Massachusetts Issues Energy Storage Solicitation Offering $10M


Energy Storage

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Massachusetts Energy Storage Solicitation offers grants and matching funds via MassCEC and DOER for grid-connected, behind-the-meter projects, utility partners, and innovative business models, targeting 600 MW, clean energy leadership, and ratepayer savings.

 

Key Points

MassCEC and DOER matching-fund program for grid-connected storage pilots, advancing innovation and ratepayer savings.

✅ $100k-$1.25M matching funds; 50% cost share required

✅ Grid-connected, utility-partnered and behind-the-meter eligible

✅ 10-15 awards; proposals due June 9; install within 18 months

 

Massachusetts released a much-awaited energy storage solicitation on Thursday offering up to $10 million for new projects.

Issued by the Massachusetts Clean Energy Center (MassCEC) and the Department of Energy Resources (DOER), the solicitation makes available $100,000 to $1.25 million in matching funds for each chosen project.

The solicitation springs from a state report issued last year that found Massachusetts could save electricity ratepayers $800 million by incorporating 600 MW of energy storage projects. The state plans to set a specific energy storage goal, now the subject of a separate proceeding before the DOER.

The state is offering money for projects that showcase examples of future storage deployment, help to grow the state’s energy storage economy, and contribute to the state’s clean energy innovation leadership.

MassCEC anticipates making about 10-15 awards. Applicants must supply at least 50 percent of total project cost.

The state is offering money for projects that showcase examples of future storage deployment, help to grow the state’s energy storage economy, and contribute to the state’s clean energy innovation leadership.

MassCEC anticipates making about 10-15 awards. Applicants must supply at least 50 percent of total project cost.

The state plans to allot about half of the money from the energy storage solicitation to projects that include utility partners. Both distribution scale and behind-the-meter projects, including net-zero buildings among others, will be considered, but must be grid connected.

The solicitation seeks innovative business models that showcase the commercial value of energy storage in light of the specific local energy challenges and opportunities in Massachusetts.

Projects also should demonstrate multiple benefits/value streams to ratepayers, the local utility, or wholesale market.

And finally, projects should help uncover market and regulatory issues as well as monetization and financing barriers.

The state anticipates teams forming to apply for the grants. Teams may include public and private entities and are are encouraged to include the local utility.

Proposals are due June 9. The state expects to notify winners September 8, with contracts issued within the following month. Projects must be installed within 18 months of receiving contracts.

 

 

Related News

Related News

CO2 output from making an electric car battery isn't equal to driving a gasoline car for 8 years

EV Battery Manufacturing Emissions debunk viral claims with lifecycle analysis, showing lithium-ion production CO2 depends on grid mix and is offset by zero tailpipe emissions and renewable-energy charging over typical vehicle miles.

 

Key Points

EV lithium-ion pack production varies by grid mix; ~1-2 years of driving, then offset by zero tailpipe emissions.

✅ Battery CO2 depends on electricity mix and factory efficiency.

✅ 75 kWh pack ~4.5-7.5 t CO2; not equal to 8 years of driving.

✅ Lifecycle analysis: EVs cut GHG vs gas, especially with renewables.

 

Electric vehicles are touted as an environmentally friendly alternative to gasoline powered cars, but one Facebook post claims that the benefits are overblown, despite fact-checks of charging math to the contrary, and the vehicles are much more harmful to the planet than people assume.

A cartoon posted to Facebook on April 29, amid signs the EV era is arriving in many markets, shows a car in one panel with "diesel" written on the side and the driver thinking "I feel so dirty." In another panel, a car has "electric" written on its side with the driver thinking "I feel so clean."

However, the electric vehicle is shown connected to what appears to be a factory that’s blowing dark smoke into the air.

Below the cartoon is a caption that claims "manufacturing the battery for one electric car produces the same amount of CO2 as running a petrol car for eight years."

This isn’t a new line of criticism against electric vehicles, and reflects ongoing opinion on the EV revolution in the media. Similar Facebook posts have taken aim at the carbon dioxide produced in the manufacturing of electric cars — specifically the batteries — to make the case that zero emissions vehicles aren’t necessarily clean.

