Partnership to explore offshore wind-hydrokinetic power

By PR Newswire


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Hydro Green Energy, LLC and the Wind Energy Systems Technology Group (W.E.S.T.) have agreed to explore the potential to develop the world's first hybrid offshore wind-hydrokinetic ocean current power projects.

If fully developed as envisioned, Hydro Green Energy and W.E.S.T. will utilize the Gulf of Mexico's wind and water currents to generate nearly 5,000 megawatts of clean, renewable electricity.

"We are very excited to explore the Gulf of Mexico with W.E.S.T. and deeply appreciate their interest and enthusiasm in our patented hydrokinetic technology to help firm up offshore wind power," said Wayne F. Krouse, Chairman and CEO of Hydro Green Energy.

"While an enormous amount of work remains ahead of us and there is still much to learn about the Gulf's water currents, if the data we gather confirms that the Gulf has the currents needed for utility-scale ocean power, we plan to aggressively move forward to develop the world's first offshore wind-hydrokinetic power projects."

Hydro Green Energy, LLC is a renewable energy company based in Houston, Texas that designs, builds, operates and sells hydrokinetic power systems that generate electricity exclusively from moving water without having to first construct dams, impoundments or conduits. Hydro Green Energy's technology operates in open rivers, tidal areas and oceans.

Hydro Green's broadly patented technology is also deployable downstream from existing hydropower facilities (known as Hydro+), which allows for new, environmentally friendly power generation within the existing project footprint. Hydro Green is presently building turbines for its first Hydro+ project in Hastings, Minnesota, which is expected to begin operations this fall and was recently profiled on CNBC. That project will be the nation's first commercially operational, federally-licensed hydrokinetic power project.

W.E.S.T. in October 2005 signed a historic lease agreement with the General Land Office of Texas for its offshore wind projects, which are all located in State owned submerged lands and waters. To better secure its exploration agreement with W.E.S.T., Hydro Green Energy filed ten preliminary permit applications with the Federal Energy Regulatory Commission, the federal agency with licensing authority over non-federal waterpower projects in the United States.

If granted, the preliminary permits would allow Hydro Green Energy a three-year exclusive right to develop the hydrokinetic portion of the projects, which are all also in Texas waters.

Hydrokinetic power holds significant promise as a new, carbon-free electricity source. A 2007 study by the Electric Power Research Institute found that the U.S. could develop at a minimum 13,000 megawatts of river and ocean-based hydrokinetic energy by 2025, enough annual power for roughly 12 million homes. Earlier estimates by the U.S. Department of Energy showed even greater potential, and suggested that the U.S. might be able to double its waterpower output (presently 77,000 MW) with the robust development of new technologies.

Hydro Green Energy closed its $2.6 million Series-A funding round in April, which was led by the Quercus Trust, a prominent investor in alternative energy companies with intellectual property. Hydro Green Energy is presently developing river, tidal and ocean hydrokinetic power projects in Alaska, Louisiana, Maine, Minnesota, Mississippi, New York and Texas.

Hydro Green Energy is now negotiating its Series-B funding, which the company expects to close by the end of the year. The company plans to commission a manufacturing facility in 2009 to support the development of its many projects. That facility is expected to create approximately 100 "green collar" manufacturing jobs.

W.E.S.T. was conceived by Herman J. Schellstede and Harold Schoeffler. Schellstede, a noted Gulf Coast Marine Engineer, and Schoeffler, a well-respected Gulf Coast environmentalist, are successfully bridging the gap between traditional offshore oil and gas technology and nascent offshore renewable energy sources. They intend to develop 1,500 to 2,000 MW of offshore wind power in the Gulf.

The agreement signed by the two companies allows Hydro Green Energy access to W.E.S.T.'s platforms and lease areas for data gathering and possible testing.

Related News

Geothermal Power Plant In Hawaii Nearing Dangerous Meltdown?

Geothermal Power Plant Risks include hydrogen sulfide leaks, toxic gases, lava flow hazards, well blowouts, and earthquake-induced releases at sites like PGV and the Geysers, threatening public health, grid reliability, and environmental safety.

 

Key Points

Geothermal Power Plant Risks include toxic gases, lava impacts, well failures, and induced quakes that threaten health.

✅ Hydrogen sulfide exposure can cause rapid pulmonary edema.

✅ Lava can breach wells, venting toxic gases into communities.

✅ Induced seismicity may disrupt grids near PGV and the Geysers.

 

If lava reaches Hawaii’s PGV geothermal power plant, it could release of deadly hydrogen sulfide gas. That’s the latest potential danger from the Kilauea volcanic eruption in Hawaii. Residents now fear that lava flow will trigger a meltdown at the Puna Geothermal Venture (PGV) power plant that would release even more toxic gases into the air.

Nobody knows what will happen if lava engulfs the PGV because magma has never engulfed a geothermal power plant, Reuters reported. A geothermal power plant uses steam and gas heated by lava deep in the earth to run turbines that make electricity.

The PGV power plant produces 25% of the power used on Hawaii’s “Big Island.” The plant is considered a source of clean energy because geothermal plants burn no fossil fuels and produce little pollution under normal circumstances, even as nuclear retirements like Three Mile Island reshape low-carbon options.

 

The Potential Danger from Geothermal Energy

The fear is that the lava would release chemicals used to make electricity at the plant. The PGV has been shut down and authorities moved an estimated 60,000 gallons of flammable liquids away from the facility. They also shut down wells that extract steam and gas used to run the turbines.

Another potential danger is that lava would open the wells and release clouds of toxic gases from them. The wells are typically sealed to prevent the gas from entering the atmosphere.

The most significant threat is hydrogen sulfide, a highly toxic and flammable gas that is colorless. Hydrogen sulfide normally has a rotten egg smell which people might not detect when the air is full of smoke. That means people can breathe hydrogen sulfide in without realizing they have been exposed.

The greatest danger from hydrogen sulfide is pulmonary edema; the accumulation of fluid in the lungs, which causes a person to stop breathing. People have died of pulmonary edema after just a few minutes of exposure to hydrogen sulfide gas. Many victims become unconscious before the gas kills them. Long-term dangers that survivors of pulmonary edema face include brain damage.

Hydrogen sulfide can also cause burns to the skin that are similar to frostbite. Persons exposed to hydrogen sulfide can also suffer from nausea, headaches, severe eye burns, and delirium. Children are more vulnerable to hydrogen sulfide because it is a heavy gas that stays close to the ground.

 

Geothermal Danger Extends Far Beyond Hawaii

The danger from geothermal energy extends far beyond Hawaii. The world’s largest collection of geothermal power plants is located at the Geysers in California’s Wine Country, and regulatory timelines such as the postponed closure of three Southern California plants can affect planning.

The Geysers field contains 350 steam production wells and 22 power plants in Sonoma, Lake, and Mendocino counties. Disturbingly, the Geysers are located just north of the heavily-populated San Francisco Bay Area and just west of Sacramento, where preemptive electricity shutdowns have been used during extreme fire weather. Problems at the Geysers might lead to significant blackouts because the field supplies around 20% of the green energy used in California.

Another danger from geothermal power is earthquakes because many geothermal power plants inject wastewater into hot rock deep below to produce steam to run turbines, a factor under review as SaskPower explores geothermal in new settings. A geothermal project in Switzerland created Earthquakes by injecting water into the Earth, Zero Hedge reported. A theoretical threat is that quakes caused by injection would cause the release of deadly gases at a geothermal power plant.

The dangers from geothermal power might be much greater than its advocates admit, potentially increasing reliance on natural-gas-based electricity during supply shortfalls.

 

Related News

View more

France and Germany arm wrestle over EU electricity reform

EU Electricity Market Reform CFDs seek stable prices via contracts for difference, balancing renewables and nuclear, shielding consumers, and boosting competitiveness as France and Germany clash over scope, grid expansion, and hydrogen production.

 

Key Points

EU framework using contracts for difference to stabilize power prices, support renewables and nuclear, and protect users.

✅ Guarantees strike prices for new low-carbon generation

✅ Balances consumer protection with industrial competitiveness

✅ Disputed scope: nuclear inclusion, grids, hydrogen eligibility

 

Despite record temperatures this October, Europe is slowly shifting towards winter - its second since the Ukraine war started and prompted Russia to cut gas supplies to the continent amid an energy crisis that has reshaped policy.

After prices surged last winter, when gas and electricity bills “nearly doubled in all EU capitals”, the EU decided to take emergency measures to limit prices.

In March, the European Commission proposed a reform to revamp the electricity market “to boost renewables, better protect consumers and enhance industrial competitiveness”.

However, France and Germany are struggling to find a compromise as rolling back prices is tougher than it appears and the clock is ticking as European energy ministers prepare to meet on 17 October in Luxembourg.


The controversy around CFDs
At the heart of the issue are contracts for difference (CFDs).

By providing a guaranteed price for electricity, CFDs aim to support investment in renewable energy projects.

France - having 56 nuclear reactors - is lobbying for nuclear energy to be included in the CFDs, but this has caught the withering eye of Germany.

Berlin suspects Paris of wanting an exception that would give its industry a competitive advantage and plead that it should only apply to new investments.


France wants ‘to regain control of the price’
The disagreement is at the heart of the bilateral talks in Hamburg, which started on Monday, between the French and German governments.

French President Emmanuel Macron promised “to regain control of the price of electricity, at the French and European level” and outlined a new pricing scheme in a speech at the end of September.

As gas electricity is much more expensive than nuclear electricity, France might be tempted to switch to a national system rather than a European one after a deal with EDF on prices to be more competitive economically.

However, France is "confident" that it will reach an agreement with Germany on electricity market reforms, Macron said on Friday.

Siding with France are other pro-nuclear countries such as Hungary, the Czech Republic and Poland, while Germany can count on the support of Austria, Luxembourg, Belgium and Italy amid opposition from nine EU countries to treating market reforms as a price fix.

But even if a last-minute agreement is reached, the two countries’ struggles over energy are creeping into all current European negotiations on the subject.

Germany wants a massive extension of electricity grids on the continent so that it can import energy; France is banking on energy sovereignty and national production.

France wants to be able to use nuclear energy to produce clean hydrogen, while Germany is reluctant, and so on.

 

Related News

View more

China to build 2,000-MW Lawa hydropower station on Jinsha River

Lawa Hydropower Station approved on the Jinsha River, a Yangtze tributary, delivers 2,000 MW via four units; 784 ft dam, 12 sq mi reservoir, Sichuan-Tibet site, US$4.59b investment, Huadian stake, renewable energy generation.

 

Key Points

A 2,000 MW dam project on the Jinsha River with four units, a 784 ft barrier, and 8.36 billion kWh annual output.

✅ Sichuan-Tibet junction on the Jinsha River

✅ 2,000 MW capacity; four turbine-generator units

✅ 8.36 bn kWh/yr; US$4.59b total; Huadian 48% stake

 

China has approved construction of the 2,000-MW Lawa hydropower station, a Yangtze tributary hydropower project on the Jinsha River, multiple news agencies are reporting.

Lawa, at the junction of Sichuan province and the Tibet autonomous region, will feature a 784-foot-high dam and the reservoir will submerge about 12 square miles of land. The Jinsha River is a tributary of the Yangtze River, and the project aligns with green hydrogen development in China.

The National Development and Reform Commission of the People’s Republic of China, which also guides China's nuclear energy development as part of national planning, is reported to have said that four turbine-generator units will be installed, and the project is expected to produce about 8.36 billion kWh of electricity annually.

Total investment in the project is to be US$4.59 billion, and Huadian Group Co. Ltd. will have a 48% stake in the project, reflecting overseas power infrastructure activity, with minority stakes held by provincial firms, according to China Daily.

In other recent news in China, Andritz received an order in December 2018 to supply four 350-MW reversible pump-turbines and motor-generators, alongside progress in compressed air generation technologies, for the 1,400-MW ZhenAn pumped storage plant in Shaanxi province.

 

Related News

View more

Ontario Teachers Pension Plan agrees to acquire a 25% stake in SSEN Transmission

Ontario Teachers SSEN Transmission Investment advances UK renewable energy, with a 25% minority stake in SSE plc's electricity transmission network, backing offshore wind, grid expansion, and Net Zero 2050 goals across Scotland and UK.

 

Key Points

A 25% stake by Ontario Teachers in SSE's SSEN Transmission to fund UK grid upgrades and accelerate renewables.

✅ £1,465m cash for 25% minority stake in SSEN Transmission

✅ Supports offshore wind, grid expansion, and Net Zero targets

✅ Partnering SSE plc to deliver clean, affordable power in the UK

 

Ontario Teachers’ Pension Plan Board (‘Ontario Teachers’) has reached an agreement with Scotland-based energy provider SSE plc (‘SSE’) to acquire a 25% minority stake in its electricity transmission network business, SSEN Transmission, to provide clean, affordable renewable energy to millions of homes and businesses across the UK, reflecting how clean-energy generation powers both the economy and the environment.

The transaction is based on an effective economic date of 31 March 2022, and total cash proceeds of £1,465m for the 25% stake are expected at completion. The transaction is expected to complete shortly.

Measures such as Ontario's 2021 electricity rate reductions have aimed to ease costs for businesses, informing broader discussions on affordability.

SSEN Transmission, which operates under its licenced entity, Scottish Hydro Electric Transmission plc, transports electricity generated from renewable resources – including onshore and offshore wind and hydro – from the north of Scotland across more than a quarter of the UK land mass amid scrutiny of UK electricity and gas networks profits under the regulatory regime. The investment by Ontario Teachers’ will help support the UK Government’s Net Zero 2050 targets, including the delivery of 50GW of offshore wind capacity by 2030.

Charles Thomazi, Senior Managing Director, Head of EMEA Infrastructure & Natural Resources, from Ontario Teachers’ said, noting that in Canada decisions like the OEB decision on Hydro One's T&D rates guide utility planning:

“SSEN Transmission is one of Europe’s fastest growing transmission networks. Its network stretches across some of the most challenging terrain in Scotland – from the North Sea and across the Highlands – to deliver safe, reliable, renewable energy to demand centres across the UK.

We’re delighted to partner again with SSE and are committed to supporting the growth of its network and the vital role it plays in the UK’s green energy revolution.”

Investor views on regulated utilities can diverge, as illustrated by analyses of Hydro One's investment outlook that weigh uncertainties and risk factors.

Rob McDonald, Managing Director of SSEN Transmission, said:

“With the north of Scotland home to the UK’s greatest resources of renewable electricity we have a critical role to play in helping deliver the UK and Scottish Governments net zero commitments.  Our investments will also be key to securing the UK’s future energy independence through enabling the deployment of homegrown, affordable, low carbon power.

“With significant growth forecast in transmission, bringing in Ontario Teachers’ as a minority stake partner will help fund our ambitious investment plans as we continue to deliver a network for net zero emissions across the north of Scotland.” 

Ontario Teachers’ Infrastructure & Natural Resources group invests in electricity infrastructure worldwide to accelerate the energy transition with current investments including Caruna, Finland’s largest electricity distributor, Evoltz, a leading electricity transmission platform in Brazil, and Spark Infrastructure, which invests in essential energy infrastructure in Australia to serve over 5 million homes and businesses.

In Ontario, distribution consolidation has included the sale of Peterborough Distribution to Hydro One for $105 million, illustrating ongoing sector realignment.

 

Related News

View more

Warren Buffett’s Secret To Cheap Electricity: Wind

Berkshire Hathaway Energy Wind Power drives cheap electricity rates in Iowa via utility-scale wind turbines, integrated transmission, battery storage, and grid management, delivering renewable energy, stable pricing, and long-term rate freezes through 2028.

 

Key Points

A vertically integrated wind utility lowering Iowa rates via owned generation, transmission, and advanced grid control.

✅ Owned wind assets meet Iowa residential demand

✅ Integrated transmission lowers costs and losses

✅ Rate freeze through 2028 sustains cheap power

 

In his latest letter to Berkshire Hathaway shareholders, Warren Buffett used the 20th anniversary of Berkshire Hathaway Energy to tout its cheap electricity bills for customers.

When Berkshire purchased the majority share of BHE in 2000, the cost of electricity for its residential customers in Iowa was 8.8 cents per kilowatt-hour (kWh) on average. Since then, these electricity rates have risen at a paltry <1% per year, with a freeze on rate hikes through 2028. As anyone who pays an electricity bill knows, that is an incredible deal.  

As Buffett himself notes with alacrity, “Last year, the rates [BHE’s competitor in Iowa] charged its residential customers were 61% higher than BHE’s. Recently, that utility received a rate increase that will widen the gap to 70%.”

 

The Winning Strategy

So, what’s Buffett’s secret to cheap electricity? Wind power.

“The extraordinary differential between our rates and theirs is largely the result of our huge accomplishments in converting wind into electricity,” Buffett explains. 

Wind turbines in Iowa that BHE owns and operates are expected to generate about 25.2 million megawatt-hours (MWh) of electricity for its customers, as projects like Building Energy operations begin to contribute. By Buffett’s estimations, that will be enough to power all of its residential customers’ electricity needs in Iowa.  


The company has plans to increase its renewable energy generation in other regions as well. This year, BHE Canada is expected to start construction on a 117.6MW wind farm in Alberta, Canada with its partner, Renewable Energy Systems, that will provide electricity to 79,000 homes in Canada’s oil country.

Observers note that Alberta is a powerhouse for both green energy and fossil fuels, underscoring the region's unique transition.

But I would argue that the secret to BHE’s success perhaps goes deeper than transitioning to sources of renewable energy. There are plenty of other utility companies that have adopted wind and solar power as an energy source. In the U.S., where renewable electricity surpassed coal in 2022, at least 50% of electricity customers have the option to buy renewable electricity from their power supplier, according to the Department of Energy. And some states, such as New York, have gone so far as to allow customers to pick from providers who generate their electricity.

What differentiates BHE from a lot of the competition in the utility space is that it owns the means to generate, store, transmit and supply renewable power to its customers across the U.S., U.K. and Canada, with lessons from the U.K. about wind power informing policy.

In its financial filings for 2019, the company reported that it owns 33,600MW of generation capacity and has 33,400 miles of transmission lines, as well as a 50% interest in Electric Transmission Texas (ETT) that has approximately 1,200 miles of transmission lines. This scale and integration enables BHE to be efficient in the distribution and sale of electricity, including selling renewable energy across regions.

BHE is certainly not alone in building renewable-energy fueled electricity dominions. Its largest competitor, NextEra, built 15GW of wind capacity and has started to expand its utility-scale solar installations. Duke Energy owns and operates 2,900 MW of renewable energy, including wind and solar. Exelon operates 40 wind turbine sites across the U.S. that generate 1,500 MW.

 

Integrated Utilities Power Ahead

It’s easy to see why utility companies see wind as a competitive source of electricity compared to fossil fuels. As I explained in my previous post, Trump’s Wrong About Wind, the cost of building and generating wind energy have fallen significantly over the past decade. Meanwhile, improvements in battery storage and power management through new technological advancements have made it more reliable (Warren Buffett bet on that one too).

But what is also striking is that integrated power and transmission enables these utility companies to make those decisions; both in terms of sourcing power from renewable energy, as well as the pricing of the final product. Until wind and solar power are widespread, these utility companies are going to have an edge of the more fragmented ends of the industry who can’t make these purchasing or pricing decisions independently. 

Warren Buffett very rarely misses a beat. He’s not the Oracle of Omaha for nothing. Berkshire Hathaway’s ownership of BHE has been immensely profitable for its shareholders. In the year ended December 31, 2019, BHE and its subsidiaries reported net income attributable to BHE shareholders of $2.95 billion.

There’s no question that renewable energy will transform the utility industry over the next decade. That change will be led by the likes of BHE, who have the power to invest, control and manage their own energy generation assets.

 

Related News

View more

Solar + Wind = 10% of US Electricity Generation in 1st Half of 2018

US Electricity Generation H1 2018 saw wind and solar gains but hydro declines, as natural gas led the grid mix and coal fell; renewables' share, GWh, emissions, and capacity additions shaped the power sector.

 

Key Points

It is the H1 2018 US power mix, where natural gas led, coal declined, and wind and solar grew while hydro fell.

✅ Natural gas reached 32% of generation, highest share

✅ Coal fell; renewables roughly tied nuclear at ~20%

✅ Wind and solar up; hydro output down vs 2017

 

To complement our revival of US electricity capacity reports, here’s a revival of our reports on US electricity generation.

As with the fresh new capacity report, things are not looking too bright when it comes to electricity generation. There’s still a lot of grey — in the bar charts below, in the skies near fossil fuel power plants, and in the human and planetary outlook based on how slowly we are cutting fossil fuel electricity generation.

As you can see in the charts above, wind and solar energy generation increased notably from the first half of 2017 to the first half of 2018, and the EIA expected larger summer solar and wind generation in subsequent months, reinforcing that momentum.

A large positive when it comes to the environment and human health is that coal generation dropped a great deal year over year — by even more than renewables increased, though the EIA later noted an increase in coal-fired generation in a subsequent year, complicating the trend. However, on the down side, natural gas soared as it became the #1 source of electricity generation in the United States (32% of US electricity). Furthermore, coal was still solidly in the #2 position (27% of US electricity). Renewables and nuclear were essentially in a tie at 19.8% of generation, with renewables just a tad above nuclear.

Actually, combined with an increase in nuclear power generation, natural gas electricity production increased so much that the renewable energy share of electricity generation actually dropped in the first half of 2018 versus the first half of 2017, even amid declining electricity use in some periods. It was 19.8% this year and 20% last year.

Again, solar and wind saw a significant growth in its market share, from 9% to 9.9%, but hydro brought the whole category down due to a decrease from 9% to 8%.

The visuals above are probably the best way to examine it all. The H1 2018 chart was still dominated by fossil fuels, which together accounted for approximately 60% of electricity generation, even though by 2021 non-fossil sources supplied about 40% of U.S. electricity, highlighting the longer-term shift. In H1 2017, the figure was 59.7%. Furthermore, if you switch to the “Change H1 2018 vs H1 2017 (GWh)” chart, you can watch a giant grey bar representing natural gas take over the top of the chart. It almost looks like it’s part of the border of the chart. The biggest glimmer of positivity in that chart is seeing the decline in coal at the bottom.

What will the second half of the year bring? Well, the gigantic US electricity generation market shifts slowly, even as monthly figures can swing, as January generation jumped 9.3% year over year according to the EIA, reminding us about volatility. There is so much base capacity, and power plants last so long, that it takes a special kind of magic to create a rapid transition to renewable energy. As you know from reading this quarter’s US renewable energy capacity report, only 43% of new US power capacity in the first half of the year was from renewables. The majority of it was from natural gas. Along with other portions of the calculation, that means that electricity generation from natural gas is likely to increase more than electricity generation from renewables.

Jump into the numbers below and let us know if you have any more thoughts.


 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.