland. The electricity demand, which will increase in the future due to electromobility, heat pumps and the production of green hydrogen, can thus be completely covered by a combination of onshore wind, offshore wind, solar power, bioenergy, hydropower and geothermal energy, and a net-zero roadmap for Germany points to significant cost reductions.

 

Related News

View more

America's Largest Energy Customers Set a Bold New Ambition to Achieve a 90% Carbon-free U.S. Electricity System by 2030 and Accelerate Clean Energy Globally

Clean Energy Buyers Alliance 2030 Goal targets a 90% carbon-free U.S. grid, accelerating power-sector decarbonization via corporate renewable energy procurement, market and policy reforms, and customer demand to enable net-zero electrification across industries.

 

Key Points

The Alliance's plan to reach a 90% carbon-free U.S. electricity system by 2030 via customer-driven markets and policy.

✅ Corporate buyers scale renewable PPAs and aggregation

✅ Market and policy reforms unlock clean power access

✅ Goal aligns with net-zero and widespread electrification

 

The Clean Energy Buyers Association (CEBA) and the Clean Energy Buyers Institute (CEBI), which together make up the Clean Energy Buyers Alliance, have announced a profound new aspiration for impact: a 90% carbon-free U.S. electricity system by 2030 and a global community of energy customers driving the global energy transition forward.

Alongside the two organizations’ bold new vision of the future – customer-driven clean energy for all – the Alliance will super-charge the work of its predecessor organizations, the Renewable Energy Buyers Alliance (REBA) and the REBA Institute, which represent the most iconic global companies with more than $6 trillion dollars in annual revenues and 14 million employees.

“This is the decisive decade for climate action and especially for decarbonization of the power sector,” said Miranda Ballentine, CEO of CEBA and CEBI. “To achieve a net-zero economy worldwide by 2050, the United States must lead. And the power sector must accelerate toward a 2030 timeline as electrification of other industries will be driving up power use.”

In the U.S. alone, more than 60% of electricity is consumed by the commercial and industrial sectors. Institutional energy customers have accelerated the deployment of clean energy solutions over the last 10 years to achieve increasingly ambitious greenhouse gas reduction targets, even as a federal coal plan remains under debate, and further cement the critical role of customers in decarbonizing the energy system. The Clean Energy Buyers Association Deal Tracker shows that 7.9 GW of new corporate renewable energy project announcements in the first three quarters of this year are equivalent to 40% of all new carbon free energy capacity added in the U.S. so far in 2021.

“With our new vision of customer-driven clean energy for all, we are also unveiling new organization brands,” Ballentine continued. “I’m excited to announce that REBA will become CEBA—the Clean Energy Buyers Association—and will focus on activating our community of energy customers and partners to deploy market and policy solutions for a carbon-free energy system. The REBA Institute will become the Clean Energy Buyers Institute (CEBI) and will focus on solving the toughest market and policy barriers to achieving a carbon-free energy system in collaboration with policymakers, leading philanthropies, and energy market stakeholders. Together, CEBA and CEBI will make up the new Clean Energy Buyers Alliance.”

To decarbonize the U.S. electricity system 90% by 2030, a goal aligned with California's 100% carbon-free mandate efforts, and to activate a community of customers driving clean energy around the world, the Clean Energy Buyers Alliance will drive three critical transformations to:

Unlock markets so that energy customers can use their buying power and market-influence, building on a historic U.S. climate deal this year, to accelerate electricity decarbonization.

Catalyze communities of energy customers to actively choose clean energy through Mission Innovation collaborations and to do more together than they could on their own.

Decarbonize the grid for all, since not every energy customer can or will use their buying power to choose clean energy.

“The Clean Energy Buyers Alliance is setting the bar for what energy buyers, utilities and governments should and need to be doing to achieve a carbon-free energy future,” said Michael Terrell, CEBA board chair and Director of Energy at Google. “This ambitious approach is a critical step in tackling climate change. The time for meaningful climate action is now and we must collectively be bolder and more ambitious in our actions in both the public and private sectors – starting today.”

This new vision of customer-driven clean energy for all is an unprecedented opportunity for every member of the Clean Energy Buyers Alliance community – from energy customers to providers to manufacturers – to all parties up and down the energy supply chain to lead the evolution of a new energy economy, which will require incentives to double investment in clean energy to rise to $4 trillion by 2030.

 

Related News

View more

US: In 2021, Plug-Ins Traveled 19 Billion Miles On Electricity

US Plug-in EV Miles 2021 highlight BEV and PHEV growth, DOE and Argonne data, 19.1 billion electric miles, 6.1 TWh consumed, gasoline savings, rising market share, and battery capacity deployed across the US light-duty fleet.

 

Key Points

They represent 19.1 billion electric miles by US BEVs and PHEVs in 2021, consuming 6.1 TWh of electricity.

✅ 700 million gallons gasoline avoided in 2021

✅ $1.3 billion fuel cost savings estimated

✅ Cumulative 68 billion EV miles since 2010

 

Plug-in electric cars are gradually increasing their market share in the US (reaching about 4% in 2021), which starts to make an impact even as the U.S. EV market share saw a brief dip in Q1 2024.

The Department of Energy (DOE)’s Vehicle Technologies Office highlights in its latest weekly report that in 2021, plug-ins traveled some 19.1 billion miles (31 billion km) on electricity - all miles traveled in BEVs and the EV mode portion of miles traveled in PHEVs, underscoring grid impacts that could challenge state power grids as adoption grows.

This estimated distance of 19 billion miles is noticeably higher than in 2020 (nearly 13 billion miles), which indicates how quickly the electrification of driving progresses, with U.S. EV sales continuing to soar into 2024. BEVs noted a 57% year-over-year increase in EV miles, while PHEVs by 24% last year (mostly proportionally to sales increase).

According to Argonne National Laboratory's Assessment of Light-Duty Plug-in Electric Vehicles in the United States, 2010–2021, the cumulative distance covered by plug-in electric cars in the US (through December 2021) amounted to 68 billion miles (109 billion miles).

U.S. Department of Transportation, Federal Highway Administration, December 2021 Traffic Volume Trends, 2022.

The report estimates that over 2.1 million plug-in electric cars have been sold in the US through December 2021 (about 1.3 million all-electric and 0.8 million plug-in hybrids), equipped with a total of more than 110 GWh of batteries, even as EV sales remain behind gas cars in overall market share.

It's also estimated that 19.1 billion electric miles traveled in 2021 reduced the national gasoline consumption by 700 million gallons of gasoline or 0.54%.

On the other hand, plug-ins consumed some 6.1 terawatt-hours of electricity (6.1 TWh is 6,100 GWh), which sounds like almost 320 Wh/mile (200 Wh/km), aligning with projections that EVs could drive a rise in U.S. electricity demand over time.

The difference between the fuel cost and energy cost in 2021 is estimated at $1.3 billion, with Consumer Reports findings further supporting the total cost advantages.

Cumulatively, 68 billion electric miles since 2010 is worth about 2.5 billion gallons of gasoline. So, the cumulative savings already is several billion dollars.

Those are pretty amazing numbers and let's just imagine that electric cars are just starting to sell in high volume, a trend that mirrors global market growth seen over the past decade. Every year those numbers will be improving, thus tremendously changing the world that we know today.

 

Related News

View more

Aboitiz receives another award for financing for its Tiwi and Makban geothermal plant

AP Renewables Inc. Climate Bond Award recognizes Asia-Pacific project finance, with ADB and CNBC citing the first Climate Bond, geothermal refinancing in local currency, and CGIF-backed credit enhancement for emerging markets.

 

Key Points

An award for APRI's certified Climate Bond, highlighting ADB-backed financing and geothermal assets across Asia-Pacific.

✅ First Climate Bond for a single project in an emerging market

✅ ADB credit enhancement and CGIF risk participation

✅ Refinanced Tiwi and MakBan geothermal assets via local currency

 

The Asian Development Bank (ADB) and CNBC report having given the Best Project For Corporate Finance Transaction award to a the renewable energy arm of Aboitiz Power, AP Renewables Inc. (APRI), for its innovative and impactful solutions to key development challenges.

In March 2016, APRI issued a local currency bond equivalent to $225 million to refinance sponsor equity in Tiwi and MakBan. ADB said it provided a partial credit enhancement for the bond as well as a direct loan of $37.7 million, a model also seen in EIB long-term financing for Indian solar projects.

The bond issuance was the first Climate Bond—certified by the Climate Bond Initiative—in Asia and the Pacific and the first ever Climate Bond for a single project in an emerging market.

“The project reflects APRI’s commitment to renewable energy, as outlined in the IRENA report on decarbonising energy in the region,” ADB said in a statement posted on its website.

The project also received the 2016 Bond Deal of the Year by the Project Finance International magazine of Thomson Reuters, Asia Pacific Bond Deal of the Year from IJGlobal and the Best Renewable Deal of the Year by Alpha Southeast Asia, reflecting momentum alongside large-scale energy projects in New York reported elsewhere.

ADB’s credit enhancement was risk-participated by the Credit Guarantee Investment Facility (CGIF), a multilateral facility established by Asean + 3 governments and ADB to develop bond markets in the region.

APRI is a subsidiary of AboitizPower, one of Philippines’ biggest geothermal energy producers, and the IRENA study on the Philippines' electricity crisis provides broader context as it owns and operates the Tiwi and Makiling Banahaw (MakBan) geothermal facilities, the seventh and fourth largest geothermal power stations in the world, respectively.

“The awards exemplify the ever-growing importance of the private sector in implementing development work in the region,” ADB’s Private Sector Operations Department Director General Michael Barrow said.

“Our partners in the private sector provide unique solutions to development challenges — from financing to technical expertise — and today’s winners are perfect examples of that,” he added.

The awarding ceremony took place in Yokohama, Japan during an event co-hosted by CNBC and ADB at the 50th Annual Meeting of ADB’s Board of Governors.

The awards focus on highly developmental transactions and underline the important work ADB clients undertake in developing countries in Asia and the Pacific.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.