Full electric vehicles require a large lithium-ion battery to store energy and power the motor that propels the car, according to Insider. The lithium-ion battery packs in an electric car are chemically similar to the ones found in cell phones and laptops.

Because they require a mix of metals that need to be extracted and refined, lithium-ion batteries take more energy to produce than the common lead-acid batteries used in gasoline cars to help start the engine.

How much CO2 is emitted in the production depends on where the lithium-ion battery is made — or specifically, how the electricity powering the factory is generated, and national electricity profiles such as Canada's 2019 mix help illustrate regional differences — according to Zeke Hausfather, a climate scientist and director of climate and energy at the Breakthrough Institute, an environmental research think tank.

Producing a 75 kilowatt-hour battery for a Tesla Model 3, considered on the larger end of batteries for electric vehicles, would result in the emission of 4,500 kilograms of CO2 if it was made at Tesla's battery factory in Nevada. That’s the emissions equivalent to driving a gas-powered sedan for 1.4 years, at a yearly average distance of 12,000 miles, Hausfather said.

If the battery were made in Asia, manufacturing it would produce 7,500 kg of carbon dioxide, or the equivalent of driving a gasoline-powered sedan for 2.4 years — but still nowhere near the eight years claimed in the Facebook post. Hausfather said the larger emission amount in Asia can be attributed to its "higher carbon electricity mix." The continent relies more on coal for energy production, while Tesla’s Nevada factory uses some solar energy. 

"More than half the emissions associated with manufacturing the battery are associated with electricity use," Hausfather said in an email to PolitiFact. "So, as the electricity grid decarbonizes, emissions associated with battery production will decline. The same is not true for sedan tailpipe emissions."

The Facebook post does not mention the electricity needs and CO2 impact of factories that build gasoline or diesel cars and their components. 

Another thing the Facebook post omits is that the CO2 emitted in the production of the battery can be offset over a short time in an electric car by the lack of tailpipe emissions when it’s in operation. 

The Union of Concerned Scientists found in a 2015 report that taking into account electricity sources for charging, which have become greener in all states since then, an electric vehicle ends up reducing greenhouse gas emissions by about 50% compared with a similar size gas-powered car.

A midsize vehicle completely negates the carbon dioxide its production emits by the time it travels 4,900 miles, according to the report. For full size cars, it takes 19,000 miles of driving.

The U.S. Energy Department’s Office of Energy Efficiency and Renewable Energy also looked at the life cycle of electric vehicles — which includes a car’s production, use and disposal — and concluded they produce less greenhouse gases and smog than gasoline-powered vehicles, a conclusion consistent with independent analyses from consumer and energy groups.

The agency also found drivers could further lower CO2 emissions by charging with power generated by a renewable energy source, and drivers can also save money in the long run with EV ownership. 

Our ruling
A cartoon shared on Facebook claims the carbon dioxide emitted from the production of one electric car battery is the equivalent to driving a gas-powered vehicle for eight years.

The production of lithium-ion batteries for electric cars emits a significant amount of carbon dioxide, but nowhere near the level claimed in the cartoon. The emissions from battery production are equivalent to driving a gasoline car for one or two years, depending on where it’s produced, and those emissions are effectively offset over time by the lack of tailpipe emissions when the car is on the road. 

We rate this claim Mostly False.    

 

Related News

View more

More than half of new U.S. electric-generating capacity in 2023 will be solar

U.S. 2023 Utility-Scale Capacity Additions highlight surging solar power, expanding battery storage, wind projects, natural gas plants, and new nuclear reactors, boosting grid reliability in Texas and California with record planned installations.

 

Key Points

Planned grid expansions led by solar and battery storage, with wind, natural gas, and nuclear increasing U.S. capacity.

✅ 29.1 GW solar planned; Texas and California lead installations.

✅ 9.4 GW battery storage to more than double current capacity.

✅ Natural gas, wind, and 2.2 GW nuclear round out additions.

 

Developers plan to add 54.5 gigawatts (GW) of new utility-scale electric-generating capacity to the U.S. power grid in 2023, according to our Preliminary Monthly Electric Generator Inventory. More than half of this capacity will be solar power (54%), even as coal generation increase has been reported, followed by battery storage (17%).

 

Solar

U.S. utility-scale solar capacity has been rising rapidly EIA summer outlook since 2010. Despite its upward trend over the past decade 2018 milestone, additions of utility-scale solar capacity declined by 23% in 2022 compared with 2021. This drop in solar capacity additions was the result of supply chain disruptions and other pandemic-related challenges. We expect that some of those delayed 2022 projects will begin operating in 2023, when developers plan to install 29.1 GW of solar power in the United States. If all of this capacity comes online as planned, 2023 will have the most new utility-scale solar capacity added in a single year, more than doubling the current record (13.4 GW in 2021).

In 2023, the most new solar capacity, by far, will be in Texas (7.7 GW) and California (4.2 GW), together accounting for 41% of planned new solar capacity.

 

Battery storage

U.S. battery storage capacity has grown rapidly January generation jump over the past couple of years. In 2023, U.S. battery capacity will likely more than double. Developers have reported plans to add 9.4 GW of battery storage to the existing 8.8 GW of battery storage capacity.

Battery storage systems are increasingly installed with wind and solar power projects. Wind and solar are intermittent sources of generation; they only produce electricity when the wind is blowing or the sun is shining. Batteries can store excess electricity from wind and solar generators for later use. In 2023, we expect 71% of the new battery storage capacity will be in California and Texas, states with significant solar and wind capacity.

 

Natural gas

Developers plan to build 7.5 GW of new natural-gas fired capacity record natural gas output in 2023, 83% of which is from combined-cycle plants. The two largest natural gas plants expected to come online in 2023 are the 1,836 megawatt (MW) Guernsey Power Station in Ohio and the 1,214 MW CPV Three Rivers Energy Center in Illinois.

 

Wind

In 2023, developers plan to add 6.0 GW of utility-scale wind capacity, as renewables poised to eclipse coal in global power generation. Annual U.S. wind capacity additions have begun to slow, following record additions of more than 14 GW in both 2020 and 2021.

The most wind capacity will be added in Texas in 2023, at 2.0 GW. The only offshore wind capacity expected to come online this year is a 130.0 MW offshore windfarm in New York called South Fork Wind.

 

Nuclear

Two new nuclear reactors at the Vogtle nuclear power plant in Georgia nuclear and net-zero are scheduled to come online in 2023, several years later than originally planned. The reactors, with a combined 2.2 GW of capacity, are the first new nuclear units built in the United States in more than 30 years.

Developers and power plant owners report planned additions to us in our annual and monthly electric generator surveys. In the annual survey, we ask respondents to provide planned online dates for generators coming online in the next five years. The monthly survey tracks the status of generators coming online based on reported in-service dates.

 

 

Related News

View more

Can the UK grid cope with the extra demand from electric cars?

UK EV Grid Capacity leverages smart charging, V2G, renewable energy, and interconnectors to manage peak demand as adoption grows, with National Grid upgrades, rapid chargers, and efficiency gains enabling a reliable, scalable charging infrastructure nationwide.

 

Key Points

UK EV grid capacity is the power network's readiness to meet EV demand using smart charging, V2G, and upgrades.

✅ Smart charging shifts load to off-peak, cheaper renewable hours

✅ V2G enables EVs to supply power and balance peak demand

✅ National Grid upgrades and interconnectors expand capacity

 

The surge of electric vehicles (EVs) on our roads raises a crucial question: can the UK's electricity grid handle the additional demand? While this is a valid concern, it's important to understand the gradual nature of EV adoption, ongoing grid preparations, and innovative solutions being developed.

A Gradual Shift, Not an Overnight Leap

Firstly, let's dispel the myth of an overnight transition. EV adoption will unfold progressively, driven by factors like affordability and the growing availability of used models. The government's ZEV mandate outlines a clear trajectory, with a gradual rise from 22% EV sales in 2024 to 80% by 2030. This measured approach allows for strategic grid improvements to accommodate the increasing demand.

Preparing the Grid for the Future

Grid preparations for the EV revolution have been underway for years. Collaborations between the government, electricity providers, service stations, and charging point developers are ensuring grid coordination across the system. Renewable energy sources like offshore wind farms, combined with new nuclear power and international interconnections, are planned to meet the anticipated 120 terawatt-hour increase in demand. Additionally, improvements in energy efficiency have reduced overall electricity consumption, creating further capacity.

Addressing Peak Demand Challenges

While millions of EVs charging simultaneously might seem like they could challenge power grids, solutions are being implemented to manage peak demand:

1. Smart Charging: This technology allows EVs to charge during off-peak hours when renewable electricity is abundant and cheaper. This not only benefits the grid but also saves owners money. The UK government's EV Smart Charge Points Regulations ensure all new chargers have this functionality.

2. Vehicle-to-Grid (V2G) Technology: This futuristic concept transforms EVs into energy storage units, often described as capacity on wheels, allowing owners to sell their unused battery power back to the grid during peak times. This not only generates income for owners but also helps balance the grid and integrate more renewable energy.

3. Sufficient Grid Capacity: Despite concerns, the grid currently has ample capacity. The highest peak demand in recent years (62GW in 2002) has actually decreased by 16% due to energy efficiency improvements. Even with widespread EV adoption, the expected 10% increase in demand remains well within the grid's capabilities with proper management in place.

National Grid's Commitment:

National Grid and other electric utilities are actively involved in upgrading and expanding the grid to accommodate the clean energy transition. This includes collaborating with distribution networks, government agencies, and industry partners to ensure the necessary infrastructure (wires and connections) is in place for a decarbonized transport network.

Charging Infrastructure: Addressing Anxiety

The existing national grid infrastructure, with its proximity to roads and train networks, provides a significant advantage for EV charging point deployment. National Grid Electricity Distribution is already working on innovative projects to install required infrastructure, such as:

  • Bringing electricity networks closer to motorway service areas for faster and easier connection.
  • Leading projects like the Electric Boulevard (inductive charging) and Electric Nation (V2G charging) to showcase innovative solutions.
  • Participating in the Take Charge project, exploring new ways to facilitate rapid EV charging infrastructure growth.

Government Initiatives:

The UK government's Rapid Charging Fund aims to roll out high-powered, open-access charge points across England, while the Local EV Infrastructure Fund supports local authorities in providing charging solutions for residents without off-street parking, including mobile chargers for added flexibility.

While the rise of EVs presents new challenges, the UK is actively preparing its grid and infrastructure to ensure a smooth transition. With gradual adoption, ongoing preparations, and innovative solutions, the answer to the question Will electric vehicles crash the grid? is a resounding yes. The future of clean transportation is bright, and the grid is ready to power it forward.

 

Related News

View more

Bimbo Canada signs agreements to offset 100 per cent of its electricity consumption for Canadian operations

Bimbo Canada VPPAs secure renewable electricity from RES wind and solar projects in Alberta, totaling 170MW, via 15-year contracts to offset consumption, advance RE100 goals, and drive decarbonization across bakeries, depots, and distribution centers.

 

Key Points

Virtual power purchase agreements sourcing wind and solar to offset Bimbo Canadas electricity and support RE100.

✅ 15-year RES contracts for Alberta wind and solar capacity

✅ Offsets electricity for bakeries, depots, and distribution centers

✅ Advances Grupo Bimbo RE100 target for 100% renewable power

 

Canada's oldest and largest bakery, Bimbo Canada, has signed two virtual power purchase agreements (VPPAs) with Renewable Energy Systems  (RES) to procure renewable electricity, similar to federal green electricity contracts advancing in Alberta, that will offset 100 per cent of the company's electricity consumption in Canada. The projects are expected to be fully operational by December, 2022.

Canada is the second market, alongside the United States, to enter into VPPAs, where companies like Amazon clean energy projects are expanding rapidly. These agreements, together with additional sustainability initiatives conducted around the world by the parent company Grupo Bimbo, will help the company offset 90 per cent of its global electricity consumption.

"Bimbo Canada is committed to nourishing a better world through productive sustainability practices," said Joe McCarthy, president of Bimbo Canada. "These agreements are the next big step in reducing our environmental footprint, as peers such as Arvato's first solar plant signal industry momentum, and becoming leaders in responsible stewardship of the environment."

The 15-year agreements with RES will support the commercial development of two renewable energy projects in southern Alberta, consisting of wind and solar projects, similar to RBC's solar PPA announced in the region, totaling 170MW of installed capacity. Under these two agreements, Bimbo Canada will procure the benefit of approximately 50MW of renewable electricity to offset electricity consumption for its 16 bakeries, 14 distribution centres and 191 depots. Commercial development for the wind and solar farms will be finalized later this year by RES Canada and the projects are expected to be fully operational by the end of next year.  

"RES is proud that its Alberta wind and solar projects, amid growth such as a $200M Alberta wind farm led by a Buffett-linked firm, are helping Bimbo Canada meet its sustainability initiatives," said Peter Clibbon, RES Senior VP of Development. "It's a win-win situation with our projects delivering competitive wind and solar electricity to Bimbo Canada, and while providing our host communities with long-term tax and landowner income."

In 2018, Grupo Bimbo joined RE100, a global initiative led by The Climate Group and in partnership with Carbon Disclosure Project (CDP) and committed to operating with 100 per cent renewable electricity by 2025. As a leading supplier of fresh-baked goods and snacks for Canadian families, these agreements support the company's targets and builds upon many successful past sustainability initiatives, as market activity by Canadian Solar project sales continues nationwide.

"The renewable electricity initiatives in our operations respond to Grupo Bimbo's deep commitment that we have had for many decades globally with the planet and with present and future generations," said Daniel Servitje, global CEO of Grupo Bimbo. "With this announcement, we have achieved another important milestone for the company on our journey towards becoming 100 per cent renewable electricity by 2025."

Last year, Bimbo Canada reduced product waste and exceeded its product waste reduction target by 18 per cent, which saved four million units of products from landfills. The company also eliminated 174 metric tonnes of plastic per year (equal to 43 adult elephants) through several packaging optimization initiatives.

Earlier this year, Bimbo Canada signed the Canada Plastics Pact (CPP) and, amid a broader push for clean energy exemplified by Edmonton rooftop solar installations, earned its first ENERGY STAR certification for its Hamilton, Ontario bakery. The company will continue to work towards other initiatives that fulfill its commitment to be a sustainable, highly productive and deeply humane company.

 

Related News

View more

Solar is now ‘cheapest electricity in history’, confirms IEA

IEA World Energy Outlook 2020 highlights solar power as the cheapest electricity, projects faster renewables growth, models net-zero pathways, assesses COVID-19 impacts, oil and gas demand, and policy scenarios including STEPS, SDS, and NZE2050.

 

Key Points

A flagship IEA report analyzing energy trends, COVID-19 impacts, renewables growth, and pathways to net-zero in 2050.

✅ Solar now the cheapest electricity in most major markets

✅ Scenarios: STEPS, SDS, NZE2050, plus delayed recovery case

✅ Oil and gas demand uncertain; CO2 peak needs stronger policy

 

The world’s best solar power schemes now offer the “cheapest…electricity in history” with the technology cheaper than coal and gas in most major countries.

That is according to the International Energy Agency’s World Energy Outlook 2020. The 464-page outlook, published today by the IEA, also outlines the “extraordinarily turbulent” impact of coronavirus and the “highly uncertain” future of global energy use and progress in the global energy transition over the next two decades.

Reflecting this uncertainty, this year’s version of the highly influential annual outlook offers four “pathways” to 2040, all of which see a major rise in renewables across markets. The IEA’s main scenario has 43% more solar output by 2040 than it expected in 2018, partly due to detailed new analysis showing that solar power is 20-50% cheaper than thought.

Despite a more rapid rise for renewables and a “structural” decline for coal, the IEA says it is too soon to declare a peak in global oil use, unless there is stronger climate action. Similarly, it says demand for gas could rise 30% by 2040, unless the policy response to global warming steps up.

This means that, while global CO2 emissions have effectively peaked flatlining in 2019 according to the IEA, they are “far from the immediate peak and decline” needed to stabilise the climate. The IEA says achieving net-zero emissions will require “unprecedented” efforts from every part of the global economy, not just the power sector.

For the first time, the IEA includes detailed modeling of a 1.5C pathway that reaches global net-zero CO2 emissions by 2050. It says individual behaviour change, such as working from home “three days a week”, would play an “essential” role in reaching this new “net-zero emissions by 2050 case” (NZE2050).

Future scenarios
The IEA’s annual World Energy Outlook (WEO) arrives every autumn and contains some of the most detailed and heavily scrutinised analysis of the global energy system. Over hundreds of densely packed pages, it draws on thousands of datapoints and the IEA’s World Energy Model.

The outlook includes several different scenarios, to reflect uncertainty over the many decisions that will affect the future path of the global economy, as well as the route taken out of the coronavirus crisis during the “critical” next decade. The WEO also aims to inform policymakers by showing how their plans would need to change if they want to shift onto a more sustainable path, including creating the right clean electricity investment incentives to accelerate progress.

This year it omits the “current policies scenario” (CPS), which usually “provides a baseline…by outlining a future in which no new policies are added to those already in place”. This is because “[i]t is difficult to imagine this ‘business as-usual’ approach prevailing in today’s circumstances”.

Those circumstances are the unprecedented fallout from the coronavirus pandemic, which remains highly uncertain as to its depth and duration. The crisis is expected to cause a dramatic decline in global energy demand in 2020, with oil demand also dropping sharply as fossil fuels took the biggest hit.

The main WEO pathway is again the “stated policies scenario” (STEPS, formerly NPS). This shows the impact of government pledges to go beyond the current policy baseline. Crucially, however, the IEA makes its own assessment of whether governments are credibly following through on their targets.

The report explains:

“The STEPS is designed to take a detailed and dispassionate look at the policies that are either in place or announced in different parts of the energy sector. It takes into account long-term energy and climate targets only to the extent that they are backed up by specific policies and measures. In doing so, it holds up a mirror to the plans of today’s policy makers and illustrates their consequences, without second-guessing how these plans might change in future.”

The outlook then shows how plans would need to change to plot a more sustainable path, highlighting efforts to replace fossil fuels with electricity in time to meet climate goals. It says its “sustainable development scenario” (SDS) is “fully aligned” with the Paris target of holding warming “well-below 2C…and pursuing efforts to limit [it] to 1.5C”. (This interpretation is disputed.)

The SDS sees CO2 emissions reach net-zero by 2070 and gives a 50% chance of holding warming to 1.65C, with the potential to stay below 1.5C if negative emissions are used at scale.

The IEA has not previously set out a detailed pathway to staying below 1.5C with 50% probability, with last year’s outlook only offering background analysis and some broad paragraphs of narrative.

For the first time this year, the WEO has “detailed modelling” of a “net-zero emissions by 2050 case” (NZE2050). This shows what would need to happen for CO2 emissions to fall to 45% below 2010 levels by 2030 on the way to net-zero by 2050, with a 50% chance of meeting the 1.5C limit, with countries such as Canada's net-zero electricity needs in focus to get there.

The final pathway in this year’s outlook is a “delayed recovery scenario” (DRS), which shows what might happen if the coronavirus pandemic lingers and the global economy takes longer to recover, with knock-on reductions in the growth of GDP and energy demand.

 

Related News

View more

Canada unveils plan for regulating offshore wind

Canada Offshore Wind Amendments streamline offshore energy regulators in Nova Scotia and Newfoundland and Labrador, enabling green hydrogen, submerged land licences, regional assessments, MPAs standards, while raising fisheries compensation, navigation, and Indigenous consultation considerations.

 

Key Points

Reforms assign offshore wind to joint regulators, enable seabed licensing, and address fisheries and Indigenous issues.

✅ Assigns wind oversight to Canada-NS and Canada-NL offshore regulators

✅ Introduces single submerged land licence and regional assessments

✅ Addresses fisheries, navigation, MPAs, and Indigenous consultation

 

Canada's offshore accords with Nova Scotia and Newfoundland and Labrador are being updated to promote development of offshore wind farms, but it's not clear yet whether any compensation will be paid to fishermen displaced by wind farms.

Amendments introduced Tuesday in Ottawa by the federal government assign regulatory authority for wind power to jointly managed offshore boards — now renamed the Canada-Nova Scotia Offshore Energy Regulator and Canada-Newfoundland and Labrador Offshore Energy Regulator.

Previously the boards regulated only offshore oil and gas projects.

The industry association promoting offshore wind development, Marine Renewables Canada, called the changes a crucial step.

"The tabling of the accord act amendments marks the beginning of, really, a new industry, one that can play a significant role in our clean energy future," said  Lisen Bassett, a spokesperson for Marine Renewables Canada. 

Nova Scotia's lone member of the federal cabinet, Immigration Minister Sean Fraser, also talked up prospects at a news conference in Ottawa.


'We have lots of water'

"The potential that we have, particularly when it comes to offshore wind and hydrogen is extraordinary," said Fraser.

"There are real projects, like Vineyard Wind, with real investors talking about real jobs."

Sharing the stage with assembled Liberal MPs from Nova Scotia and Newfoundland and Labrador was Nova Scotia Environment Minister Tim Halman, representing a Progressive Conservative government in Halifax.

"If you've ever visited us or Newfoundland, you know we have lots of water, you know we have lots of wind, and we're gearing up to take advantage of those natural resources in a clean, sustainable way. We're paving the way for projects such as offshore wind, tidal energy in Nova Scotia, and green hydrogen production," said Halman.

Before a call for bids is issued, authorities will identify areas suitable for development, conservation or fishing.

The legislation does not outline compensation to fishermen excluded from offshore areas because of wind farm approvals.


Regional assessments

Federal officials said potential conflicts can be addressed in regional assessments underway in both provinces.

Minister of Natural Resources of Canada Jonathan Wilkinson said fisheries and navigation issues will have to be dealt with.

"Those are things that will have to be addressed in the context of each potential project. But the idea is obviously to ensure that those impacts are not significant," Wilkinson said.

Speaking after the event, Christine Bonnell-Eisnor, chair of what is still called the Canada Nova Scotia Offshore Petroleum Board, said what compensation — if any — will be paid to fishermen has yet to be determined.

"It is a question that we're asking as well. Governments are setting the policy and what terms and conditions would be associated with a sea bed licence. That is a question governments are working on and what compensation would look like for fishers."

Scott Tessier, who chairs  the Newfoundland Board, added "the experience has been the same next door in Nova Scotia, the petroleum sector and the fishing sector have an excellent history of cooperation and communication and I don't expect it look any different for offshore renewable energy projects."


Nova Scotia in a hurry to get going

The legislation says the offshore regulator would promote compensation schemes developed by industry and fishing groups linked to fishing gear.

Nova Scotia is in a hurry to get going.

The Houston government has set a target of issuing five gigawatts of licences for offshore wind by 2030, with leasing starting in 2025, reflecting momentum in the U.S. offshore wind market as well. It is intended largely for green hydrogen production. That's almost twice the province's peak electricity demand in winter, which is 2.2 gigawatts.

The amendments will streamline seabed approvals by creating a single "submerged land" licence, echoing B.C.'s streamlined process for clean energy projects, instead of the exploration, significant discovery and production licences used for petroleum development.

Federal and provincial ministers will issue calls for bids and approve licences, akin to BOEM lease requests seen in the U.S. market.

The amendments will ensure Marine Protected Area's  (MPAs) standards apply in all offshore areas governed by the regulations.


Marine protected areas

Wilkinson suggested, but declined, three times to explicitly state that offshore wind farms would be excluded from within Marine Protected Areas.

After this story was initially published on Tuesday, Natural Resources Canada sent CBC a statement indicating offshore wind farms may be permitted inside MPAs.

Spokesperson Barre Campbell noted that all MPAs established in Canada after April 25, 2019, will be subject to the Department of Fisheries and Oceans new standards that prohibit key industrial activities, including oil and gas exploration, development and production.

"Offshore renewable energy activities and infrastructure are not key industrial activities," Campbell said in a statement.

"Other activities may be prohibited, however, if they are not consistent with the conservation objectives that are established by the relevant department that has or that will establish a marine protected area."


Federal impact assessment process

The new federal impact assessment process will apply in offshore energy development, and recent legal rulings such as the Cornwall wind farm decision highlight how courts can influence project timelines.

For petroleum projects, future significant discovery licences will be limited to 25 years replacing the current indefinite term.

Existing significant discovery licences have been an ongoing exception and are not subject to the 25-year limit. Both offshore energy regulators will be given the authority to fulfil the Crown's duty to consult with Indigenous peoples

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified