What do Ammeters Measure?


What do Ammeters Measure

An ammeter measures electric current in a circuit, displayed in amperes (A). Connected in series with low internal resistance to reduce burden voltage, it ensures accurate readings for testing, fault detection, and diagnostics.

 

What do Ammeters Measure?

Ammeters are measuring devices that measure the flow of electricity in the form of current in a circuit.

✅ Measure electric current in amperes, connected in series with low internal resistance to minimize burden voltage.

✅ Available in analog, digital, clamp, and current transformer designs.

✅ Used for testing, fault detection, continuity checks, and diagnostics.

Electrical currents are then measured in the form of amperes, hence the name "ammeter". The term "ammeter" is sometimes used incorrectly as "ampmeter". Understanding how an ammeter works is easier when you first explore the basics of electricity fundamentals, including how voltage, current, and resistance interact in a circuit.

An ammeter measures electric current in a circuit, expressed in amperes (A). It must be connected in series with the load so that all the current flows through it, and is designed with low internal resistance to minimize burden voltage, thereby ensuring accurate readings without significantly affecting the circuit’s performance. The measurement unit for an ammeter is the ampere, explained in detail on our what is an ampere page, which also covers its relationship to other electrical units.

Ammeters are designed (as well as ohmmeters and voltmeters) to be used with a sensitive current detector such as a moving coil in a galvanometer. To measure the electric current flow through it, an ammeter is placed in series with a circuit element. The ammeter is designed to offer very low resistance to the current, so that it does not appreciably change the circuit it is measuring. To do this, a small resistor is placed in parallel with the galvanometer to shunt most of the current around the galvanometer. Its value is chosen so that when the design current flows through the meter, it will deflect to its full-scale reading. A galvanometer's full-scale current is very small: on the order of milliamperes. To see how ammeters fit into broader measurement tools, check out our guide on what is a voltmeter and what is a multimeter, which measure multiple electrical properties.

An Ammeter is analog. It is not mechanical or digital. It uses an analog-to-digital converter (ADC) to measure the voltage across the shunt resistor. The ADC is read by a microcomputer that performs the calculations to display the current through the resistor.

 

How an Ammeter Works

An ammeter works by being placed in series with the circuit so that all the current flows through it. Inside, a shunt resistor with very low internal resistance creates a small, measurable voltage drop proportional to the current. In analog designs, this current is partly diverted around a sensitive moving-coil mechanism, which displays the reading on a scale. In digital designs, the voltage drop across the shunt is measured by an analog-to-digital converter (ADC) and calculated into an amperes value, ensuring accurate measurement without significantly disturbing the circuit’s performance. Accurate current measurement also depends on understanding what is electrical resistance and how it affects current flow, especially in low-resistance ammeter designs.

 

Types and Mechanisms

Analog ammeter – Includes moving-coil (D'Arsonval) and moving-iron types, which use magnetic deflection to display current on a scale. These designs are valued for their simplicity, durability, and ability to provide continuous current readings.

Digital ammeter – Uses a shunt resistor to create a small voltage drop proportional to the current. This voltage is measured by an analog-to-digital converter (ADC) and displayed as a precise digital value. Digital ammeters often feature higher accuracy, wider measurement ranges, and additional functions such as data logging.

Clamp meter – Measures current without breaking the circuit by detecting the magnetic field around a conductor. This method is ideal for quick testing, especially in high-current applications or where live connections cannot be interrupted.

Current transformer (CT) ammeter – Designed for high-current AC systems, this type uses a transformer to scale down large primary currents into a safe, measurable secondary current for the meter.

 

Shunts and Operation

A shunt resistor is a precision, low-resistance component used in many ammeters. In analog designs, it is placed in parallel with the meter movement, diverting most of the current to protect the instrument. In certain digital designs, it is placed in series with the circuit. By measuring the voltage drop across the shunt and applying Ohm’s law, the meter accurately calculates the current. This approach allows for measurement of very large currents without damaging the meter and helps maintain measurement stability.

 

Applications and Value

Ammeters are essential tools in electrical testing, short-circuit detection, continuity testing, and system diagnostics. They help identify overloads, open circuits, and unstable current conditions that may indicate equipment faults or inefficiencies.

In industrial, commercial, and residential settings, ammeters are used for equipment maintenance, troubleshooting, and performance monitoring. Specialized variants such as milliammeters and microammeters are designed for extremely low current measurements, while integrating ammeters track current over time to determine total electrical charge delivered to a device or system. For historical context on the development of measuring instruments, visit our history of electricity page to learn how electrical science evolved over time.

 

Practical Applications of Ammeters

Ammeters are used in a wide range of electrical and electronic work:

  • Automotive diagnostics – Measuring current draw from the battery to detect parasitic drains, starter motor issues, and charging system faults.

  • Solar panel and battery monitoring – Tracking current output from photovoltaic arrays and the charging/discharging rates of storage batteries to optimize system efficiency.

  • Industrial motor maintenance – Monitoring motor current to identify overload conditions, detect bearing wear, or confirm correct load operation.

  • Household appliance servicing – Checking current draw to troubleshoot faulty components or ensure devices operate within safe limits.

  • Power distribution systems – Ensuring current levels remain within capacity for cables, fuses, and protective devices.

 

Related News

What is Power Factor? Understanding Electrical Efficiency

Power factor is the ratio of real power to apparent power in an electrical system. It measures how efficiently electrical energy is converted into useful work. A high power factor means less energy loss and better system performance.

What is Power Factor?

It is defined as the ratio of real power (kW), which performs useful work, to apparent power (kVA), which is the total power supplied to the system.

✅ Indicates how efficiently electrical power is used

✅ Reduces energy losses and utility costs

✅ Improves system capacity and voltage regulation

A poor power factor means that some of the supplied power is wasted as reactive power — energy that circulates in the system but does not perform useful work.

Power Quality Analysis Training

Power Factor Training

Request a Free Power Quality Training Quotation

Inductive loads, such as motors and variable speed drives, are a common cause of poor power factor. This inefficiency can lead to higher electric bills, particularly for industrial customers, because utilities often base demand charges on kVA rather than just on kW. To correct a poor power factor, capacitor banks are often installed to offset the inductive reactive power, reducing wasted energy and improving system efficiency.

A poor power factor can lead to higher electricity bills, especially for industrial customers who face demand charges based on kVA. Utilities must supply both the real and reactive components of power, which you can learn more about in our Apparent Power Formula: Definition, Calculation, and Examples guide. To correct power factor issues, capacitor banks are often installed to offset inductive effects and bring the system closer to unity power factor.

 

Understanding Power Factor in Electrical Systems

Power factor (PF) is not just about efficiency — it also reflects the relationship between voltage and current in an electrical circuit. It measures how closely the voltage waveform and current waveform are aligned, or "in phase," with each other.

  • Leading Power Factor: Occurs when the current waveform leads the voltage waveform. Some lighting systems, like compact fluorescent lamps (CFLs), can produce a leading power factor.

  • Lagging Power Factor: Occurs when the current waveform lags behind the voltage waveform. This is typical in systems with motors and transformers. See our article on Lagging Power Factor and How to Correct It for a detailed discussion.

  • Non-Linear Loads: Loads that distort the current waveform from its original sine wave shape, often due to switching operations within devices. Examples include electric ballasts and switch-mode power supplies used in modern electronics. Their effect on system stability is discussed in our Power Quality and Harmonics Explained guide.

  • Mixed Loads: Most real-world systems have a mix of linear and non-linear loads, which can partially cancel out some harmonic distortions.

 

Real, Reactive, and Apparent Power

To fully understand power factor, it helps to grasp the three types of electrical power:

  • Real (or Active) Power: The power that performs actual work in the system, expressed in Watts (W).

  • Reactive (or Non-Active) Power: The power stored and released by the system’s inductive or capacitive elements, expressed in Volt-Amperes Reactive (VARs). Explore how it’s calculated in our article on Reactive Power Formula in AC Circuits.

  • Apparent Power: The combined effect of real and reactive power, expressed in Volt-Amperes (VA). Utilities must deliver apparent power to serve all the loads connected to their networks.

The relationship between these three can be visualized as a right triangle, with real power as the base, reactive power as the vertical side, and apparent power as the hypotenuse. If you want to calculate power factor quickly, check out our simple How to Calculate Power Factor guide.

 

A Simple Analogy: The Horse and the Railroad Car

Imagine a horse pulling a railroad car along uneven tracks. Because the tracks are not perfectly straight, the horse pulls at an angle. The real power is the effort that moves the car forward. The apparent power is the total effort the horse expends. The sideways pull of the horse — effort that does not move the car forward — represents the reactive power.

The angle of the horse’s pull is similar to the phase angle between current and voltage in an electrical system. When the horse pulls closer to straight ahead, less effort is wasted, and the real power approaches the apparent power. In electrical terms, this means the power factor approaches 1.0 — the ideal scenario where almost no energy is wasted. For more real-world examples, we provide further explanations in Power Factor Leading vs. Lagging

The formula for calculating power factor is:

PF = Real Power ÷ Apparent Power

If your facility has poor power factor, adding a Power Factor Correction Capacitor can make a significant difference.

 

Causes of Low Power Factor

Low PF is caused by inductive loads (such as transformers, electric motors, and high-intensity discharge lighting), which are a major portion of the power consumed in industrial complexes. Unlike resistive loads that create heat by consuming kilowatts, inductive loads require the current to create a magnetic field, and the magnetic field produces the desired work. The total or apparent power required by an inductive device is a composite of the following:

• Real power (measured in kilowatts, kW)

• Reactive power, the nonworking power caused by the magnetizing current, required to operate the device (measured in kilovolts, power kVAR)

Reactive power required by inductive loads increases the amount of apparent power (measured in kilovolts-amps, kVA) in your distribution system. The increase in reactive and apparent power causes the PF to decrease.

 

Simple How-to: Correcting Power Factor

Correcting a low power factor is typically straightforward and can bring significant benefits to a facility’s energy performance. Here are some common methods:

  • Install Capacitor Banks: Capacitors supply leading reactive power, which offsets the lagging reactive power caused by inductive loads such as motors.

  • Use Synchronous Condensers: These specialized rotating machines can dynamically correct power factor in larger industrial settings.

  • Upgrade Motor Systems: High-efficiency motors and variable frequency drives (VFDs) can reduce reactive power consumption.

  • Perform Regular System Audits: Periodic testing and monitoring can identify changes in power factor over time, allowing for proactive corrections.

Implementing power factor correction measures not only improves energy efficiency but also reduces system losses, stabilizes voltage levels, and extends the lifespan of electrical equipment.

 

Industries Where Power Factor Correction Matters

Industries that operate heavy machinery, large motors, or lighting banks often struggle with low PF. Facilities interested in monitoring their system health can benefit from tools like a Power Quality Analyzer Explained. Proper correction reduces wasted energy, prevents overheating, and extends the equipment's lifespan.

Power factor management is especially important for utilities and high-demand commercial sites, where poor PF can impact both Quality of Electricity and system reliability.

Some key sectors where maintaining a high power factor is vital include:

  • Manufacturing Plants: Motors, compressors, and welding equipment can cause significant reactive power demands.

  • Data Centers: The large number of servers and cooling systems contributes to power inefficiencies.

  • Hospitals: Medical imaging machines, HVAC systems, and other critical equipment generate substantial electrical loads.

  • Commercial Buildings: Lighting systems, elevators, and HVAC units can result in a low power factor without proper correction.

  • Water Treatment Facilities: Pumps and filtration systems involve extensive motor usage, requiring careful management of power quality.

Improving the power factor in these industries not only reduces utility penalties but also enhances the reliability of critical systems.
 

Frequently Asked Questions

What is a good power factor, and why does it matter?

A power factor (PF) of 1.0 (or 100%) is ideal, indicating that all the power supplied is effectively used for productive work. Utilities typically consider a PF above 0.9 (90%) as acceptable. Maintaining a high PF reduces energy losses, improves voltage stability, and can lower electricity costs by minimizing demand charges.

 

How does low power factor increase my electricity bill?

When your PF drops below a certain threshold (often 90%), utilities may impose surcharges to compensate for the inefficiencies introduced by reactive power. For instance, BC Hydro applies increasing penalties as PF decreases, with surcharges reaching up to 80% for PFs below 50% . Improving your PF can thus lead to significant cost savings.

 

What causes a low power factor in electrical systems?

Common causes include:

  • Inductive loads: Equipment like motors and transformers consume reactive power.

  • Underloaded motors: Operating motors below their rated capacity.

  • Non-linear loads: Devices like variable frequency drives and fluorescent lighting can distort current waveforms, leading to a lower PF.

 

How can I improve my facility's power factor?

Improvement strategies encompass:

  • Installing capacitor banks: These provide reactive power locally, reducing the burden on the supply.

  • Using synchronous condensers: Particularly in large industrial settings, they help adjust PF dynamically.

  • Upgrading equipment: Replacing outdated or inefficient machinery with energy-efficient models.

  • Regular maintenance: Ensuring equipment operates at optimal conditions to prevent PF degradation.

 

Does power factor correction benefit the environment?

Yes. Enhancing PF reduces the total current drawn from the grid, leading to:

  • Lower energy losses: Less heat generation in conductors.

  • Improved system capacity: Allowing more users to be served without infrastructure upgrades.

  • Reduced greenhouse gas emissions: As overall energy generation needs decrease.

 

Related Articles

 

 

View more

What is an Electrical Circuit?

An electrical circuit is a closed loop that allows electric current to flow through conductors, power sources, and loads. Circuits connect electrical devices, enable energy transfer, and ensure safe operation in homes, industries, and power systems.

 

What is an Electrical Circuit?

An electrical circuit is a path through which electricity flows from a power source to one or more devices that are connected.

✅ Provides controlled current flow through conductors

✅ Powers electrical devices safely and efficiently

✅ Includes sources, loads, and protective components

Gaining a grasp of the basic electricity of electrical circuits, including series and parallel configurations, voltage, current, resistance, Ohm's Law, and circuit analysis techniques, is vital for anyone interested in electronics, electrical engineering, or the inner workings of modern technology.

 

Core Components & Function

In order to understand what an electrical circuit is, one must appreciate that, 

At its core, an electrical circuit is a closed loop or pathway that facilitates the flow of electric current. This concept is essential in electronics and electrical engineering, as it provides the basis for the operation of everyday items, including smartphones, computers, and home appliances.

Within an electrical circuit, components are connected via conductive materials, such as wires, which enable the movement of electrons from a power source to other components and back.

The primary components of an electrical circuit include a power source (e.g., a battery or power supply unit), conductive materials (typically wires), a load (such as a resistor, motor, or light bulb), and a control element (for example, a switch). The power source supplies the voltage necessary for electric current flow, while the load transforms electrical energy into other forms, such as light or heat. Meanwhile, the control element permits the user to initiate or halt the flow of electrons, effectively turning a device on or off.

  • For students, a simple example is a battery connected to an LED, which demonstrates how electricity creates light.

  • For professionals, an industrial motor powered by a control circuit shows how electrical energy drives large-scale equipment.

 

Circuit Types (Series vs. Parallel)

Electrical circuits can be classified into three main types: series, parallel, and combination circuits.

  • Series circuits connect components end-to-end, allowing current to flow sequentially through each one. Example: holiday string lights, where a single bulb outage can disrupt the entire circuit.

  • Parallel circuits enable current to flow through multiple paths. Example: household wiring, where turning off one light doesn’t affect others.

  • Combination circuits mix both series and parallel configurations to handle more complex systems.

 

Fundamental Laws (Ohm’s Law, Kirchhoff’s Laws)

A fundamental understanding of voltage, current, and resistance is crucial for comprehending electrical circuit operations.

Voltage, the driving force that propels electric charge through a circuit, and current, the flow of electric charge measured in amperes (A), are closely related to resistance. Resistance, expressed in ohms (Ω), represents the opposition to the flow of current. These elements are interconnected through Ohm's law, which states that the voltage across a conductor is directly proportional to the current it carries and inversely proportional to its resistance: V = IR, where V represents voltage, I denotes current, and R represents resistance. Understanding how current creates magnetic fields is explained by Ampere's Law, which forms the basis for analyzing electromagnetism in electrical circuits.

Circuit analysis determines the current, voltage, and power associated with each component in an electrical circuit. Techniques such as Kirchhoff's Law of voltage and current, Thevenin's theorem, and Norton's theorem are employed to analyze and resolve electrical circuit issues. These methods enable engineers to design and troubleshoot electronic devices and systems effectively.


Thevenin's Theorem

Thevenin's theorem is a fundamental principle in electrical engineering and circuit analysis. It is a powerful technique to simplify complex linear circuits, making it easier to analyze and calculate the current, voltage, and power across specific components. The theorem is named after the French engineer Charles Léonard Siméon Thévenin, who proposed it in 1883.

 

Thevenin's theorem states that any linear, active, bilateral network containing voltage sources, current sources, and resistors can be replaced by an equivalent circuit consisting of a single voltage source (called Thevenin's voltage, Vth) in series with a single resistor (called Thevenin's resistance, Rth) connected to the terminals of the original circuit. This simplified circuit, known as the Thevenin equivalent circuit, can then be used to analyze the behaviour of the original circuit with a specific load connected to its terminals.

Steps to apply Thevenin’s theorem:

  1. Identify the portion of the circuit you want to simplify and the terminals where the load will be connected.

  2. Remove the load from the terminals (if present) and leave the terminals open-circuited.

  3. Calculate the open-circuit voltage across the terminals. This value is Thevenin's voltage (Vth).

  4. Calculate the equivalent resistance seen from the open-circuited terminals with all independent voltage sources replaced by short circuits (zero resistance) and all independent current sources replaced by open circuits (infinite resistance). This value is Thevenin's resistance (Rth).

  5. Create the Thevenin equivalent circuit using the calculated Vth and Rth values, then connect the original load across the terminals.

Once the Thevenin equivalent circuit is determined, you can easily analyze the circuit's behaviour and calculate the current through the load, the voltage across the load, or even the power delivered to the load. This technique is particularly useful when analyzing circuits with varying loads or examining the circuit's behaviour at multiple points, as it simplifies calculations and saves time.

 

Norton’s Theorem

Norton's theorem is a fundamental principle in electrical engineering and circuit analysis that simplifies the analysis of complex linear circuits. Named after the American engineer Edward Lawry Norton, who introduced it in the early 20th century, the theorem is a counterpart to Thevenin's theorem.

 

While Thevenin's theorem reduces a complex network to an equivalent voltage source in series with a resistor, Norton's theorem simplifies the network to an equivalent current source parallel to a resistor.

Norton's theorem states that any linear, active, bilateral network containing voltage sources, current sources, and resistors can be replaced by an equivalent circuit consisting of a single current source (called Norton's current, IN) in parallel with a single resistor (called Norton's resistance, RN) connected to the terminals of the original circuit.

Steps to apply Norton’s theorem:

  1. Identify the portion of the circuit you want to simplify and the terminals where the load will be connected.

  2. Remove the load from the terminals (if present) and leave the terminals open-circuited.

  3. Calculate the short-circuit current flowing between the terminals. This value is Norton's current (IN).

  4. Calculate the equivalent resistance seen from the open-circuited terminals with all independent voltage sources replaced by short circuits (zero resistance) and all independent current sources replaced by open circuits (infinite resistance). This value is Norton's resistance (RN). Note that Norton's resistance is equal to Thevenin's, as both are calculated similarly.

  5. Create the Norton equivalent circuit with the calculated IN and RN values, connecting the original load across the terminals.

Once the Norton equivalent circuit is established, you can easily analyze the circuit's behaviour and calculate the current through the load, the voltage across the load, or even the power delivered to the load. Like Thevenin's theorem, Norton's theorem is particularly useful when dealing with varying loads or analyzing a circuit's behaviour at multiple points. In addition, it simplifies calculations, conserving time and effort.

 

Circuit Diagrams & Symbols

Circuit diagrams, also known as schematic diagrams, are graphical representations of electrical circuits that utilize standardized symbols to depict components such as resistors, capacitors, inductors, diodes, and transistors. These symbols facilitate the interpretation of a circuit's structure and function by engineers or hobbyists without requiring physical examination of the actual components.

Here are some common symbols used in circuit diagrams:

Resistor: A simple zigzag line represents a resistor, which opposes the flow of electric current and dissipates energy in the form of heat.

Capacitor: Two parallel lines with a small gap represent a capacitor. The positive plate is marked with a "+" sign in polarized capacitors, and a curved line represents the negative plate.

Inductor: A series of curved or looped lines, similar to a coil, represents an inductor, which stores energy in a magnetic field and opposes changes in current.

Diode: A triangle pointing to a line represents a diode, which allows current to flow in one direction but blocks it in the opposite direction.

Light-emitting diode (LED): Similar to a diode symbol, but with two arrows pointing away from the triangle, representing light emission.

Transistor: Two types of transistors are commonly used: bipolar junction transistors (BJTs) and field-effect transistors (FETs). A BJT symbol comprises a circle or rectangle with three connected leads (emitter, base, and collector). FET symbols are represented by a combination of lines and a vertical arrow with three terminals (gate, source, and drain).

Integrated circuit (IC): A rectangular or square box with multiple leads connected represents an integrated circuit, a complex assembly of numerous electronic components within a single package.

Battery: Alternating long and short parallel lines represent a battery, a source of electrical energy.

Power supply: A circle with an arrow pointing upwards or a combination of letters, such as "Vcc" or "+V," represents a power supply, which provides a constant voltage or current.

Switch: A break in line with an angled line nearby or a pair of lines connected by a diagonal line represents a switch, which controls the flow of current by making or breaking a circuit.

Ground: A series of horizontal lines that decrease in length, a downward-pointing arrow, or the letters "GND" represent a ground connection, which serves as a reference point and provides a return path for electrical currents.

These are just a few examples of the many symbols used in circuit diagrams. Therefore, it's essential to familiarize yourself with these symbols to read or create schematic diagrams for electrical or electronic circuits. The ability of a circuit to store electrical charge is described by Capacitance, a key principle in both electronics and power systems.

 

Practical Applications & Examples

Electrical circuits form the foundation of modern technology, enabling us to harness electricity to operate a wide range of devices and systems. From smartphones and computers to household appliances and industrial machines, circuits power nearly every aspect of daily life.

For example, a simple battery connected to a light bulb demonstrates how a closed loop allows current to flow, converting electrical energy into light and heat. Safe return paths for current are established through the proper installation of Grounding Electrode Conductors, which helps prevent shock and equipment damage.

 

Frequently Asked Questions

 

What is the simplest electrical circuit?

The simplest circuit consists of a power source (such as a battery), a conductor (like a wire), and a load (like a bulb). Closing the loop lets current flow and power the load.

 

How do series and parallel circuits differ in real life?

Series circuits share a single path, so if one component fails, the entire circuit stops. Parallel circuits have multiple paths, allowing devices to operate independently.

 

Why is grounding important in electrical circuits?

Grounding provides a safe return path for electricity. It reduces shock hazards and prevents equipment damage during faults or surges.

 

What role does resistance play in a circuit?

Resistance controls the amount of current flowing. High resistance limits current, while low resistance allows more current to pass.

 

What is the function of a circuit breaker or fuse?

These protective devices interrupt the current when it becomes too high, preventing overheating, fires, and damage to equipment. To safeguard devices and wiring from excessive currents, engineers rely on Overcurrent Protection Device such as fuses and circuit breakers.

 

What is an electrical circuit? Why It Matters

Electrical circuits are the backbone of modern technology, powering everything from smartphones and appliances to industrial systems. A firm grasp of fundamental circuit principles is crucial for engineers, electricians, and hobbyists, as it unlocks a deeper understanding of the devices that shape everyday life.

 

Related Articles

 

View more

Capacitance Definition

Capacitance definition clarifies how a capacitor stores electric charge per unit voltage, measured in farads, influenced by plate area and dielectric, shaping reactance, energy storage, and signal behavior in AC and DC circuits.

 

What Is the Capacitance Definition?

Capacitance is a component's ability to store electric charge per unit voltage, measured in farads.

✅ Measured in farads with C = Q/V

✅ Depends on plate area, spacing, and dielectric

✅ Affects reactance, filtering, and energy storage

 

Capacitance Definition

Another important property in AC electronic circuits, besides resistance and inductance, is capacitance. Capacitance is measured in units. The unit of capacitance is the farad. While inductance is represented in a circuit by a coil, capacitance is represented by a capacitor. In its most basic form, the capacitor is constructed of two parallel plates separated by a nonconductor, called a dielectric. In an electrical circuit, a capacitor serves as a reservoir or storehouse for electricity. For a clear overview of device construction and function, see what is a capacitor to relate these fundamentals.

 

Capacitance Definition in Direct Current

When a capacitor is connected across a source of direct current, such as a storage battery in the circuit shown in Figure 1A, and the switch is then closed, the plate marked B becomes positively charged, and the A plate negatively charged. Current flows in the external circuit when the electrons move from B to A. The current flow in the circuit is at a maximum when the switch is closed, but it continually decreases until it reaches zero. The current becomes zero as soon as the difference in voltage of A and B becomes the same as the applied voltages of the battery. The plates remain charged if the switch is opened, as shown in Figure 1B. Once the capacitor is shorted, it will discharge quickly as shown in Figure 1C. It should be clear that when the capacitor is being charged or discharged, there is current in the circuit, even though the gap between the capacitor plates breaks the circuit. Current is present only during the time of charge and discharge, which is usually short. A broader introduction is provided in what is capacitance for context on this charging behavior.


Fig 1 - Capacitance Definition in direct current.

The RC Time Constant The time required for a capacitor to attain a full electrical charge is proportional to the capacitance and the resistance of the circuit. The resistance of the circuit introduces the element of time into the charging and discharging of a capacitor. When designing filters or timing networks, combining devices affects total C, and capacitance in parallel explains how values add.

When a capacitior charges or discharges through a resistance, a certain amount of time is required for a full charge or discharge. The voltage across the capacitor will not change instantaneously. The rate of charging or discharging is determined by the circuit's time constant. The time constant of a series RC (resistor/ capacitor) circuit is a time interval that equals the product of the resistance in ohms and the capacitance in farad and is symbolized by the greek letter tau (τ). For a concise refresher on definitions and symbols, see capacitance before applying the time constant formula.

τ = RC

The time in the formula is required to charge to 63% of the voltage of the source. The time needed to bring the amount of charge to about 99% of the source voltage is approximately 5 τ. Figure 2 illustrates this relationship of the time constant characteristics of charging. In network calculations, series combinations behave differently, and capacitance in series outlines the reciprocal method used.


Fig 2 - Capacitance Definition discharge curve.

When asked for a capacitance definition, I often explain that capacitance is the measure of a capacitor’s ability to store electric charge. The symbol used for capacitance is the letter C. You can measure the electric potential of the dielectric material in an electronic component where it may store energy. For details on nomenclature and SI units, consult the unit of capacitance and confirm typical values.

As can be seen from the time constant illustration, there can be no continuous movement of direct current through a capacitor. A good capacitor will block
direct current and will pass the effects of pulsing DC or alternating current. For application examples across power supplies, signal coupling, and filtering, explore capacitors to see practical implementations.

 

 

Related Articles

View more

What is an Ampere?

An ampere is the standard unit of electric current in the International System of Units (SI). It measures the flow of electric charge in a circuit, with one ampere equal to one coulomb of charge passing through a point per second.

 

What is an Ampere?

The ampere (A) is one of several units used to measure the electromagnetic force between straight, parallel conductors carrying electric current.

✅ Measures electric current or flow of electric charge per second

✅ Defined as one coulomb of charge per second in a conductor

✅ Essential in circuit design, safety, and load calculations

 

Scientific Definition and Formula

The ampere is defined by the formula:

  • V is voltage in volts

  • R is resistance in ohms

  • I is current in amperes

When you explore Ohm’s Law, you'll learn how voltage and resistance influence current using the formula I = V / R.

 

Safety Considerations

Electric current levels and their effects on the human body:

  • 1 mA: barely perceptible

  • 5–10 mA: painful shock

  • 50 mA: can cause breathing difficulty

  • 100 mA: potentially fatal if it passes through the chest

Even small currents, if applied in the wrong way, can be dangerous, especially in wet conditions.

 

Applications of Amperes

  • Power system design: selecting proper wire gauges and protective devices

  • Circuit protection: fuses and circuit breakers are rated in amperes

  • Electronics: current limits are vital in component design

  • Battery ratings: indicate how much current a battery can safely deliver

An ammeter is essential for measuring current directly in amperes within a circuit.

 

Although the ammeter can measure electric flow in coulombs per second, it is calibrated or marked in amperes. For most practical applications, the term amperes is used instead of coulombs per second when referring to the amount of current flow. Note the use of the prefixes micro and milli to represent very small amounts of current and kilo and mega to represent very large amounts.  The article on the ampere explains why one coulomb per second is foundational to electrical theory. Exploring power factor reveals how reactive energy and real power interact in systems with large currents.

A current of a few milliamperes will give you a startling shock. About 50 mA will jolt you severely, and 100 mA can cause death if it flows through your chest cavity.

An ordinary 100-watt light bulb draws a current of about 1 A. An electric iron draws approximately 10 A; an entire household normally uses between 10 A and 50 A, depending on the size of the house, the types of appliances it has, and also the time of day, week, or year. Learning about the watt helps readers see how power (watts) relates to current (amperes) and voltage.

The amount of current that flows in an electrical circuit depends on both the voltage and the resistance. There are some circuits in which extremely large currents, say 1000 A, flow; this might happen through a metal bar placed directly at the output of a massive electric generator. The resistance is extremely low in this case, and the gen­erator is capable of driving huge amounts of charge. In some semiconductor electronic devices, such as microcomputers, a few nanoamperes are often sufficient for many complex processes. Some electronic clocks draw so little current that their batteries last as long as they would if left on the shelf without being used at all. Reading about electricity safety shows why even small currents—measured in amperes—can pose serious hazards.

Related Articles

 

View more

What is a Watt-hour?

A watt-hour (Wh) is a unit of energy equal to using one watt of power for one hour. It measures how much electricity is consumed over time and is commonly used to track energy use on utility bills.

Understanding watt-hours is important because it links electrical power (watts) and time (hours) to show the total amount of energy used. To better understand the foundation of electrical energy, see our guide on What is Electricity?

 

Watt-Hour vs Watt: What's the Difference?

Although they sound similar, watts and watt-hours measure different concepts.

  • Watt (W) measures the rate of energy use — how fast energy is being consumed at a given moment.

  • Watt-hour (Wh) measures the amount of energy used over a period of time.

An easy way to understand this is by comparing it to driving a car:

  • Speed (miles per hour) shows how fast you are travelling.

  • Distance (miles) shows how far you have travelled in total.

Watt-hours represent the total energy consumption over a period, not just the instantaneous rate. You can also explore the relationship between electrical flow and circuits in What is an Electrical Circuit?

 

How Watt-Hours Are Calculated

Calculating watt-hours is straightforward. It involves multiplying the power rating of a device by the length of time it operates.
The basic formula is:

Energy (Wh) = Power (W) × Time (h)

This illustrates this relationship, showing how steady power over time yields a predictable amount of energy consumed, measured in watt-hours. For a deeper look at electrical power itself, see What is a Watt? Electricity Explained

 

Real-World Examples of Watt-Hour Consumption

To better understand how watt-hours work, it is helpful to examine simple examples. Different devices consume varying amounts of energy based on their wattage and the duration of their operation. Even small variations in usage time or power level can significantly affect total energy consumption.

Here are a few everyday examples to illustrate how watt-hours accumulate:

  • A 60-watt lightbulb uses 60 watt-hours (Wh) when it runs for one hour.

  • A 100-watt bulb uses 1 Wh in about 36 seconds.

  • A 6-watt Christmas tree bulb would take 10 minutes to consume 1 Wh.

These examples demonstrate how devices with different power ratings achieve the same energy consumption when allowed to operate for sufficient periods. Measuring energy usage often involves calculating current and resistance, which you can learn more about in What is Electrical Resistance?

 

Understanding Energy Consumption Over Time

In many cases, devices don’t consume energy at a steady rate. Power use can change over time, rising and falling depending on the device’s function. Figure 2-6 provides two examples of devices that each consume exactly 1 watt-hour of energy but in different ways — one at a steady rate and one with variable consumption.

Here's how the two devices compare:

  • Device A draws a constant 60 watts and uses 1 Wh of energy in exactly 1 minute.

  • Device B starts at 0 watts and increases its power draw linearly up to 100 watts, still consuming exactly 1 Wh of energy in total.

For Device B, the energy consumed is determined by finding the area under the curve in the power vs time graph.
Since the shape is a triangle, the area is calculated as:

Area = ½ × base × height

In this case:

  • Base = 0.02 hours (72 seconds)

  • Height = 100 watts

  • Energy = ½ × 100 × 0.02 = 1 Wh

This highlights an important principle: even when a device's power draw varies, you can still calculate total energy usage accurately by analyzing the total area under its power curve.

It’s also critical to remember that for watt-hours, you must multiply watts by hours. Using minutes or seconds without converting will result in incorrect units.

 



Fig. 2-6. Two hypothetical devices that consume 1 Wh of energy.

 

Measuring Household Energy Usage

While it’s easy to calculate energy consumption for a single device, it becomes more complex when considering an entire household's energy profile over a day.
Homes have highly variable power consumption patterns, influenced by activities like cooking, heating, and running appliances at different times.

Figure 2-7 shows an example of a typical home’s power usage throughout a 24-hour period. The curve rises and falls based on when devices are active, and the shape can be quite complex. Saving energy at home starts with understanding how devices consume power; see How to Save Electricity

Instead of manually calculating the area under such an irregular curve to find the total watt-hours used, electric utilities rely on electric meters. These devices continuously record cumulative energy consumption in kilowatt-hours (kWh).

Each month, the utility company reads the meter, subtracts the previous reading, and bills the customer for the total energy consumed.
This system enables accurate tracking of energy use without the need for complex mathematical calculations.

 



Fig. 2-7. Graph showing the amount of power consumed by a hypothetical household, as a function of the time of day.

 

Watt-Hours vs Kilowatt-Hours

Both watt-hours and kilowatt-hours measure the same thing — total energy used — but kilowatt-hours are simply a larger unit for convenience. In daily life, we usually deal with thousands of watt-hours, making kilowatt-hours more practical.

Here’s the relationship:

  • 1 kilowatt-hour (kWh) = 1,000 watt-hours (Wh)

To see how this applies, consider a common household appliance:

  • A refrigerator operating at 150 watts for 24 hours consumes:

    • 150 W × 24 h = 3,600 Wh = 3.6 kWh

Understanding the connection between watt-hours and kilowatt-hours is helpful when reviewing your utility bill or managing your overall energy usage.

Watt-hours are essential for understanding total energy consumption. Whether power usage is steady or variable, calculating watt-hours provides a consistent and accurate measure of energy used over time.
Real-world examples — from simple light bulbs to complex household systems — demonstrate that, regardless of the situation, watt-hours provide a clear way to track and manage electricity usage. 

By knowing how to measure and interpret watt-hours and kilowatt-hours, you can make more informed decisions about energy consumption, efficiency, and cost savings. For a broader understanding of how energy ties into everyday systems, visit What is Energy? Electricity Explained

 

Related Articles

 

View more

How to Save Electricity?

How to save electricity? Improve energy efficiency, switch to LED lighting, manage standby power, use smart thermostats, insulate homes, schedule heavy appliances off-peak, and conduct energy audits to cut power consumption and lower bills.

 

How to Save Electricity?

Reduce power consumption with LEDs, smart thermostats, insulation, and off-peak usage to lower energy bills.

✅ Upgrade to LED lighting and ENERGY STAR appliances

✅ Program smart thermostats; set HVAC to efficient ranges

✅ Eliminate standby power with advanced power strips

 

How to Save Electricity is a popular question. It involves energy conservation and lessens real dollars and preserves a public resource. Here are some ways to cut energy costs without compromising your lifestyle too much. For a deeper primer on cutting household consumption, explore this saving electricity guide for actionable steps.

 

Control heating and cooling costs

In some climates, heating and cooling represent the largest part of household energy use. In many climates, running your air conditioner at 78 instead of 72 will earn 40% of your cooling bill. You don't have to freeze or roast to death in order to use less energy and earn money. In some climates, heating and cooling represent the largest part of household energy use. In many climates, running your air conditioner at 78 instead of 72 will earn 40% of your cooling bill. You don't have to freeze or roast to death in order to use less energy and earn money.In some climates, heating and cooling represent the largest part of household energy use. In many climates, running your air conditioner at 78 instead of 72 will earn 40% of your cooling bill. You don't have to freeze or roast to death in order to use less energy and earn money. Here are a few tips:

Understanding how HVAC loads draw electric power can help you schedule operation during cooler periods for efficiency.

  • How to Save Electricity? Make sure your filters are clean. Check with the manufacturer of your equipment or with your utility company to see if filters on your units need to be cleaned.
  • Don't heat or cool when no one is home. If you are going to be gone for more than a half an hour, you can turn your heating or cooling off or down. Don't turn off the heat in a cold climate because that may result in the pipes breaking.
  • Supplement your main unit with portable units Running a fan can help you use less air conditioning. Using portable heaters when you are asleep or otherwise staying in one room can mean less use of heat if it means that you don't have to use the main unit.
  • Try setting your thermostat to run less frequently Turn your air conditioner up a degree or two or your heater down a degree or two and see if you still can be comfortable.
  • Time your opening and closing of windows and drapes to reduce heading and cooling costs. On cold, sunny days, opening curtains and drapes while leaving windows closed will help you heat your home. Opening the windows on summer nights helps cool your home. Buying storm windows in some climates reduces heating costs.
  • Check for holes in your roof and in your pipes. This can help reduce up to 10 per cent of your heating and cooling costs.

Track your improvements by reading your electricity meter regularly and noting weekday versus weekend patterns.

 

Get energy saving ideas from your utility company 

Utility companies are among the few businesses who hope that you use less of their product. Most power companies are anxious to postpone construction of new power plants, so they strongly encourage customers to use less power. 
Utility companies offer energy audits, tips, and other help for customers who want to reduce energy consumption. Call your local utility or log onto their website to see what they have to offer. Many utilities explain how electricity cost components like demand and time-of-use rates affect bills.

 

Other Electricity Saving tips:

  • Consider how to increase your energy efficiency when buying appliances Appliances are labeled with energy usage comparison tables. Look at these figures. Also, you may be able to buy an adapter to make your older appliances more energy efficient.
  • Turn off appliances that no one is using Turning off TV's, lamps, computers, VCR's, ovens, and other appliances that no one is using can reduce electric energy consumption. Even turning them off for short periods can produce noticeable results.
  • See if an alternative energy company is available In California, electrical deregulation is beginning to result in alternative providers of electric power. This is a trend that should increase nationally. See if that option is available to you.
  • Install low-flow heads in your water closets. Also, check your water heater's temperature and set it for 120 degrees. Putting insulation over your water heater and pipes can also help.
  • Wash and dry only full loads of clothing or dishes

Stay aware of regional electricity prices so you can plan high-use activities for lower-cost periods.

You may not make you rich, but it will help you cut down some on your costs and will help prevent blackouts and power shortages in your community.

Are your company's profits being eroded by escalating energy costs? Can you gamble that your energy costs will go down in the future? What are you doing about preparing and protecting your company from spiraling energy costs?

If you operate in competitive markets, review how electricity deregulation shapes supplier choices and contract terms.

Do you have the knowledge of the dynamic market with the right equipment that will make the 'smart decisions' and make an effective difference in your energy consumption and see your energy bill go down?

Facilities with inductive loads can cut charges by improving power factor through correction equipment and better motor controls.

 

Do you know about the latest technologies that you can implement now?

These questions can be answered by our new Industrial, Commercial & Institutional Energy Efficiency Handbook. This 100+ page book is jammed with practical information on reducing energy consumption, increase Energy efficiency by using modern technologies such as variable frequency drives, high efficiency electrical devices, energy efficient lighting, energy management control systems, metering and management systems, as well as fan, pump and blower efficiency improvements. We will also list Federal, State, utility and Canadian government programs that will reduce your energy consumption and increase your energy efficiency.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified