Carbon capture projects up despite costs

By Reuters


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The number of projects for capturing greenhouse gases from power plants and factories edged up in 2010 despite soaring costs and slow progress in UN-led efforts to slow climate change, a study showed recently.

The focus of carbon capture and storage CCS projects also shifted more to the United States from Europe even though U.S. President Barack Obama has failed to persuade the Senate to legislate caps on U.S. greenhouse gas emissions, it said.

The Global CCS Institute said 234 CCS projects were active or planned worldwide at the end of 2010, a net rise of 26 from 2009 despite cancellations including in the Netherlands and Finland.

CCS aims to capture planet-warming carbon dioxide in fossil fuels, such as from coal-fired power plants or cement factories, and bury it in depleted oil and gas reservoirs or other underground stores. No commercial-scale projects yet exist.

"The global commitment to carbon capture and storage remains strong," according to the Australia-based Institute, whose members include major businesses and governments of top emitters led by China, the United States, Russia and India.

But the study, published on the Institute website, pointed to rising costs that have discouraged investments due to sluggish economic growth in many developed nations.

It said recent reviews suggested costs for CCS, rising in line with those of large-scale energy projects, were "20 to 30 per cent higher than indicated in similar studies undertaken only two to three years ago."

UN reports have suggested CCS could be as important this century as a shift to renewable energies such as wind and solar power in curbing global greenhouse gas emissions.

But UN climate negotiations have failed to agree a treaty to limit emissions that would help set a global penalty on carbon emissions to promote a surge of investments in CCS.

Among big projects in 2010, Chevron Corp began construction on the Gorgon project in Australia, due to be the biggest carbon storage project in the world. And U.S. Southern Company is going ahead with a major U.S. project.

The Institute also saw progress on promised funds. "As much as $40 billion could be available to have large-scale projects up and running this decade," it said.

It listed 77 major projects, either planned or active, at the end of 2010 including 31 in the United States. That total was up 13 overall in 2010 despite delays or cancellations to 22.

"There is a shift in focus a little bit from Europe to the United States," said Bob Pegler, general manager-Europe of the Global CCS Institute.

The change was partly because many U.S. projects were also aiming to improve cash flow by injecting carbon dioxide into semi-depleted oilfields to raise output of crude, trading at $113 a barrel recently.

Among setbacks, in October the Dutch government shelved plans for a demonstration project in Barendrecht after delays and opposition from local people.

Finnish energy company Fortum also said in October it was scrapping a Meri-Pori CCS project due to technological and financial risks.

The report said that China, the top emitter of greenhouse gases, "remains focused on research and development" for CCS. Pegler added: "If you look forward 10 or 15 years I can see China being a major, if not the dominant, player."

Related News

City officials take clean energy message to Georgia Power, PSC

Georgia Cities Clean Energy IRP Coalition unites Savannah, Atlanta, Decatur, and Athens-Clarke to shape Georgia Power's Integrated Resource Plan, accelerating renewables, energy efficiency, community solar, and coal retirements through Georgia Public Service Commission hearings.

 

Key Points

Georgia cities working to steer Georgia Power's IRP toward renewables, energy efficiency, and community solar.

✅ Targets coal retirements and doubling renewables by 2035

✅ Advocates data access, transparency, and energy efficiency

✅ Seeks affordable community solar options for low-income customers

 

Savannah is among several Georgia cities that have led the charge forward in recent years to push for clean energy. Now, several of the state's largest municipalities are banding together to demand action from Georgia's largest energy provider.

Hearings regarding Georgia Power's Integrated Resource Plan (IRP) happen every three years, but this year for the first time the cities of Savannah, Decatur, Atlanta and Athens-Clarke and DeKalb counties were at the table.

"It's pretty unprecedented. It's such an important opportunity to get to represent ourselves and our citizens," said City of Savannah Energy Analyst Alicia Brown, the Savannah representative for the Georgia Coalition for Local Governments.

The IRP, which essentially maps out how the company will use its various forms of energy over the next 20 years was filed with the Georgia Public Service Commission (GPSC) in January, the 200-page IRP outlines Georgia Power's plans to shutter nearly all Georgia Power-controlled coal units, similar to Tucson Electric Power's coal exit timelines elsewhere, which could begin later this year.

The company is also planning to double its renewable energy generation by 2035. The IRP also outlines plans for several programs, including an Income-Qualified Community Solar Pilot, reflecting momentum for community energy programs in other states as well.

During the hearings the coalition, alongside the other groups, had the ability to question Georgia Power officials about the plan to include the proposed increase per kilowatt for the company's Simple Solar program, Behind-the-Meter Solar program study and various other components, amid debates over solar strategy in the South that could impact lower income customers.

"The established and open IRP process is central to effective, long-term energy planning in Georgia and is part of our commitment to 2.7 million customers to deliver clean, safe, reliable and affordable energy. In continuing our longstanding relationship with the City of Savannah, we welcome their interest and participation in the IRP process," John Kraft, Georgia Power spokesman said in an email.

Brown said the coalition's areas of interest fall into three categories: energy efficiency and demand response, data access and transparency and renewable energy for citizens as well as the governments in the coalition.

"We have these renewable goals and just the way the current regulations are set, the way the current laws are on the books, and developments like consumer choice in California show how policy shifts can reshape utility markets, it's very challenging for us to meet those renewable energy goals without Georgia Power setting up programs that are workable for us," she said.

The city of Savannah is already taking action locally to reduce carbon emissions and move toward clean and renewable energy through the 100% Savannah Clean Energy Plan, which was adopted by Savannah City Council in December.

The plan aims to achieve 100% renewable electricity community-wide by 2035 and 100% renewable energy for all energy needs by 2050.

Council previously approved the 100% Clean Energy Resolution needed to develop the plan in March 2020, making Savannah the fifth city in the state to pledge to pursue a lower carbon future to fight climate change.

The final plan includes 45 strategies that fall into five categories: energy efficiency; renewable energy; transportation and mobility; community and economic development; and education and engagement.

Brown said the education and engagement component is central to the plan, but the pandemic has hindered community education and awareness efforts, and utilities have warned customers about pandemic-related scams that complicate outreach, something the city hopes to catapult in the coming weeks.

"With the 100% Savannah resolution passing right before the pandemic, we haven't had as many opportunities to raise awareness about the initiative and to educate the public about clean energy as we would like. This transition will present a lot of opportunities for our communities, but only if people know that they are there to be taken," she said.

"... We also want to engage the community so that they feel like they are developing this vision for a healthy, prosperous, clean community alongside us. It's not just us telling them, 'we're going to have a clean energy future and it's going to look like this,' but really helping them to develop and realize a collective vision for what 100% Savannah should be."

The final round of IRP hearings are scheduled for next month. Those hearings will allow the coalition and other groups to put witnesses on the stand who will make the case for why Georgia Power's IRP should be different, Brown said.

In June, Georgia Power, following a June bill reduction for customers, will have a chance to offer rebuttal testimony and will again be subject to cross examination. Shortly after those hearings, the parties will join together for the settlement process, a sort of compromise on the plan that the commission will vote on toward the beginning of July.

 

Related News

View more

IAEA Warns of Nuclear Risks from Russian Attacks on Ukraine Power Grids

Ukraine nuclear safety risks escalate as IAEA warns of power grid attacks threatening reactor cooling, diesel generators, and Zaporizhzhia oversight, prompting UN calls for demilitarized zones to prevent radioactive releases and accidents.

 

Key Points

Escalating threats from grid attacks and outages that jeopardize reactor cooling, IAEA oversight, and public safety.

✅ Power grid strikes threaten reactor cooling systems.

✅ Emergency diesel generators are last defense lines.

✅ Calls grow for demilitarized zones around plants.

 

In early February 2025, Rafael Grossi, Director General of the International Atomic Energy Agency (IAEA), expressed grave concerns regarding the safety of Ukraine's nuclear facilities amid ongoing Russian attacks on the country's power grids, as Kyiv warned of a difficult winter without power after deadly strikes on energy infrastructure. Grossi's warnings highlight the escalating risks to nuclear safety and the potential for catastrophic accidents.

The Threat to Nuclear Safety

Ukraine's nuclear infrastructure, including the Zaporizhzhia Nuclear Power Plant—the largest in Europe—relies heavily on a stable power supply to maintain critical cooling systems and other safety measures. Russian military operations targeting Ukraine's energy infrastructure have led to power outages, and created hazards akin to those highlighted in downed power line safety guidance during emergency repairs, jeopardizing the safe operation of these facilities. Grossi emphasized that such disruptions could result in severe nuclear accidents if cooling systems fail.

IAEA's Response and Actions

In response to these threats, the IAEA has been actively involved in monitoring and assessing the situation. Grossi visited Kyiv to inspect electrical substations and discuss safety measures with Ukrainian officials. He underscored the necessity of ensuring uninterrupted power to nuclear plants and the critical role of emergency diesel generators as a last line of defense, and noted that maintaining staffing continuity, including measures such as staff living on site at critical facilities, may be necessary. The IAEA has also postponed the rotation of its mission at the Zaporizhzhia plant due to security concerns, as reported by Reuters.

International Concerns and Diplomatic Efforts

The international community has expressed deep concern over the potential for nuclear accidents in Ukraine, echoing earlier grid overseer warnings about systemic risks in other crises that stress energy systems. The United Nations and various countries have called for the establishment of a demilitarized zone around nuclear facilities to prevent military activities that could compromise their safety. Diplomatic efforts are ongoing to facilitate dialogue between Russia and Ukraine, aiming to ensure the protection of nuclear sites and the safety of surrounding populations.

The Zaporizhzhia Nuclear Power Plant

The Zaporizhzhia Nuclear Power Plant, located in southeastern Ukraine, has been under Russian control since early in the conflict, with Rosatom cooperation agreements reflecting broader nuclear policy priorities that frame Moscow's approach to the sector. The plant consists of six reactors and has been a focal point of international concern due to its size and the potential consequences of any incident. The IAEA has been working to maintain oversight and ensure the plant's safety amid the ongoing conflict.

Potential Consequences of Nuclear Accidents

A nuclear accident at any of Ukraine's nuclear facilities could have catastrophic consequences, including the release of radioactive materials, displacement of populations, and long-term environmental damage, with communities potentially facing weeks without electricity and basic services in the aftermath. The proximity of these plants to densely populated areas further amplifies the risks. The international community continues to monitor the situation closely, emphasizing the need for immediate action to safeguard nuclear facilities.

The ongoing conflict in Ukraine has introduced unprecedented challenges to nuclear safety. The IAEA's warnings and actions underscore the critical need for international cooperation to protect nuclear facilities from the dangers posed by military activities. Ensuring the safety of these sites is paramount to prevent potential disasters that could have far-reaching humanitarian and environmental impacts, and sustained attention to nuclear workers' safety concerns helps maintain operational readiness under strain.

 

Related News

View more

In Europe, A Push For Electricity To Solve The Climate Dilemma

EU Electrification Strategy 2050 outlines shifting transport, buildings, and industry to clean power, accelerating EV adoption, heat pumps, and direct electrification to meet targets, reduce emissions, and replace fossil fuels with renewables and low-carbon grids.

 

Key Points

EU plan to cut emissions 95% by 2050 by electrifying transport, buildings and industry with clean power.

✅ 60% of final energy from electricity by 2050

✅ EVs dominate transport; up to 63% electric share

✅ Heat pumps electrify buildings; industry to 50% direct

 

The European Union has one of the most ambitious carbon emission reduction goals under the global Paris Agreement on climate change – a 95% reduction by 2050.

It seems that everyone has an idea for how to get there. Some are pushing nuclear energy. Others are pushing for a complete phase-out of fossil fuels and a switch to renewables.

Today the European electricity industry came out with their own plan, amid expectations of greater electricity price volatility in Europe in the coming years. A study published today by Eurelectric, the trade body of the European power sector, concludes that the 2050 goal will not be possible without a major shift to electricity in transport, buildings and industry.

The study finds that for the EU to reach its 95% emissions reduction target, electricity needs to cover at least 60 percent of final energy consumption by 2050. This would require a 1.5 percent year-on-year growth of EU electricity use, with evidence that EVs could raise electricity demand significantly in other markets, while at the same time reducing the EU’s overall energy consumption by 1.3 percent per year.

#google#

Transport is one of the areas where electrification can deliver the most benefit, because an electric car causes far less carbon emissions than a conventional vehicle, with e-mobility emerging as a key driver of electricity demand even if that electricity is generated in a fossil fuel power plant.

In the most ambitious scenario presented by the study, up to 63 percent of total final energy consumption in transport will be electric by 2050, and some analyses suggest that mass adoption of electric cars could occur much sooner, further accelerating progress.

Building have big potential as well, according to the study, with 45 to 63 percent of buildings energy consumption could be electric in 2050 by converting to electric heat pumps. Industrial processes could technically be electrified with up to 50 percent direct electrification in 2050, according to the study. The relative competitiveness of electricity against other carbon-neutral fuels will be the critical driver for this shift, but grid carbon intensity differs across markets, such as where fossil fuels still supply a notable share of generation.

 

Related News

View more

Is The Global Energy Transition On Track?

Global Decarbonization Strategies align renewable energy, electrification, clean air policies, IMO sulfur cap, LNG fuels, and the EU 2050 roadmap to cut carbon intensity and meet Paris Agreement targets via EVs and efficiency.

 

Key Points

Frameworks that cut emissions via renewables, EVs, efficiency, cleaner marine fuels, and EU policy roadmaps.

✅ Renewables scale as wind and solar outcompete new coal and gas.

✅ Electrification of transport grows as EV costs fall and charging expands.

✅ IMO 2020 sulfur cap and LNG shift cut shipping emissions and particulates.

 

Are we doing enough to save the planet? Silly question. The latest prognosis from the United Nations’ Intergovernmental Panel on Climate Change made for gloomy reading. Fundamental to the Paris Agreement is the target of keeping global average temperatures from rising beyond 2°C. The UN argues that radical measures are needed, and investment incentives for clean electricity are seen as critical by many leaders to accelerate progress to meet that target.

Renewable power and electrification of transport are the pillars of decarbonization. It’s well underway in renewables - the collapse in costs make wind and solar generation competitive with new build coal and gas.

Renewables’ share of the global power market will triple by 2040 from its current level of 6% according to our forecasts.

The consumption side is slower, awaiting technological breakthrough and informed by efforts in countries such as New Zealand’s electricity transition to replace fossil fuels with electricity. The lower battery costs needed for electric vehicles (EVs) to compete head on and displace internal combustion engine (ICE)  cars are some years away. These forces only start to have a significant impact on global carbon intensity in the 2030s. Our forecasts fall well short of the 2°C target, as does the IEA’s base case scenario.

Yet we can’t just wait for new technology to come to the rescue. There are encouraging signs that society sees the need to deal with a deteriorating environment. Three areas of focus came out in discussion during Wood Mackenzie’s London Energy Forum - unrelated, different in scope and scale, each pointing the way forward.

First, clean air in cities.  China has shown how to clean up a local environment quickly. The government reacted to poor air quality in Beijing and other major cities by closing older coal power plants and forcing energy intensive industry and the residential sector to shift away from coal. The country’s return on investment will include a substantial future health care dividend.

European cities are introducing restrictions on diesel cars to improve air quality. London’s 2017 “toxicity charge” is a precursor of an Ultra-Low Emission Zone in 2019, and aligns with UK net-zero policy changes that affect transport planning, to be extended across much of the city by 2020. Paris wants to ban diesel cars from the city centre by 2025 and ICE vehicles by 2030. Barcelona, Madrid, Hamburg and Stuttgart are hatching similar plans.

 

College Promise In California: Community-Wide Efforts To Support Student Success

Second, desulphurisation of global shipping. High sulphur fuel oil (HSFO) meets around 3.5 million barrels per day (b/d) of the total marine market of 5 million b/d. A maximum of 3.5% sulphur content is allowed currently. The International Maritime Organisation (IMO) implements a 0.5% limit on all shipping in 2020, dramatically reducing the release of sulphur oxides into the atmosphere.

Some ships will switch to very low sulphur fuel oil, of which only around 1.4 million b/d will be available in 2020. Others will have to choose between investing in scrubbers or buying premium-priced low sulphur marine gas oil.

Longer-term, lower carbon-intensity gas is a winner as liquefied natural gas becomes fuel of choice for many newbuilds. Marine LNG demand climbs from near zero to 50 million tonnes per annum (tpa) by 2040 on our forecasts, behind only China, India and Japan as a demand centre. LNG will displace over 1 million b/d of oil demand in shipping by 2040.

Third, Europe’s radical decarbonisation plans. Already in the vanguard of emissions reductions policy, the European Commission is proposing to reduce carbon emissions for new cars and vans by 30% by 2030 versus 2020. The targets come with incentives for car manufacturers linked to the uptake of EVs.

The 2050 roadmap, presently at the concept stage, envisages a far more demanding regime, with EU electricity plans for 2050 implying a much larger power system. The mooted 80% reduction in emissions compared with 1990 will embrace all sectors. Power and transport are already moving in this direction, but the legacy fuel mix in many other sectors will be disrupted, too.

Near zero-energy buildings and homes might be possible with energy efficiency improvements, renewables and heat pumps. Electrification, recycling and bioenergy could reduce fossil fuel use in energy intensive sectors like steel and aluminium, and Europe’s oil majors going electric illustrates how incumbents are adapting. Some sectors will cite the risk decarbonisation poses to Europe’s global competitiveness. If change is to come, industry will need to build new partnerships with society to meet these targets.

The 2050 roadmap signals the ambition and will be game changing for Europe if it is adopted. It would provide a template for a global roll out that would go a long way toward meeting UN’s concerns.

 

Related News

View more

Alberta is a powerhouse for both green energy and fossil fuels

Alberta Renewable Energy Market is accelerating as wind and solar prices fall, corporate PPAs expand, and a deregulated, energy-only system, AESO outlooks, and TIER policy drive investment across the province.

 

Key Points

An open, energy-only Alberta market where wind and solar growth is driven by corporate PPAs, AESO outlooks, and TIER.

✅ Energy-only, deregulated grid enables private investment

✅ Corporate PPAs lower costs and hedge power price risk

✅ AESO forecasts and TIER policy support renewables

 

By Chris Varcoe, Calgary Herald

A few things are abundantly clear about the state of renewable energy in Alberta today.

First, the demise of Alberta’s Renewable Electricity Program (REP) under the UCP government isn’t going to see new projects come to a screeching halt.

In fact, new developments are already going ahead.

And industry experts believe private-sector companies that increasingly want to purchase wind or solar power are going to become a driving force behind even more projects in Alberta.

BluEarth Renewables CEO Grant Arnold, who spoke Wednesday at the Canadian Wind Energy Association conference, pointed out the sector is poised to keep building in the province, even with the end of the REP program that helped kick-start projects and triggered low power prices.

“The fundamentals here are, I think, quite fantastic — strong resource, which leads to really competitive wind prices . . . it’s now the cheapest form of new energy in the province,” he told the audience.

“Alberta is in a fundamentally good place to grow the wind power market.”

Unlike other provinces, Alberta has an open, deregulated marketplace, which create opportunities for private-sector investment and renewable power developers as well.

The recent decision by the Kenney government to stick with the energy-only market, instead of shifting to a capacity market, is seen as positive for Alberta's energy future by renewable electricity developers.

There is also increasing interest from corporations to buy wind and solar power from generators — a trend that has taken off in the United States with players such as Google, General Motors and Amazon — and that push is now emerging in Canada.

“It’s been really important in the U.S. for unlocking a lot of renewable energy development,” said Sara Hastings-Simon, founding director of the Business Renewable Centre Canada, which seeks to help corporate buyers source renewable energy directly from project developers.

“You have some companies where . . . it’s what their investors and customers are demanding. I think we will see in Alberta customers who see this as a good way to meet their carbon compliance requirements.

“And the third motivation to do it is you can get the power at a good price.”

Just last month, Perimeter Solar signed an agreement with TC Energy to supply the Calgary-based firm with 74 megawatts from its solar project near Claresholm.

More deals in the industry are being discussed, and it’s expected this shift will drive other projects forward.

There is increasing interest from corporations to buy solar and wind energy directly from generators.

“The single-biggest change has been the price of wind and solar,” Arnold said in an interview.

“Alberta looks really, really bright right now because we have an open market. All other provinces, for regulatory reasons, we can’t have this (deal) . . . between a generator and a corporate buyer of power. So Alberta has a great advantage there.”

These forces are emerging as the renewable energy industry has seen dramatic change in recent years in Alberta, with costs dropping and an array of wind and solar developments moving ahead, even as solar expansion faces challenges in the province.

The former NDP government had an aggressive target to see green energy sources make up 30 per cent of all electricity generation by 2030.

Last week, the Alberta Electric System Operator put out its long-term outlook, with its base-case scenario projecting moderate demand growth for power over the next two decades. However, the expected load growth — expanding by an average of 0.9 per cent annually until 2039 — is only half the rate seen in the past 20 years.

Natural gas will become the main generation source in the province as coal-fired power (now comprising more than one-third of generation) is phased out.

Renewable projects initiated under the former NDP government’s REP program will come online in the near term, while “additional unsubsidized renewable generation is expected to develop through competitive market mechanisms and support from corporate power purchase agreements,” the report states.

AESO forecasts installed generation capacity for renewables will almost double to about 19 per cent by 2030, with wind and solar increasing to 21 per cent by 2039.

Another key policy issue for the sector will likely come within the next few weeks when the provincial government introduces details of its new Technology Innovation and Emissions Reduction program (TIER).

The initiative will require large industrial emitters to reduce greenhouse gas emissions to a benchmark level, pay into the technology fund, or buy offsets or credits. The carbon price is expected to be around $20 to $30 a tonne, and the system will kick in on Jan. 1, 2020.

Industry players point out the decision to stick with Alberta’s energy-only market along with the details surrounding TIER, and a focus by government on reducing red tape, should all help the sector attract investment.

“It is pretty clear there is a path forward for renewables here in the province,” said Evan Wilson, regional director with the Canadian Wind Energy Association.

All of these factors are propelling the wind and solar sector forward in the province, at the same time the oil and gas sector faces challenges to grow.

But it doesn’t have to be an either/or choice for the province moving forward. We’re going to need many forms of energy in the coming decades, and Alberta is an energy powerhouse, with potential to develop more wind and solar, as well as oil and natural gas resources.

“What we see sometimes is the politics and discussion around renewables or oil becomes a deliberate attempt to polarize people,” Arnold added.

“What we are trying to show, in working in Alberta on renewable projects, is it doesn’t have to be polarizing. There are a lot of solutions.

“The combination of solutions is part of what we need to talk about.”

 

Related News

View more

Russian Strikes on Western Ukraine Cause Power Outages

Ukraine Energy Grid Attacks intensify as missile strikes and drone raids hit power plants, substations, and transmission lines, causing blackouts, disrupted logistics, and humanitarian strain during winter, despite repairs, air defense, and allied aid.

 

Key Points

Missile and drone strikes on Ukraine's power grid to force blackouts, strain civilians, and disrupt military logistics.

✅ Targets: power plants, substations, transmission lines

✅ Impacts: blackouts, heating loss, hospital strain

✅ Goals: erode morale, disrupt logistics, force aid burdens

 

Russia’s continued strikes on Ukraine have taken a severe toll on the country’s critical infrastructure, particularly its energy grid, as Ukraine continues to keep the lights on despite sustained bombardment. In recent months, Western Ukraine has increasingly become a target of missile and drone attacks, leading to widespread power outages and compounding the challenges faced by the civilian population. These strikes aim to cripple Ukraine's resilience during a harsh winter season and disrupt its wartime operations.

Targeting Energy Infrastructure

Russian missile and drone assaults on Ukraine’s energy grid are part of a broader strategy to weaken the country’s morale and capacity to sustain the war effort. The attacks have primarily focused on power plants, transmission lines, and substations. Western Ukraine, previously considered a relative safe haven due to its distance from front-line combat zones, is now experiencing the brunt of this campaign.

The consequences of these strikes are severe. Rolling blackouts and unplanned outages have disrupted daily life for millions of Ukrainians, though authorities say there are electricity reserves that could stabilize supply if no new strikes occur, leaving homes without heating during freezing temperatures, hospitals operating on emergency power, and businesses struggling to maintain operations. The infrastructure damage has also affected water supplies and public transportation, further straining civilian life.

Aimed at Civilian and Military Impact

Russia’s targeting of Ukraine’s power grid has dual purposes. On one hand, it aims to undermine civilian morale by creating hardships during the cold winter months, even as Ukraine works to keep the lights on this winter through contingency measures. On the other, it seeks to hinder Ukraine’s military logistics and operations, which heavily rely on a stable energy supply for transportation, communications, and manufacturing of military equipment.

These attacks coincide with a broader strategy of attritional warfare, where Moscow hopes to exhaust Ukraine’s resources and diminish its ability to continue its counteroffensive operations. By disrupting critical infrastructure, Russia increases pressure on Ukraine's allies to step up humanitarian and military aid, stretching their capacities.

Humanitarian Consequences

The impact of these power cuts on the civilian population is profound. Millions of Ukrainians are enduring freezing temperatures without consistent access to electricity or heating. Vulnerable populations, such as the elderly, children, and those with disabilities, face heightened risks of hypothermia and other health issues.

Hospitals and healthcare facilities are under immense strain, relying on backup generators that cannot sustain prolonged use. In rural areas, where infrastructure is already weaker, the effects are even more pronounced, leaving many communities isolated and unable to access essential services.

Humanitarian organizations have ramped up efforts to provide aid, including distributing generators, warm clothing, and food supplies, while many households pursue new energy solutions to weather blackouts. However, the scale of the crisis often outpaces the resources available, leaving many Ukrainians to rely on their resilience and community networks.

Ukraine's Response

Despite the challenges, Ukraine has demonstrated remarkable resilience in the face of these attacks. The government and utility companies are working around the clock to repair damaged infrastructure and restore power to affected areas. Mobile repair teams and international assistance have played crucial roles in mitigating the impact of these strikes.

Ukraine’s Western allies have also stepped in to provide support. The European Union, the United States, and other countries have supplied Ukraine with energy equipment, financial aid, and technical expertise to help rebuild its energy grid, though recent decisions like the U.S. ending support for grid restoration complicate planning and procurement. Additionally, advanced air defense systems provided by Western nations have helped intercept some of the incoming missiles and drones, though not all attacks can be thwarted.

Russia’s Escalation Strategy

Russia’s focus on Western Ukraine reflects a shift in its strategy. Previously, attacks were concentrated on front-line areas and major urban centers in the east and south. However, by targeting the western regions, Moscow seeks to disrupt the relatively stable zones where displaced Ukrainians and critical supply chains are located.

Western Ukraine is also a hub for receiving and distributing international aid and military supplies. Striking this region not only undermines Ukraine’s internal stability but also sends a message to its allies about Russia’s willingness to escalate the conflict further.

Broader Implications

The attacks on Ukraine’s energy grid have broader geopolitical implications. By targeting infrastructure, Russia intensifies the pressure on Ukraine’s allies to continue providing support, even as Kyiv has at times helped Spain amid blackouts when capacity allowed, testing their unity and resolve. The destruction also poses long-term challenges for Ukraine’s post-war recovery, as rebuilding a modern and resilient energy system will require significant investments and time.

Moreover, these attacks highlight the vulnerability of civilian infrastructure in modern warfare, echoing that electricity is civilization amid winter conditions. The deliberate targeting of non-combatant assets underscores the need for international efforts to strengthen the protection of critical infrastructure and address the humanitarian consequences of such tactics.

The Russian attacks on Western Ukraine's power grid are a stark reminder of the devastating human and economic costs of the ongoing conflict. While Ukraine continues to demonstrate resilience and adaptability, the scale of destruction underscores the need for sustained international support. As the war drags on, the focus must remain on mitigating civilian suffering, rebuilding critical infrastructure, and pursuing a resolution that ends the violence and stabilizes the region.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified