Race to build deep-water wind farms is a long one

By Associated Press


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Waters off the Northeast coast are called by some the Saudi Arabia of wind for their potential in providing massive amounts to energy to the region.

Yet even talk of placing huge turbines in shallow waters off scenic shores can raise an enormous public outcry.

Behind the scenes in the U.S. and in Europe, the race is on to build the world's first deep-water wind farms, ones that would operate on floating platforms in waters hundreds of feet deep, like oil rigs found in the North Sea and the Gulf of Mexico.

There are gargantuan technical hurdles, but there is also the potential for a huge payoff, said Habib Dagher, who is working on a deep-water wind turbine at the University of Maine.

"We can open up the largest renewable resource that the U.S. has," he said.

About 78 percent of the nation's electricity is consumed by people on the East and West coasts and along the Great Lakes, all places with enormous wind potential.

The potential in the U.S. and elsewhere has drawn a number of players into the race.

Boston-based Blue H USA is seeking permission to put a demonstration floating turbine in federal waters 23 miles off the coast of Massachusetts' Martha Vineyard.

Blue H's affiliate, Blue H Technologies BV in Denmark, has a 2/3-scale demonstration turbine operating off southern Italy and has proposed a full-scale prototype off France. It is also part of a consortium of companies that has proposed building a wind farm on floating platforms in the North Sea, with the first turbines being constructed as soon as 2013.

Elsewhere, the Norwegian company StatoilHydro is building a pilot wind turbine to be installed off Norway next year and tested over a two-year period. StatoilHydro says the windmill will be able to be placed in depths from 350 feet to more than 2,000 feet.

Another Norwegian company, Sway, has designed a turbine for offshore use that has no platform and would be tethered to the ocean floor.

Texas oil tycoon T. Boone Pickens has brought a lot of attention to wind power with a plan for large-scale projects in the Midwest. Land-based wind turbines this year will supply 48 billion kilowatt hours of power in the U.S., enough to meet the electricity needs of 4.5 million homes, according to the American Wind Energy Association.

But it makes more sense to look out to sea, where the nation's best winds and greatest population densities are found, said Raymond Dackerman, general manager of Blue H USA.

"With all due respect to North Dakota and South Dakota, which have also been labeled the Saudi Arabia of wind, people live along our coastlines," Dackerman said. "It's relatively easier to cable back in from offshore locations into demand centers as opposed to creating projects in locations that are far from population centers."

Europe already has shallow-water wind farms, mostly off Denmark and the United Kingdom. And the United States' first ocean-based wind farms are expected to begin operating in shallow waters off Atlantic Coast states in the coming years.

Erecting wind turbines in shallow-water sites is relatively simple. Huge steel stakes are driven into the ocean bottom to ground turbines.

But that's not feasible farther offshore, where winds are stronger.

Putting turbines far out to sea is a long-range goal, but the most recent energy shock has sparked more interest, said Walt Musial, one of the nation's top wind power experts.

"All we have now are computer models, so we need more testing in the ocean," said Musial, an engineer with the Department of Energy's National Renewable Energy Laboratory in Golden, Colo. "We don't know yet what the detailed requirements are for a deep-water offshore site."

Dagher testified with Pickens about wind power before the Senate Homeland Security Committee in July.

Winds in the Gulf of Maine blow at 20 to 22 mph on average, compared to wind speeds of 15 1/2 to 18 1/2 mph in the Midwest, Dagher said. While the difference may not seem great, those offshore winds can produce 2 1/2 times the electricity of land-based turbines.

Placing turbines far offshore also eliminates the eyesore factor for people who might object to large towers in their view, he said.

In addition to the technical challenge of building 300-foot towers 10 to 20 miles offshore, developers must find out how best to route power back to land through cables buried under the ocean floor.

Shipping lanes, marine mammals, fishing boats, sea birds and even airplanes, and how their radar would be affected by ocean towers, have to be considered.

There are also the financial costs, regulatory obstacles, not to mention hurricanes.

Dagher, who has been working with several companies on his prototype turbine, envisions wind farms 20 to 30 miles out in the Gulf of Maine — but not for at least 10 years.

StatoilHydro spokesman Oistein Johannessen said offshore wind power is evolving the same way offshore oil drilling did. The early oil rigs were in shallow waters on concrete platforms, and eventually went deeper and deeper until they became floating platforms far at sea.

"I think it's important when we think about this that we keep in mind this is a long-term perspective," Johannessen said. "We're talking about 10 years-plus, or 20 years maybe, before the technology is available on commercial terms."

While the technology isn't perfected yet, Musial said the interest is there. And, he added, one thing is for sure: "The wind is there."

Related News

Wall Street Backs Rick Perry’s $19 Billion Data Center Venture

Wall Street backs Rick Perry’s $19 billion nuclear-powered data center venture, Fermi America, combining nuclear energy, AI infrastructure, and data centers to meet soaring electricity demand and attract major investors betting on America’s clean energy technology future.

 

What is "Wall Street Backs Rick Perry’s $19 Billion Nuclear-Powered Data Center Venture”?

Wall Street is backing Rick Perry’s $19 billion nuclear-powered data center venture because it combines the explosive growth of AI with the promise of clean, reliable nuclear energy.

✅ Addresses AI’s massive power demands with nuclear generation

✅ Positions Fermi America as a pioneer in energy-tech convergence

✅ Reflects investor confidence in long-term clean energy solutions

Former Texas Governor and U.S. Energy Secretary Rick Perry has returned to the energy spotlight, this time leading a bold experiment at the intersection of nuclear power and artificial intelligence. His startup, Fermi America, headquartered in Amarillo, Texas, went public this week with an initial valuation of $19 billion after its shares surged 55 percent above the opening price on the first day of trading.

The company aims to tackle one of the most pressing challenges in modern technology: the staggering energy demand of AI data centers. “Artificial intelligence, which is getting more and more embedded in all parts of our lives, the servers that host the data for artificial intelligence are stored in these massive warehouses called data centers,” said Houston Chronicle energy reporter Claire Hao. “And data centers use a ton of electricity.”

Fermi America’s plan, Hao explained, is as ambitious as it is unconventional. Fermi America has a proposal to build what it claims will be the world’s largest data center, powered by what it asserts will be the country’s largest nuclear complex. So very ambitious plans.”

According to the company’s roadmap, Fermi aims to bring its first mega reactor online by 2032, followed by three additional large reactors. In the meantime, the firm intends to integrate natural gas and solar energy by the end of next year to support early-stage operations.

While much of the energy sector’s attention has turned toward small modular reactors, Fermi’s approach focuses on traditional large-scale nuclear technology. “What Fermi is talking about building are large traditional reactors,” Hao said. “These very large traditional reactors are a tried and true technology. But the nuclear industry has a history of taking a very long time to build them, and they are also very expensive to build.” She noted that the most recent example, completed in 2023 by a Georgia utility, came in $17 billion over budget and several years late.

To mitigate such risks, Fermi has recruited specialists with international experience. “They’ve hired folks that have successfully built these projects in China and in other countries where it has been a lot smoother to build these,” Hao said. “Fermi wants to try to make it a quicker process.”

Perry’s involvement lends both visibility and controversy. In addition to co-founding the company, Griffin Perry, his son, plays a role in its management. The firm has hinted that it might even name reactors after former President Donald Trump, under whom Perry served as Secretary of Energy. Perry has framed the project as part of a national effort to regain technological ground. “He really wants to help the U.S. catch up to countries like China when it comes to delivering nuclear power for the AI race,” Hao explained. “He says we’re already behind.”

Despite the fanfare, Fermi America is still a fledgling enterprise. Founded in January and announced publicly in June, the company reported a $6.4 million loss in the first half of the year and has yet to generate any revenue. Still, its IPO exceeded expectations, opening at $21 a share and closing above $32 on the first day.

“I think that just shows there’s a lot of hype on Wall Street around artificial intelligence-related ventures,” Hao said. “Fermi, in the four months since it announced itself as a company, has found a lot of different ways to grab people’s attention.”

For now, the project represents both a technological gamble and a test of investor faith — a fusion of nuclear ambition and AI optimism that has Wall Street watching closely.

 

Related Articles

 

View more

Clean, affordable electricity should be an issue in the Ontario election

Ontario Electricity Supply Gap threatens growth as demand from EVs, heat pumps, industry, and greenhouses surges, pressuring the grid and IESO to add nuclear, renewables, storage, transmission, and imports while meeting net-zero goals.

 

Key Points

The mismatch as Ontario's electricity demand outpaces supply, driven by electrification, EVs, and industrial growth.

✅ Demand growth from EVs, heat pumps, and electrified industry

✅ Capacity loss from Pickering retirement and Darlington refurb

✅ Options: SMRs, renewables, storage, conservation, imports

 

Ontario electricity demand is forecast to soon outstrip supply as it confronts a shortage in the coming years, a problem that needs attention in the upcoming provincial election.

Forecasters say Ontario will need to double its power supply by 2050 as industries ramp up demand for low-emission clean power options and consumers switch to electric vehicles and space heating. But while the Ford government has made a flurry of recent energy announcements, including a hydrogen project at Niagara Falls and an interprovincial agreement on small nuclear reactors, it has not laid out how it intends to bulk up the province’s power supply.

“Ontario is entering a period of widening electricity shortfalls,” says the Ontario Chamber of Commerce. “Having a plan to address those shortfalls is essential to ensure businesses can continue investing and growing in Ontario with confidence.”

The supply and demand mismatch is coming because of brisk economic growth combined with increasing electrification to balance demand and emissions and meet Canada’s goal to reduce CO2 emissions by 40 per cent by 2030 and to net-zero by 2050.

Hamilton’s ArcelorMittal Dofasco and Algoma Steel in Sault Ste. Marie are leaders on this transformation. They plan to replace their blast furnaces and basic oxygen furnaces later this decade with electric arc furnaces (EAFs), reducing annual CO2 emissions by three million tonnes each.


Dofasco, which operates an EAF that is already the single largest electricity user in Ontario, plans to build a second EAF and a gas-fired ironmaking furnace, which can also be powered with zero-carbon hydrogen produced from electricity, once it becomes available.

Other new projects in the agriculture, mining and manufacturing sectors are also expected to be big power users, including the recently announced $5 billion Stellantis-LG electric vehicle battery plant in Windsor. Five new transmission lines will be built to service the plant and the burgeoning greenhouse industry in southwestern Ontario. The greenhouses alone will require enough additional electricity to power a city the size of Ottawa.

On top of these demands, growing numbers of Ontario drivers are expected to switch to electric vehicles and many homeowners and business owners are expected to convert from gas heating to heat pumps and electric heating.

Ontario is recognized as one of the cleanest electricity systems in the world, with over 90 per cent of its capacity from low-emission nuclear, hydro, wind and other renewable generation. Only nine per cent comes from CO2-emitting gas plants. But that’s about to get dirtier according to analysts.

Annual electricity demand is expected to grow from 140 terawatt hours (a terawatt hour is one trillion watts for one hour) currently to about 200 terawatt hours in 2042, according to the Independent Electricity System Operator, the agency that manages Ontario’s grid.

Demand is expected to outstrip currently contracted supply in 2026, reaching a growing supply gap of about 80 terawatt hours by 2042. A big part of this gap is due to the scheduled retirement of the Pickering nuclear station in 2025 and the current refurbishment of the Darlington nuclear station reactors. While the IESO doesn’t expect blackouts or brownouts, it forecasts the province will need to sharply increase expensive power imports and triple the amount of CO2-polluting gas-fired generation.

Without cleaner, lower-cost alternatives, this will mean “a vastly dirtier and more expensive electricity system,” York University researchers Mark Winfield and Collen Kaiser said in a recent commentary.

The party that wins the provincial election will have to make hard decisions on renewable energy, including new wind and solar projects, energy conservation, battery storage, new hydro plants, small nuclear reactors, gas generation and power imports from the U.S. and Quebec. In addition, the federal government is pressing the provinces to meet a new net-zero clean electricity standard by 2035. These decisions will have huge impact on Ontario’s future, with greening the grid costs highlighted in some reports as potentially very high.

With so much at stake, Ontario’s political parties need to tell voters during the upcoming campaign how they would address these enormous challenges.

 

Related News

View more

N.S. joins Western Climate Initiative for tech support for emissions plan

Nova Scotia Cap-and-Trade Program joins Western Climate Initiative to leverage emissions trading IT systems, track allowances, and manage compliance, while setting in-province caps, carbon pricing signals, and third-party verified reporting for industrial and fuel suppliers.

 

Key Points

A provincial emissions trading system using WCI services to cap GHGs, track allowances, and enforce verified compliance.

✅ Uses WCI IT system to manage allowances and registry

✅ Initial trading limited to in-province participants

✅ Third-party verification and annual reporting deadlines

 

Nova Scotia is yet to set targets for its new cap and trade regime to reduce greenhouse gases, but the province announced Monday that it has joined the Western Climate Initiative Inc. -- a non-profit corporation formed to provide administrative and technical services to states and provinces with emissions trading programs.

Environment Minister Iain Rankin said joining the initiative would allow the province to use its IT system to manage and track its new cap and trade program.

Rankin said the province can join without trading greenhouse gas emission allowances with other jurisdictions -- California, Quebec, and Ontario are currently linked through the program, with Hydro-Québec's U.S. sales highlighting cross-border dynamics. Nova Scotia currently has no plans to trade outside the province as it works on emissions caps Rankin said will be ready sometime in June.

#google#

Nova Scotia is yet to set targets for its new cap and trade regime to reduce greenhouse gases, but the province announced Monday that it has joined the Western Climate Initiative Inc. -- a non-profit corporation formed to provide administrative and technical services to states and provinces with emissions trading programs.

Environment Minister Iain Rankin said joining the initiative would allow the province to use its IT system to manage and track its new cap and trade program.

Rankin said the province can join without trading greenhouse gas emission allowances with other jurisdictions -- California, Quebec, and Ontario are currently linked through the program. Nova Scotia currently has no plans to trade outside the province as it works on emissions caps Rankin said will be ready sometime in June.

"By keeping our system internal it ensures that our greenhouse gas reductions are happening within our province," said Rankin. "But we do have that opportunity (to join) and if there are new entrants or we need more access to credits then that may shift our strategy."

The use of the system will cost Nova Scotia about US$314,000 for 2018-19, with an annual cost in subsequent years of about US$228,000 or more, if the province requests modifications.

"If we were to do something like that internally we would have to build a full database and hire more people, so this was an obvious choice for us," said Rankin.

Nova Scotia has already met the national reduction target of 30 per cent below 2005 levels and says it's on track to have 40 per cent of electricity generation from renewables by 2020, underscoring how cleaning up Canada's electricity supports climate pledges.

Stephen Thomas, energy campaign coordinator for the Ecology Action Centre, called the province's move an "important small step," stressing the importance of using the same administrative rules as the other jurisdictions involved.

But Thomas said Nova Scotia should go further and trade emissions with California, Quebec, and Ontario, and also put a price on carbon by auctioning credits as they do.

Thomas said Nova Scotia's system stands to be volatile because of the smaller number of participants -- about 20 including Nova Scotia Power, Northern Pulp, Lafarge, and large oil and gasoline companies such as ExxonMobil, Imperial and Irving.

"It's very likely to favour Nova Scotia Power as the largest single emitter with the most credits to sell here, and that would change if we had a linked system, at a time when Canada will need more electricity to hit net-zero according to the IEA," Thomas said.

He said it's important to have a linked system and a regional approach in Atlantic Canada, which has more emissions per person and more emissions per GDP than places like Ontario, Quebec and California, and where policies like Newfoundland's rate reduction plan can influence electricity strategy.

"Reducing emissions, because we are so emissions-intensive here, is a little bit cheaper," said Thomas. "So it's possible that Ontario, Quebec and California could pay Nova Scotia to reduce its emissions."

Under its program, Nova Scotia requires industrial facilities generating 50,000 tonnes or more of greenhouse gas emissions per year to report emissions.

Regulations also cover petroleum product suppliers that import or produce 200 litres of fuel or more per year for consumption and natural gas distributors whose products produce at least 10,000 tonnes of greenhouse gas emissions a year.

Companies were to have reported to the Environment Department by May 1 but Rankin said the deadline has been pushed back to June 1, a deadline that was to be followed in subsequent years in any event. Reports must be verified by a third party by Sept. 1 every year.

The Liberal government passed enabling legislation for cap and trade last fall.

As for the upcoming emissions caps, Rankin isn't tipping the province's hand yet, even as B.C.'s 2050 targets face a shortfall in some forecasts.

"Those caps will recognize the investments that have already been made and therefore will be the most cost-effective program that we can put together to meet the federal requirement," he said.

 

Related News

View more

Electricity use actually increased during 2018 Earth Hour, BC Hydro

Earth Hour BC highlights BC Hydro data on electricity use, energy savings, and participation in the Lower Mainland and Vancouver Island amid climate change and hydroelectric power dynamics.

 

Key Points

BC observance tracking BC Hydro electricity use and conservation during Earth Hour, amid hydroelectric power dominance.

✅ BC Hydro reports rising electricity use during Earth Hour 2018

✅ Savings fell from 2% in 2008 to near zero province-wide

✅ Hydroelectric grid yields low GHG emissions in BC

 

For the first time since it began tracking electricity use in the province during Earth Hour, BC Hydro said customers used more power during the 60-minute period when lights are expected to dim, mirroring all-time high electricity demand seen recently.

The World Wildlife Fund launched Earth Hour in Sydney, Australia in 2007. Residents and businesses there turned off lights and non-essential power as a symbol to mark the importance of combating climate change.

The event was adopted in B.C. the next year and, as part of that, BC Hydro began tracking the megawatt hours saved.

#google#

In 2008, residents and businesses achieved a two per cent savings in electricity use. But since then, BC Hydro says the savings have plummeted.

The event was adopted in B.C. the next year and, as part of that, BC Hydro began tracking the megawatt hours saved.

In 2008, residents and businesses achieved a two per cent savings in electricity use. But since then, BC Hydro says the savings have plummeted, as record-breaking demand in 2021 and beyond changed consumption patterns.

 

Lights on

For Earth Hour this year, which took place 8:30-9:30 p.m. on March 24, BC Hydro says electricity use in the Lower Mainland increased by 0.5 per cent, even as it activated a winter payment plan to help customers manage bills. On Vancouver Island it increased 0.6 per cent.

In the province's southern Interior and northern Interior, power use remained the same during the event.

On Friday, the utility released a report called: "lights out". Why Earth Hour is dimming in BC. which explores the decline of energy savings related to Earth Hour in the province.

The WWF says the way in which hydro companies track electricity savings during Earth Hour is not an accurate measure of participation, and tracking of emerging loads like crypto mining electricity use remains opaque, and noted that more countries than ever are turning off lights for the event.

For 2018, the WWF shifted the focus of Earth Hour to the loss of wildlife across the globe.

BC Hydro says in its report that the symbolism of Earth Hour is still important to British Columbians, but almost all power generation in B.C. is hydroelectric, though recent drought conditions have required operational adjustments, and only accounts for one per cent of greenhouse gas emissions.

 

Related News

View more

Pickering nuclear station is closing as planned, despite calls for refurbishment

Ontario Pickering Nuclear Closure will shift supply to natural gas, raising emissions as the electricity grid manages nuclear refurbishment, IESO planning, clean power imports, and new wind, solar, and storage to support electrification.

 

Key Points

Ontario will close Pickering and rely on natural gas, increasing emissions while other nuclear units are refurbished.

✅ 14% of Ontario electricity supplied by Pickering now

✅ Natural gas use rises; grid emissions projected up 375%

✅ IESO warns gas phaseout by 2030 risks blackouts, costs

 

The Ontario government will not reconsider plans to close the Pickering nuclear station and instead stop-gap the consequent electricity shortfall with natural gas-generated power in a move that will, as an analysis of Ontario's grid shows, hike the province’s greenhouse gas emissions substantially in the coming years.

In a report released this week, a nuclear advocacy group urged Ontario to refurbish the aging facility east of Toronto, which is set to be shuttered in phases in 2024 and 2025, prompting debate over a clean energy plan after Pickering as the closure nears. The closure of Pickering, which provides 14 per cent of the province’s annual electricity supply, comes at the same time as Ontario’s other two nuclear stations are undergoing refurbishment and operating at reduced capacity.

Canadians for Nuclear Energy, which is largely funded by power workers' unions, argued closing the 50-year-old facility will result in job losses, emissions increases, heightened reliance on imported natural gas and an electricity supply gap across Ontario.

But Palmer Lockridge, spokesperson for the provincial energy minister, said further extending Pickering’s lifespan isn’t on the table.

“As previously announced in 2020, our government is supporting Ontario Power Generation’s plan to safely extend the life of the Pickering Nuclear Generating Station through the end of 2025,” said Lockridge in an emailed response to questions.

“Going forward, we are ensuring a reliable, affordable and clean electricity system for decades to come. That’s why we put a plan in place that ensures we are prepared for the emerging energy needs following the closure of Pickering, and as a result of our government’s success in growing and electrifying the province’s economy.”

The Progressive Conservative government under Premier Doug Ford has invested heavily in electrification, sinking billions into electric vehicle and battery manufacturing and industries like steel-making to retool plants to run on electricity rather than coal, and exploring new large-scale nuclear plants to bolster baseload supply.

Natural gas now provides about seven per cent of the province’s energy, a piece of the pie that will rise significantly as nuclear energy dwindles. Emissions from Ontario’s electricity grid, which is currently one of the world’s cleanest with 94 per cent zero-emission power generation, are projected to rise a whopping 375 per cent as the province turns increasingly to natural gas generation. Those increases will effectively undo a third of the hard-won emissions reductions the province achieved by phasing out coal-fired power generation.

The Independent Electricity System Operator (IESO), which manages Ontario’s grid, studied whether the province could phase out natural gas generation by 2030 and concluded that “would result in blackouts and hinder electrification” and increase average residential electricity costs by $100 per month.

The Ontario Clean Air Alliance, however, obtained draft documents from the electricity operator that showed it had studied, but not released publicly, other scenarios that involved phasing out natural gas without energy shortfalls, price hikes or increases in emissions.

The Ontario government will not reconsider plans to close the Pickering nuclear station and instead stop-gap the consequent electricity shortfall facing Ontario with natural gas-generated power in a move that will hike the province’s greenhouse gas emissions.

One model suggested increasing carbon taxes and imports of clean energy from other provinces could keep blackouts, costs and emissions at bay, while another involved increasing energy efficiency, wind generation and storage.

“By banning gas-fired electricity exports to the U.S., importing all the Quebec water power we can with the existing transmission lines and investing in energy efficiency and wind and solar and storage — do all those things and you can phase out gas-fired power and lower our bills,” said Jack Gibbons, chair of the Ontario Clean Air Alliance.

The IESO has argued in response that the study of those scenarios was not complete and did not include many of the challenges associated with phasing out natural gas plants.

Ontario Energy Minister Todd Smith asked the IESO to develop “an achievable pathway to zero-emissions in the electricity sector and evaluate a moratorium on new-build natural gas generation stations,” said his spokesperson. That report, an early look at halting gas power, is expected in November.

 

Related News

View more

Group of premiers band together to develop nuclear reactor technology

Small Modular Reactors in Canada are advancing through provincial collaboration, offering nuclear energy, clean power and carbon reductions for grids, remote communities, and mines, with factory-built modules, regulatory roadmaps, and pre-licensing by the nuclear regulator.

 

Key Points

Compact, factory-built nuclear units for clean power, cutting carbon for grids, remote communities, and industry.

✅ Provinces: Ontario, Saskatchewan, New Brunswick collaborate

✅ Targets coal replacement, carbon cuts, clean baseload power

✅ Modular, factory-made units; 5-10 year deployment horizon

 

The premiers of Ontario, Saskatchewan and New Brunswick have committed to collaborate on developing nuclear reactor technology in Canada. 

Doug Ford, Scott Moe and Blaine Higgs made the announcement and signed a memorandum of understanding on Sunday in advance of a meeting of all the premiers. 

They will be working on the research, development and building of small modular reactors as a way to help their individual provinces reduce carbon emissions and move away from non-renewable energy sources like coal. 

Small modular reactors are easy to construct, are safer than large reactors and are regarded as cleaner energy than coal, the premiers say. They can be small enough to fit in a school gym. 

SMRs are actually not very close to entering operation in Canada, though Ontario broke ground on its first SMR at Darlington recently, signaling early progress. Natural Resources Canada released an "SMR roadmap" last year, with a series of recommendations about regulation readiness and waste management for SMRs.

In Canada, about a dozen companies are currently in pre-licensing with the Canadian Nuclear Safety Commission, which is reviewing their designs.

"Canadians working together, like we are here today, from coast to coast, can play an even larger role in addressing climate change in Canada and around the world," Moe said.  

Canada's Paris targets are to lower total emissions 30 per cent below 2005 levels by 2030, and nuclear's role in climate goals has been emphasized by the federal minister in recent remarks. Moe says the reactors would help Saskatchewan reach a 70 per cent reduction by that year.

The provinces' three energy ministries will meet in the new year to discuss how to move forward and by the fall a fully-fledged strategy for the reactors is expected to be ready.

However, don't expect to see them popping up in a nearby field anytime soon. It's estimated it will take five to 10 years before they're built. 

Ford lauds economic possibilities
The provincial leaders said it could be an opportunity for economic growth, estimating the Canadian market for this energy at $10 billion and the global market at $150 billion.

Ford called it an "opportunity for Canada to be a true leader." At a time when Ottawa and the provinces are at odds, Higgs said it's the perfect time to show unity. 

"It's showing how provinces come together on issues of the future." 

P.E.I. premier predicts unity at Toronto premiers' meeting
No other premiers have signed on to the deal at this point, but Ford said all are welcome and "the more, the merrier."

But developing new energy technologies is a daunting task. Higgs admitted the project will need national support of some kind, though he didn't specify what. The agreement signed by the premiers is also not binding. 

About 8.6 per cent of Canada's electricity comes from coal-fired generation. In New Brunswick that figure is much higher — 15.8 per cent — and New Brunswick's small-nuclear debate has intensified as New Brunswick Premier Blaine Higgs has said he worries about his province's energy producers being hit by the federal carbon tax.

Ontario has no coal-fired power plants, and OPG's SMR commitment aligns with its clean electricity strategy today. In Saskatchewan, burning coal generates 46.6 per cent of the province's electricity.

How would it work?
The federal government describes small modular reactors (SMRs) as the "next wave of innovation" in nuclear energy technology, and collaborations like the OPG and TVA partnership are advancing development efforts, and an "important technology opportunity for Canada."

Traditional nuclear reactors used in Canada typically generate about 800 megawatts of electricity, and Ontario is exploring new large-scale nuclear plants alongside SMRs, or enough to power about 600,000 homes at once (assuming that 1 megawatt can power about 750 homes).

The International Atomic Energy Agency (IAEA), the UN organization for nuclear co-operation, considers a nuclear reactor to be "small" if it generates under 300 megawatts.

Designs for small reactors ranging from just 3 megawatts to 300 megawatts have been submitted to Canada's nuclear regulator, the Canadian Nuclear Safety Commission, for review as part of a pre-licensing process, while plans for four SMRs at Darlington outline a potential build-out pathway that regulators will assess.

Ford rallying premiers to call for large increase in federal health transfers
Such reactors are considered "modular" because they're designed to work either independently or as modules in a bigger complex (as is already the case with traditional, larger reactors at most Canadian nuclear power plants). A power plant could be expanded incrementally by adding additional modules.

Modules are generally designed to be small enough to make in a factory and be transported easily — for example, via a standard shipping container.

In Canada, there are three main areas where SMRs could be used:

Traditional, on-grid power generation, especially in provinces looking for zero-emissions replacements for CO2-emitting coal plants.
Remote communities that currently rely on polluting diesel generation.
Resource extraction sites, such as mining and oil and gas.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.