APS offers rebates for energy efficiency

By Phoenix Business Journal


NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Arizona Public Service Co. (APS) is offering rebates for residential customers who switch to high-efficiency air conditioners and heat pumps.

The company has put aside $1.5 million for the rebate program, which would allow for up to a $500 rebate per unit if done through an APS-qualified contractor.

The move is part of a larger effort by the Phoenix-based utility to move customers toward more energy efficiency. Officials said homeowners who replace units installed in the late 1970s or early 1980s could reduce the heating and cooling portion of their electric bill by up to 50 percent.

Related News

Diesel Prices Return to Pre-Ukrainian Conflict Levels

France Diesel Prices at Pre-Ukraine Levels reflect energy market stabilization as supply chains adapt and subsidies help; easing fuel costs, inflation, and logistics burdens for households, transport firms, and the wider economy.

 

Key Points

They mark normalization as oil supply stabilizes, easing fuel costs and logistics expenses for consumers and firms.

✅ Lower transport and logistics operating costs

✅ Softer inflation and improved household budgets

✅ Market stabilization amid adjusted oil supply chains

 

In a significant development for French consumers and businesses alike, diesel prices in France have recently fallen back to levels last seen before the Ukrainian conflict began, mirroring European gas prices returning to pre-war levels across the region. This drop comes as a relief to many who have been grappling with volatile energy costs and their impact on the cost of living and business operations. The return to lower diesel prices is a noteworthy shift in the energy landscape, with implications for the French economy, transportation sector, and broader European market.

Context of Rising Diesel Prices

The onset of the Ukrainian conflict in early 2022 triggered a dramatic increase in global energy prices, including diesel. The conflict's disruption of supply chains, coupled with sanctions on Russian oil and gas exports, contributed to a steep rise in fuel prices across Europe, prompting the EU to weigh emergency electricity price measures to shield consumers. For France, this meant that diesel prices soared to unprecedented levels, putting significant pressure on consumers and businesses that rely heavily on diesel for transportation and logistics.

The impact was felt across various sectors. Transportation companies faced higher operational costs, which were often passed down to consumers in the form of increased prices for goods and services. Additionally, higher fuel costs contributed to broader inflationary pressures, with EU inflation hitting lower-income households hardest, affecting household budgets and overall economic stability.

Recent Price Trends and Market Adjustments

The recent decline in diesel prices in France is a welcome reversal from the peak levels experienced during the height of the conflict. Several factors have contributed to this price reduction. Firstly, there has been a stabilization of global oil markets as geopolitical tensions have somewhat eased and supply chains have adjusted to new realities. The gradual return of Russian oil to global markets, albeit under complex sanctions and trading arrangements, has also played a role in moderating prices.

Moreover, France's strategic reserves and diversified energy sources have helped cushion the impact of global price fluctuations. The French government has also implemented measures to stabilize energy prices, including subsidies and tax adjustments, and a new electricity pricing scheme to satisfy EU concerns, which have helped alleviate some of the financial pressure on consumers.

Implications for the French Economy

The return to pre-conflict diesel price levels brings several positive implications for the French economy. For consumers, the decrease in fuel prices means lower transportation costs, which can ease inflationary pressures and improve disposable income, and, alongside the EDF electricity price deal, reduce overall utility burdens for households. This is particularly beneficial for households with long commutes or those relying on diesel-powered vehicles.

For businesses, especially those in the transportation and logistics sectors, the drop in diesel prices translates into reduced operational costs. This can help lower the cost of goods and services, potentially leading to lower prices for consumers and improved profitability for businesses. In a broader sense, stabilized fuel prices can contribute to overall economic stability and growth, as lower energy costs can support consumer spending and business investment.

Environmental and Policy Considerations

While the decrease in diesel prices is advantageous in the short term, it also raises questions about long-term energy policy and environmental impact, with the recent crisis framed as a wake-up call for Europe to accelerate the shift away from fossil fuels. Diesel, as a fossil fuel, continues to pose environmental challenges, including greenhouse gas emissions and air pollution. The drop in prices might inadvertently discourage investments in cleaner energy alternatives, such as electric and hybrid vehicles, which are crucial for achieving long-term sustainability goals.

In response, there is a growing call for continued investment in renewable energy and energy efficiency measures. France has been actively pursuing policies to reduce its reliance on fossil fuels and increase the adoption of cleaner technologies, amid ongoing EU electricity reform debates with Germany. The government’s support for green energy initiatives and incentives for low-emission vehicles will be essential in balancing short-term benefits with long-term environmental objectives.

Conclusion

The recent return of French diesel prices to pre-Ukrainian conflict levels marks a significant shift in the energy market, offering relief to both consumers and businesses. While this decline brings immediate financial benefits and supports economic stability, it also underscores the ongoing need for a strategic approach to energy policy and environmental sustainability. As France navigates the evolving energy landscape, the focus will need to remain on fostering a transition towards cleaner energy sources while managing the economic and environmental impacts of fuel price fluctuations.

 

Related News

View more

Gov. Greg Abbott touts Texas power grid's readiness heading into fall, election season

ERCOT Texas Fall Grid Forecast outlines ample power supply, planned maintenance outages, and grid reliability, citing PUC oversight and Gov. Abbott's remarks, with seasonal assessment noting mild demand yet climate risks and conservation alerts.

 

Key Points

ERCOT's seasonal outlook for Texas on fall power supply, outages, and reliability expectations under PUC oversight.

✅ Projects sufficient supply in October and November

✅ Many plants scheduled offline for maintenance

✅ Notes PUC oversight and Abbott's confidence

 

Gov. Greg Abbott said Tuesday that the Texas power grid is prepared for the fall months and referenced a new seasonal forecast by the state’s grid operator, which typically does not draw much attention to its fall and spring grid assessments because of the more mild temperatures during those seasons.

Tuesday’s new forecast by the Electric Reliability Council of Texas showed that there should be plenty of power supply to meet demand in October and November. It also showed that many Texas power plants are scheduled to be offline this fall for maintenance work. Texas power plants usually plan to go down in the fall and spring for repairs to improve reliability ahead of the more extreme temperatures in winter and summer, when Texans crank up their heat and air conditioning and raise demand for power.

ERCOT for at least a decade announced its seasonal forecasts, but did not do so on Tuesday. The grid operator stopped announcing the reports after the 2021 winter storm event. A spokesperson for the grid operator, which posted the report to its website midday without notifying the public or power industry stakeholders, said there were no plans to discuss the latest forecast and referred questions about it to the Public Utility Commission, which oversees ERCOT. Abbott appoints the board of the PUC.

Abbott on Tuesday expressed his confidence about the grid in a news release, which included photos of the governor sitting at a table with incoming ERCOT CEO Pablo Vegas, outgoing interim CEO Brad Jones and Public Utility Commission Chair Peter Lake.

“The State of Texas continues to monitor the reliability of our electric grid, and I thank ERCOT and PUC for their hard work to implement bipartisan reforms we passed last year and for their proactive leadership to ensure our grid is stronger than ever before,” Abbott said in the release.

Abbott has not previously shared or called attention to ERCOT’s forecasts as he did on Tuesday.

Up for reelection this fall, Abbott has faced continued criticism, including from the Sierra Club over his handling of the 2021 deadly power grid disaster, when extended freezing temperatures shut down natural gas facilities and power plants, which rely on each other to keep electricity flowing. The resulting blackouts left millions of Texans without power for days in the cold, and hundreds of people died.

ERCOT’s forecasts for fall and spring are typically the least worrisome seasonal forecasts, energy experts said, because temperatures are usually milder in between summer and winter, even as ERCOT has issued an RFP to procure winter capacity to address shortages, so demand for power usually does not skyrocket like it does during extreme temperatures.

But they’ve warned that climate change could potentially lead to more extreme temperatures during times when Texas hasn’t experienced such weather in the past. For example, in early May six power plants unexpectedly broke down when a spring heat wave drove power demand up and highlighted broader heat-related blackout risks across the grid. ERCOT asked Texans to conserve electricity at home at the time.

Abbott released the seasonal report at a time when he has asserted unprecedented control over ERCOT. Although he had no formal role in ERCOT’s search for a new permanent CEO, he put a stranglehold on the process, The Texas Tribune previously reported. Since the winter storm, Abbott’s office has also dictated what information about the power grid ERCOT has released to the public.

 

Related News

View more

Shocking scam: fraudster pretending to be from BC Hydro attempts to extort business

BC Hydro Bitcoin Scam targets small businesses with utility impersonation, call spoofing, and disconnection threats, demanding prepaid cards, cash cards, or bitcoin. Learn payment policies and key warning signs to avoid costly power shutoffs.

 

Key Points

A phone fraud where impostors threaten power disconnection and demand immediate payment via bitcoin or prepaid cards.

✅ Demands bitcoin, cash cards, or prepaid credit within minutes

✅ Uses caller ID spoofing and utility impersonation tactics

✅ BC Hydro never takes bitcoin or prepaid cards for bills

 

'I've gotta give him very high marks for being a good scammer,' says almost-fooled business owner

It's an old scam with a new twist.

Fraudsters pretending to be BC Hydro representatives are threatening to disconnect small business owners' power, mirroring Toronto Hydro scam warnings recently, unless they send in cash cards, prepaid credit cards or even bitcoin right away.

Colin Mackintosh, owner of Trans National Art in Langley, B.C., said he almost was fooled by one such scammer.

It was just before quitting time on Thursday at his shop when he got an unpleasant phone call.

"The phone rings. My partner hands me the phone and this fellow says to me that he's outside, he works with BC Hydro and he has a disconnect notice," Mackintosh said.

The caller, Mackintosh said, claimed that if an immediate payment wasn't made they'd cut off the company's power.

'Very well done'

BC Hydro says the scam has been around for a while, and amid commercial power use during COVID-19 in B.C., demanding payment in bitcoin is a new wrinkle.

Fraudsters mostly target small businesses because losing their power for a day or two would be a huge financial hit, a spokesperson said.

Mackintosh said the scammer knew all about the business. His number even showed up as BC Hydro on the call display, and the utility has faced scrutiny in a regulator report unrelated to such scams.

"He had all the answers to every question I seemed to have for him.  Very professional. Very well done. I've gotta give him very high marks for being a good scammer," Mackintosh said.

The caller demanded Mackintosh make an immediate payment at the nearest BC Hydro kiosk. Mackintosh was directed to drive to a certain address to make the payment.

He was ready to pay hundreds of dollars but when he got to the address, there was no kiosk: just a tire shop and inside something that looked like a cash machine but was actually a bitcoin ATM.

"At the very top of it, in little letters, it said 'Bit Coin,'" Mackintosh said. "As soon as I saw those two words, I told him in two expressive words what I thought of him and I hung up the phone."

 

Scam increasing

BC Hydro spokesperson Mora Scott said fraudsters target small businesses because their livelihoods depend on power, and customers face pressures highlighted in a deferred costs report as well.

"Fraudsters will reach out to our customers pretending to be B.C. Hydro representatives," said Scott.

"They'll demand an immediate payment or they'll disconnect their power. This did start to surface around 2015 but we have seen an increase recently."

Scott said that BC Hydro will never ask for banking information over the phone and does not accept cash card, prepaid credit cards or bitcoin as payment, and customers can consult BC Hydro bill relief for legitimate assistance.

 

 

Related News

View more

Europe's Thirst for Electricity Spurs Nordic Grid Blockade

Nordic Power Grid Dispute highlights cross-border interconnector congestion, curtailed exports and imports, hydropower priorities, winter demand spikes, rising spot prices, and transmission grid security amid decarbonization efforts across Sweden, Norway, Finland, and Denmark.

 

Key Points

A clash over interconnectors and capacity cuts reshaping trade, prices, and reliability in the Nordic power market.

✅ Sweden cuts interconnector capacity to protect grid stability

✅ Norway prioritizes higher-priced exports via new cables

✅ Finland and Denmark seek EU action on capacity curtailments

 

A spat over electricity supplies is heating up in northern Europe. Sweden is blocking Norway from using its grids to transfer power from producers throughout the region. That’s angered Norway, which in turn has cut flows to its Nordic neighbor.

The dispute has built up around the use of cross-border power cables, which are a key part of Europe’s plans to decarbonize since they give adjacent countries access to low-carbon resources such as wind or hydropower. The electricity flows to wherever prices are higher, informed by how electricity is priced across Europe, without interference from grid operators -- but in the event of a supply squeeze, flows can be stopped.

Sweden moved to safeguard the security of its grid after Norway started increasing electricity exports through huge new cables to Germany and the U.K. Those exports at times have drawn energy away from Sweden, resulting in the country’s system operator cutting capacity at its Nordic borders, preventing exports but also hindering imports, which it relies on to handle demand spikes during winter.

“This is not a good situation in the long run,” Christian Holtz, a energy market consultant for Merlin & Metis AB.

Norway hit back last week by cutting flows to Sweden, this will prioritize better paying customers in Europe, amid Irish price spikes that highlight dispatchable shortages, giving them access to its vast hydro resources at the expense of its Nordic neighbors. 

By partially closing its borders Sweden can’t access imports either, which it relies on to handle demand spikes during the coldest days of the winter. 

In Denmark, unusual summer and autumn winds have at times delivered extraordinarily low electricity prices that ripple through regional markets.

The Swedish grid manager Svenska Kraftnat has reduced export capacity at cables across its borders by as much as half this year to keep operations secure. Finland and Denmark rely on imports too and the cuts will come at a cost for millions of homes and industries across the four nations already contending with record electricity rates this year. 

Finland and Denmark want the European Union to end the exemption to regulations that make such reductions possible in the first place, as Europe is losing nuclear power and facing tighter supply.

“Imports from our neighboring countries ensure adequacy at times of peak consumption,” said Reima Paivinen, head of operation at the Finland’s Fingrid. “The recent surge in electricity prices throughout Europe does not directly affect the adequacy of electricity, but prices may rise dramatically for short periods.”

Svenska Kraftnat says it’s not political -- it has no choice but to cut capacity until its old grids are expanded to handle the new direction of flows, a challenge mirrored by grid expansion woes in Germany that slow integration. That could take at least until 2030 to complete, it said earlier this year. At the same time, Norway halving available export capacity to about 1,200 megawatts will increase risk of shortages. 

“If we need more we will have to count on imports from other countries,” said Erik Ek, head of strategic operation at Svenska Kraftnat. “If that is not available, we will have to disconnect users the day it gets cold.”

 

Related News

View more

Hydroelectricity Under Pumped Storage Capacity

Pumped Storage Hydroelectricity balances renewable energy, stabilizes the grid, and provides large-scale energy storage using reservoirs and reversible turbines, delivering flexible peak power, frequency control, and rapid response to variable wind and solar generation.

 

Key Points

A reversible hydro system that stores energy by pumping water uphill, then generates flexible peak power.

✅ Balances variable wind and solar with rapid ramping

✅ Stores off-peak electricity in upper reservoirs

✅ Enhances grid stability, frequency control, and reserves

 

The expense of hydroelectricity is moderately low, making it a serious wellspring of sustainable power. The hydro station burns-through no water, dissimilar to coal or gas plants. The commonplace expense of power from a hydro station bigger than 10 megawatts is 3 to 5 US pennies for every kilowatt hour, and Niagara Falls powerhouse upgrade projects show how modernization can further improve efficiency and reliability. With a dam and supply it is likewise an adaptable wellspring of power, since the sum delivered by the station can be shifted up or down quickly (as meager as a couple of moments) to adjust to changing energy requests.

When a hydroelectric complex is developed, the task creates no immediate waste, and it for the most part has an extensively lower yield level of ozone harming substances than photovoltaic force plants and positively petroleum product fueled energy plants, with calls to invest in hydropower highlighting these benefits. In open-circle frameworks, unadulterated pumped storage plants store water in an upper repository with no normal inflows, while pump back plants use a blend of pumped storage and regular hydroelectric plants with an upper supply that is renewed to a limited extent by common inflows from a stream or waterway.

Plants that don't utilize pumped capacity are alluded to as ordinary hydroelectric plants, and initiatives focused on repowering existing dams continue to expand clean generation; regular hydroelectric plants that have critical capacity limit might have the option to assume a comparable function in the electrical lattice as pumped capacity by conceding yield until required.

The main use for pumped capacity has customarily been to adjust baseload powerplants, however may likewise be utilized to decrease the fluctuating yield of discontinuous fuel sources, while emerging gravity energy storage concepts broaden long-duration options. Pumped capacity gives a heap now and again of high power yield and low power interest, empowering extra framework top limit.

In specific wards, power costs might be near zero or once in a while negative on events that there is more electrical age accessible than there is load accessible to retain it; despite the fact that at present this is infrequently because of wind or sunlight based force alone, expanded breeze and sun oriented age will improve the probability of such events.

All things considered, pumped capacity will turn out to be particularly significant as an equilibrium for exceptionally huge scope photovoltaic age. Increased long-distance bandwidth, including hydropower imports from Canada, joined with huge measures of energy stockpiling will be a critical piece of directing any enormous scope sending of irregular inexhaustible force sources. The high non-firm inexhaustible power entrance in certain districts supplies 40% of yearly yield, however 60% might be reached before extra capaciy is fundamental.

Pumped capacity plants can work with seawater, despite the fact that there are extra difficulties contrasted with utilizing new water. Initiated in 1966, the 240 MW Rance flowing force station in France can incompletely function as a pumped storage station. At the point when elevated tides happen at off-top hours, the turbines can be utilized to pump more seawater into the repository than the elevated tide would have normally gotten. It is the main enormous scope power plant of its sort.

Alongside energy mechanism, pumped capacity frameworks help control electrical organization recurrence and give save age. Warm plants are substantially less ready to react to abrupt changes in electrical interest, and can see higher thermal PLF during periods of reduced hydro generation, conceivably causing recurrence and voltage precariousness.

Pumped storage plants, as other hydroelectric plants, including new BC generating stations, can react to stack changes in practically no time. Pumped capacity hydroelectricity permits energy from discontinuous sources, (for example, sunlight based, wind) and different renewables, or abundance power from consistent base-load sources, (for example, coal or atomic) to be put something aside for times of more popularity.

The repositories utilized with siphoned capacity are tiny when contrasted with ordinary hydroelectric dams of comparable force limit, and creating periods are regularly not exactly a large portion of a day. This technique produces power to gracefully high top requests by moving water between repositories at various heights.

Now and again of low electrical interest, the abundance age limit is utilized to pump water into the higher store. At the point when the interest gets more noteworthy, water is delivered once more into the lower repository through a turbine. Pumped capacity plans at present give the most monetarily significant methods for enormous scope matrix energy stockpiling and improve the every day limit factor of the age framework. Pumped capacity isn't a fuel source, and shows up as a negative number in postings.

 

Related News

View more

Swiss Earthquake Service and ETH Zurich aim to make geothermal energy safer

Advanced Traffic Light System for Geothermal Safety models fracture growth and friction with rock physics, geophones, and supercomputers to predict induced seismicity during hydraulic stimulation, enabling real-time risk control for ETH Zurich and SED.

 

Key Points

ATLS uses rock physics, geophones, and HPC to forecast induced seismicity in real time during geothermal stimulation.

✅ Real-time seismic risk forecasts during hydraulic stimulation

✅ Uses rock physics, friction, and fracture modeling on HPC

✅ Supports ETH Zurich and SED field tests in Iceland and Bedretto

 

The Swiss Earthquake Service and ETH Zurich want to make geothermal energy safer, so news piece from Switzerland earlier this month. This is to be made possible by new software, including machine learning, and the computing power of supercomputers. The first geothermal tests have already been carried out in Iceland, and more will follow in the Bedretto laboratory.

In areas with volcanic activity, the conditions for operating geothermal plants are ideal. In Iceland, the Hellisheidi power plant makes an important contribution to sustainable energy use, alongside innovations like electricity from snow in cold regions.

Deep geothermal energy still has potential. This is the basis of the 2050 energy strategy. While the inexhaustible source of energy in volcanically active areas along fault zones of the earth’s crust can be tapped with comparatively little effort and, where viable, HVDC transmission used to move power to demand centers, access on the continents is often much more difficult and risky. Because the geology of Switzerland creates conditions that are more difficult for sustainable energy production.

Improve the water permeability of the rock

On one hand, you have to drill four to five kilometers deep to reach the correspondingly heated layers of earth in Switzerland. It is only at this depth that temperatures between 160 and 180 degrees Celsius can be reached, which is necessary for an economically usable water cycle. On the other hand, the problem of low permeability arises with rock at these depths. “We need a permeability of at least 10 millidarcy, but you can typically only find a thousandth of this value at a depth of four to five kilometers,” says Thomas Driesner, professor at the Institute of Geochemistry and Petrology at ETH Zurich.

In order to improve the permeability, water is pumped into the subsurface using the so-called “fracture”. The water acts against friction, any fracture surfaces shift against each other and tensions are released. This hydraulic stimulation expands fractures in the rock so that the water can circulate in the hot crust. The fractures in the earth’s crust originate from tectonic tensions, caused in Switzerland by the Adriatic plate, which moves northwards and presses against the Eurasian plate.

In addition to geothermal energy, the “Advanced Traffic Light System” could also be used in underground construction or in construction projects for the storage of carbon dioxide.

Quake due to water injection

The disadvantage of such hydraulic stimulations are vibrations, which are often so weak or cannot be perceived without measuring instruments. But that was not the case with the geothermal projects in St. Gallen 2013 and Basel 2016. A total of around 11,000 cubic meters of water were pumped into the borehole in Basel, causing the pressure to rise. Using statistical surveys, the magnitudes 2.4 and 2.9 defined two limit values ??for the maximum permitted magnitude of the earthquakes generated. If these are reached, the water supply is stopped.

In Basel, however, there was a series of vibrations after a loud bang, with a time delay there were stronger earthquakes, which startled the residents. In both cities, earthquakes with a magnitude greater than 3 have been recorded. Since then it has been clear that reaching threshold values ??determines the stop of the water discharge, but this does not guarantee safety during the actual drilling process.

Simulation during stimulation

The Swiss Seismological Service SED and the ETH Zurich are now pursuing a new approach that can be used to predict in real time, building on advances by electricity prediction specialists in Europe, during a hydraulic stimulation whether noticeable earthquakes are expected in the further course. This is to be made possible by the so-called “Advanced Traffic Light System” based on rock physics, a software developed by the SED, which carries out the analysis on a high-performance computer.

Geophones measure the ground vibrations around the borehole, which serve as indicators for the probability of noticeable earthquakes. The supercomputer then runs through millions of possible scenarios, similar to algorithms to prevent power blackouts during ransomware attacks, based on the number and type of fractures to be expected, the friction and tensions in the rock. Finally, you can filter out the scenario that best reflects the underground.

Further tests in the mountain

However, research is currently still lacking any real test facility for the system, because incorrect measurements must be eliminated and a certain data format adhered to before the calculations on the supercomputer. The first tests were carried out in Iceland last year, with more to follow in the Bedretto geothermal laboratory in late summer, where reliable backup power from fuel cell solutions can keep instrumentation running. An optimum can now be found between increasing the permeability of rock layers and an adequate water supply.

The new approach could make geothermal energy safer and ultimately help this energy source to become more accepted, while grid upgrades like superconducting cables improve efficiency. Research also sees areas of application wherever artificially caused earthquakes can occur, such as in underground mining or in the storage of carbon dioxide underground.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.