Sweden leads EU on renewable energy

By The Independent


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Sweden leads the European Union on renewable energy, producing 44.4 percent of its energy from renewable sources but Malta, Luxembourg and the United Kingdom lag behind.

Renewable energy contributed 10.3 percent of total energy consumption in the EU27 in 2008 according to a July 13 report by the statistical Office of the European Union Eurostat.

The three countries which had the highest share of renewable energy compared to total energy consumption were Sweden, Finland and Latvia, with 44.4 percent, 30.5 percent and 29.9 percent of renewable energy sources in total consumption respectively.

The countries with the lowest share of renewable energy compared to total energy consumption in 2008 were Belgium 3.3 percent, the Netherlands 3.2 percent, the United Kingdom 2.2 percent, Luxembourg 2.1 percent and finally Malta, where only 0.2 percent of total energy consumption comes from renewable energy.

Almost all member states of the European Union increased their share of renewable energy from 2006-2008. The top three countries with the largest increases in their share of renewable energy compared to total energy consumption were, Austria 24.8 percent in 2006 to 28.5 percent in 2008, Estonia 16.1 percent in 2006 to 19.1 percent in 2008 and Romania 17.5 percent in 2006 to 20.4 percent in 2008.

In a 2009 directive renewable energy targets were set for each of the member states, so that by 2020 the EU, as a whole, will reach a 20 percent share of total energy consumption form renewable sources. The United Kingdom plans to produce 15 percent of its energy from renewable sources by 2020, France 23 percent, Italy 17 percent, Germany 18 percent and Sweden, which produced 44.4 percent of its energy from renewable sources in 2008, plans to increase that figure to 49 percent by 2020.

Renewable energy is becoming an increasingly important issue around the world as countries search for viable alternatives to oil. Websites such as worldometers count down, in real time, the number of days left until fossil fuel supplies run out as of July 13, it is estimated that there are 152,082 days to the end of coal, 60,912 days to the end of gas and 15,485 days until the end of oil.

Renewable energy sources include solar, thermal, photovoltaic, hydro and wind power as well as geothermal energy and biomass.

The top ten countries with the largest share of renewable energy as a percentage of final energy consumption are:

Sweden 44.4

Finland 30.5

Latvia 29.9

Austria 28.5

Portugal 23.2

Romania 20.4

Estonia 19.1

Denmark 18.8

Lithuania 15.3

Slovenia 15.1

Related News

Kenya on Course for $5 Billion Nuclear Plant to Power Industry

Kenya Nuclear Power Plant Project advances with environmental impact assessment, selecting Tana River County under a build-operate-transfer model to boost grid capacity, support manufacturing growth, and assess reactor technology for reliable baseload energy.

 

Key Points

A $5B BOT nuclear facility in Tana River to expand Kenya's grid, aiming to start operations in about seven years.

✅ Environmental impact study published for public review by NEMA

✅ Preferred site: Tana River County near coast; grid integration

✅ BOT concession; reactor tech under evaluation for baseload

 

Kenya’s nuclear agency submitted impact studies for a $5 billion power plant, and said it’s on course to build and start operating the facility in about seven years, as markets like China's nuclear program continue steady expansion.

The government plans to expand its nuclear-power capacity fourfold by 2035, mirroring policy steps in India to revive the sector, the Nuclear Power and Energy Agency said in a report on the National Environment Management Authority’s website. The document is set for public scrutiny before the environmental watchdog can approve it, aligning with global green industrial strategies that weigh nuclear in decarbonization, and pave the way for the project to continue.

President Uhuru Kenyatta wants to ramp up installed generation capacity from 2,712 megawatts as of April to boost manufacturing in East Africa’s largest economy, noting milestones such as Barakah Unit 1 reaching 100% power as indicators of nuclear readiness. Kenya expects peak demand to top 22,000 megawatts by 2031, and other jurisdictions, such as Ontario's exploration of new nuclear, are weighing similar large-scale options, partly due to industrial expansion, a component in Kenyatta’s Big Four Agenda. The other three are improving farming, health care and housing.

The nuclear agency is assessing technologies “to identify the ideal reactor for the country,” it said in the report, including next-gen nuclear designs now being evaluated.

A site in Tana River County, near the Kenyan coast was preferred after studies across three regions, according to the report. The plant will be developed with a concessionaire under a build, operate and transfer model, with innovators such as mini-reactor concepts informing vendor options.

 

Related News

View more

Ontario sending 200 workers to help restore power in Florida

Ontario Utilities Hurricane Irma Aid mobilizes Hydro One and Toronto Hydro crews to Tampa Bay, Florida, restoring power outages with bucket trucks, lineworkers, and mutual aid alongside Florida Power & Light after catastrophic damage.

 

Key Points

Mutual aid sending Hydro One and Toronto Hydro crews to Florida to restore power after Hurricane Irma.

✅ 205 workers, 52 bucket trucks, 30 support vehicles deployed

✅ Crews assist Tampa Bay under FPL mutual aid agreements

✅ Weeks-long restoration projected after catastrophic outages

 

Hurricane Irma has left nearly 7 million homes in the southern United States without power and two Ontario hydro utility companies are sending teams to help out as part of Canadian power crews responding to the disaster.

Toronto Hydro is sending 30 staffers to aid in the restoration efforts in Tampa Bay while Hydro One said Sunday night that it would send 175 employees after receiving a request from Florida Power and Light.

“I've been on other storms down in the states and they are pretty happy to see you especially when they find out you're from Canada,” Dean Edwards, one of the Hydro One employees heading to Florida, told CTV Toronto.

Most of the employees are expected to cross the border on Monday afternoon and arrive Wednesday.

Among the crews, Hydro One says it will send 150 lines and forestry staff, as well as 25 supporting resources, including mechanics, to help. Crews will bring 52 bucket trucks to Florida, as well as 30 other vehicles, reflecting their Ontario storm restoration experience with large-scale deployments, and pieces of equipment to transport and replace poles.

Hurricane Irma has claimed at least 45 lives in the Caribbean and United States thus far. Officials estimate that restoring power to Florida will take weeks to bring power back online.

“I’m sure a lot of people wish they could go down and help, fortunately our job is geared towards that so we're going to go down there to do our best and represent Canada,” said Blair Clarke, who’s making his first trip over the border.

Hydro One has reciprocal arrangements with other North American utilities to help with significant power outages, and its employees have provided COVID-19 support in Ontario as part of broader emergency efforts. All the costs are covered by the utility receiving the help.

In the past, the utility has sent crews to Massachusetts, Michigan, Florida, Ohio, Vermont, Washington, DC, and the Carolinas, while Sudbury Hydro crews have worked to reconnect service after storms at home as well. In 2012, 225 Hydro One employees travelled to Long Island, N.Y., to help out with Hurricane Sandy.

“This is what our guys and gals do,” Natalie Poole-Moffat, vice president of Corporate Affairs for Hydro One, told CP24. “They’re fabulous at it and we’re really proud of the work they do.”

 

 

Related News

View more

Climate change: Greenhouse gas concentrations again break records

Rising Greenhouse Gas Concentrations drive climate change, with CO2, methane, and nitrous oxide surging; WMO data show higher radiative forcing, elevated pre-industrial baselines, and persistent atmospheric concentrations despite Paris Agreement emissions pledges.

 

Key Points

Increasing atmospheric CO2, methane, and nitrous oxide levels that raise radiative forcing and drive warming.

✅ WMO data show CO2 at 407.8 ppm in 2018, above decade average

✅ Methane and nitrous oxide surged, elevating total radiative forcing

✅ Concentrations differ from emissions; sinks absorb about half

 

The World Meteorological Organization (WMO) says the increase in CO2 was just above the average rise recorded over the last decade.

Levels of other warming gases, such as methane and nitrous oxide, have also surged by above average amounts.

Since 1990 there's been an increase of 43% in the warming effect on the climate of long lived greenhouse gases.

The WMO report looks at concentrations of warming gases in the atmosphere rather than just emissions.

The difference between the two is that emissions refer to the amount of gases that go up into the atmosphere from the use of fossil fuels, such as burning coal for coal-fired electricity generation and from deforestation.

Concentrations are what's left in the air after a complex series of interactions between the atmosphere, the oceans, the forests and the land. About a quarter of all carbon emissions are absorbed by the seas, and a similar amount by land and trees, while technologies like carbon capture are being explored to remove CO2.

Using data from monitoring stations in the Arctic and all over the world, researchers say that in 2018 concentrations of CO2 reached 407.8 parts per million (ppm), up from 405.5ppm a year previously.

This increase was above the average for the last 10 years and is 147% of the "pre-industrial" level in 1750.

The WMO also records concentrations of other warming gases, including methane and nitrous oxide, and some countries have reported declines in certain potent gases, as noted in US greenhouse gas controls reports, though global levels remain elevated. About 40% of the methane emitted into the air comes from natural sources, such as wetlands, with 60% from human activities, including cattle farming, rice cultivation and landfill dumps.

Methane is now at 259% of the pre-industrial level and the increase seen over the past year was higher than both the previous annual rate and the average over the past 10 years.

Nitrous oxide is emitted from natural and human sources, including from the oceans and from fertiliser-use in farming. According to the WMO, it is now at 123% of the levels that existed in 1750.

Last year's increase in concentrations of the gas, which can also harm the ozone layer, was bigger than the previous 12 months and higher than the average of the past decade.

What concerns scientists is the overall warming impact of all these increasing concentrations. Known as total radiative forcing, this effect has increased by 43% since 1990, and is not showing any indication of stopping.

There is no sign of a slowdown, let alone a decline, in greenhouse gases concentration in the atmosphere despite all the commitments under the Paris agreement on climate change and the ongoing global energy transition efforts," said WMO Secretary-General Petteri Taalas.

"We need to translate the commitments into action and increase the level of ambition for the sake of the future welfare of mankind," he added.

"It is worth recalling that the last time the Earth experienced a comparable concentration of CO2 was three to five million years ago. Back then, the temperature was 2-3C warmer, sea level was 10-20m higher than now," said Mr Taalas.

The UN Environment Programme will report shortly on the gap between what actions countries are taking to cut carbon, for example where Australia's emissions rose 2% recently, and what needs to be done to keep under the temperature targets agreed in the Paris climate pact.

Preliminary findings from this study, published during the UN Secretary General's special climate summit last September, indicated that emissions continued to rise during 2018, although global emissions flatlined in 2019 according to the IEA.

Both reports will help inform delegates from almost 200 countries who will meet in Madrid next week for COP25, following COP24 in Katowice the previous year, the annual round of international climate talks.

 

Related News

View more

Wind has become the ‘most-used’ source of renewable electricity generation in the US

U.S. Wind Generation surpassed hydroelectric output in 2019, EIA data shows, becoming the top renewable electricity source, driven by PTC incentives, expanded capacity, and utility-scale projects across states, boosting the national electricity mix.

 

Key Points

U.S. Wind Generation is the nation's top renewable, surpassing hydro as EIA-tracked capacity grows under PTC incentives.

✅ EIA: wind topped hydro in 2019, over 300M MWh generated

✅ PTC credits spurred growth in utility-scale wind projects

✅ 103 GW installed; 77% added in the last decade

 

Last year saw wind power surging in the U.S. to overtake hydroelectric generation for the first time, according to data from the U.S. Energy Information Administration (EIA).

Released Wednesday, the figures from the EIA’s “Electric Power Monthly” report show that yearly wind generation hit a little over 300 million megawatt hours (MWh) in 2019. This was roughly 26 million MWh more than hydroelectric production.

Wind now represents the “most-used renewable electricity generation source” in the U.S., the EIA said, and renewables hit a 28% monthly record in April in later data.

Overall, total renewable electricity generation — which includes sources such as solar's 4.7% share in 2022 as one example, geothermal and landfill gas — at utility scale facilities hit more than 720 million MWh in 2019, compared to just under 707 million MWh in 2018. To put things in perspective, generation from coal came to more than 966 million MWh in 2019, while renewables surpassed coal in 2022 nationally according to later analyses.

According to the EIA’s “Today in Energy” briefing, which was also published Wednesday, generation from wind power has grown “steadily” across the last decade, and by 2020, renewables became the second-most prevalent source in the U.S. power mix.

This, it added, was partly down to the extension of the Production Tax Credit, or PTC, amid favorable government plans supporting solar and wind growth. According to the EIA, the PTC is a system which gives operators a tax credit per kilowatt hour of renewable electricity production. It applies for the first 10 years of a facility’s operation.

At the end of 2019, the country was home to 103 gigawatts (GW) of wind capacity, with 77% of this being installed in the last decade, and wind capacity surpassed hydro in 2016 according to industry data. The U.S. is home 80 GW of hydroelectric capacity, according to the EIA.

“The past decade saw a steady increase in wind capacity across the country and we capped the decade with a monumental achievement for the industry in reaching more than 100 GW,” Tom Kiernan, the American Wind Energy Association’s CEO, said in a statement issued Thursday.

“And more wind energy is coming, as the industry is well into investing $62 billion in new projects over the next few years that put us on the path to achieving 20 percent of the nation’s electricity mix in 2030,” Kiernan went on to state.

“As a result, wind is positioned to remain the largest renewable energy generator in the country for the foreseeable future.”

 

Related News

View more

Nuclear alert investigation won't be long and drawn out, minister says

Pickering Nuclear False Alert Investigation probes Ontario's emergency alert system after a provincewide cellphone, radio, and TV warning, assessing human error, Pelmorex safeguards, Emergency Management Ontario oversight, and communication delays.

 

Key Points

An Ontario probe into the erroneous Pickering nuclear alert, focusing on human error, system safeguards, and oversight.

✅ Human error during routine testing suspected

✅ Pelmorex safeguards and EMO protocols under review

✅ Two-hour all-clear delay prompts communication fixes

 

An investigation into a mistaken Pickering alert warning of an incident at the Pickering Nuclear Generating Station will be completed fairly quickly, Ontario's solicitor general said.

Sylvia Jones tapped the chief of Emergency Management Ontario to investigate how the alert warning of an unspecified problem at the facility was sent in error to cellphones, radios and TVs across the province at about 7:30 a.m. Sunday.

"It's very important for me, for the people of Ontario, to know exactly what happened on Sunday morning," said Jones. "Having said that, I do not anticipate this is going to be a long, drawn-out investigation. I want to know what happened and equally important, I want some recommendations on insurances and changes we can make to the system to make sure it doesn't happen again."


Initial observations suggest human error was responsible for the alert that was sent out during routine tests of the emergency alert, Jones said.

"This has never happened in the history of the tests that they do every day, twice a day, but I do want to know exactly all of the issues related to it, whether it was one human error or whether it was a series of things."

Martin Belanger, the director of public alerting for Pelmorex, a company that operates the alert system, said there are a number of safeguards built in, including having two separate platforms for training and live alerts.

"The software has some steps and some features built in to minimize that risk and to make sure that users will be able to know whether or not they're sending an alert through the...training platform or whether they're accessing the live system in the case of a real emergency," he said.

Only authorized users have access to the system and the province manages that, Belanger said. Once in the live system, features make the user aware of which platform they are using, with various prompts and messages requiring the user's confirmation. There is a final step that also requires the user to confirm their intent of issuing an alert to cellphones, radio and TVs, Belanger said.

On Sunday, a follow-up alert was sent to cellphones nearly two hours after the original notification, and similar grid alerts in Alberta underscore timing and public expectations.

NDP energy critic Peter Tabuns is critical of that delay, noting that ongoing utility scam warnings can further erode public trust.

"That's a long time for people to be waiting to find out what's really going on," he said. "If people lose confidence in this system, the ability to use it when there is a real emergency will be impaired. That's dangerous."

Treasury Board President Peter Bethlenfalvy, who represents the riding of Pickering-Uxbridge, said getting that alert Sunday morning was "a shock to the system," and he too wants the investigation to address the reason for the all-clear delay.

"We all have a lot of questions," he said. "I think the public has every right to know exactly what went on and we feel exactly the same way."

People in the community know the facility is safe, Bethlenfalvy said.

"We have some of the safest nuclear assets in the world -- the safest -- at 60 per cent of Ontario's electricity," he said.

A poll released Monday found that 82 per cent of Canadians are concerned about spills from nuclear reactors contaminating drinking water and 77 per cent are concerned about neighbourhood safety and security risks for those living close to nuclear plants. Oraclepoll Research surveyed 2,094 people across the country on behalf of Friends of the Earth between Jan. 2 and 12, the day of the false alert. The have a margin of error of plus or minus 2.1 per cent, 19 times out of 20.

The wording of Sunday's alert caused much initial confusion, and events like a power outage in London show how morning disruptions can amplify concern, warning residents within 10 kilometres of the plant of "an incident," though there was no "abnormal" release of radioactivity and residents didn't need to take protective steps, but emergency crews were responding.

In the event of a real emergency, the wording would be different, Jones said.

"There are a number of different alerts that are already prepared and are ready to go," she said. "We have the ability to localize it to the communities that are impacted, but because this was a test, it went provincewide."

Jones said she expects the results of the probe to be made public.

The Pickering nuclear plant has been operating since 1971, and had been scheduled to be decommissioned this year, but the former Liberal government -- and the current Progressive Conservative government -- committed to keeping it open until 2024. Decommissioning is now set to start in 2028.

It operates six CANDU reactors, generates 14 per cent of Ontario's electricity and is responsible for 4,500 jobs across the region, according to OPG, and OPG's credit rating remains stable.

During the COVID-19 pandemic, Hydro One employees supported the Province of Ontario in the fight against COVID-19.

The Green party is calling on the province to use this opportunity to review its nuclear emergency response plan, including pandemic staffing contingencies, last updated in 2017 and subject to review every five years.

Toronto Mayor John Tory praised Ontario for swiftly launching an investigation, but said communication between city and provincial officials wasn't what it should have been under the circumstances.

"It was a poor showing and I think everybody involved knows that," he said. "We've got to make sure it's not repeated."

 

Related News

View more

US nuclear innovation act becomes law

NEIMA advances NRC regulatory modernization, creating a licensing framework for advanced reactors, improving uranium permitting, capping reactor fees, and mandating DOE planning for excess uranium, boosting transparency, accountability, and innovation across the US nuclear sector.

 

Key Points

NEIMA is a US law modernizing NRC rules and enabling advanced reactor licensing while reforming fees.

✅ Modernizes NRC licensing for advanced reactors

✅ Caps annual reactor fees and boosts transparency

✅ Streamlines uranium permitting; directs DOE plans

 

Bipartisan legislation modernising US nuclear regulation and supporting the establishment of a licensing framework for next-generation advanced reactors has been signed by US President Donald Trump, whose order boosting U.S. uranium and nuclear energy underscored the administration's focus on the sector.

The Nuclear Energy Innovation and Modernisation Act (NEIMA) became law on 14 January.

As well as directing the Nuclear Regulatory Commission (NRC) to modify the licensing process for commercial advanced nuclear reactor facilities, the bill establishes new transparency and accountability measures to the regulator's budget and fee programmes, and caps fees for existing reactors. It also directs the NRC to look at ways of improving the efficiency of uranium licensing, including investigating the safety and feasibility of extending uranium recovery licences from ten to 20 years' duration, and directs the Department of Energy, which oversees nuclear cleanup and related projects, to issue at least every ten years a long-term plan detailing the management of its excess uranium inventories.

Maria Korsnick, president and CEO of the US Nuclear Energy Institute, described NEIMA as a "significant, positive step" toward the reform of the NRC's fee collection process. "This legislation establishes a more equitable and transparent funding structure which will benefit all operating reactors and future licensees," she said. "The bill also reaffirms Congress’s support for nuclear innovation by working to establish an efficient and stable regulatory structure that is prepared to license the advanced reactors of the future."

Marilyn Kray, president-elect of the American Nuclear Society, said the passage of the legislation was a "big win" for the nation and its nuclear community. "By reforming outdated laws, NRC will now be able to invest more freely in advanced nuclear R&D and licensing activities. This in turn will accelerate deployment of cutting-edge American nuclear systems and better prepare the next generation of nuclear engineers and technologists," she said.

The bill was introduced in 2017 by Senator John Barrasso of Wyoming. It was approved by Congress on 21 December by 361 votes to 10, having been passed by the Senate the previous day, even as later Biden's climate law developments produced mixed results.

NEIMA is one of several bipartisan bills that support advanced nuclear innovation considered by the 115th US Congress, which ended on 2 January. These are: the Nuclear Energy Innovation Capabilities Act (NEICA); the Nuclear Energy Leadership Act; the Nuclear Utilisation of Keynote Energy Act; the Advanced Nuclear Fuel Availability Act, a focus sharpened by the U.S. ban on Russian uranium in the fuel market; and legislation to expedite so-called part 810 approvals, which are needed for the export of technology, equipment and components. NEICA, which supports the deployment of advanced reactors and also directs the DOE to develop a reactor-based fast neutron source for the testing of advanced reactor fuels and materials, was signed into law in October.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified