Prime Minister Stephen Harper said a global treaty on climate change could take years but hailed a promise by all Group of Eight leaders to seek that deal as a positive first step.
Despite their failure to set a firm objective on greenhouse gas reduction at the current summit in Germany, he says it's significant that G8 leaders have for the first time agreed there's a need for such targets.
Harper said world leaders must now set a world standard that includes a range of individual national targets that reflects the different circumstances of each country.
This could take time, he said. The declaration called for global targets set under the United Nations by 2009.
"There will obviously be plenty of discussion – for months and maybe even years," the prime minister told a news conference at the summit.
"But I think we are all on the same path now toward a consensus of industrialized countries, and I think that's necessary to attain a consensus with developing countries."
The language of the G8 declaration cited a desire to halve greenhouse-gas emissions by 2050.
But it appeared to be well short of a full commitment, saying all members should "seriously consider" following the European Union, Japan and Canada in cutting emissions by 50 per cent.
Some of the thousands of protesters kept well away from the summit site have been pressing for clear goals for cutting emission.
The German summit hosts had lobbied their counterparts for months to accept binding emissions cuts but appeared to have failed in bringing the United States and Russia on side.
Still, German Chancellor Angela Merkel declared the gathering a success.
"We agree that we need reduction goals – and obligatory reduction goals," she said.
"No one can escape this political declaration. It is an enormous step forward."
British Prime Minister Tony Blair called the declaration a major step forward leading up to UN climate-change negotiations in Bali, Indonesia, at the end of the year.
But Harper said it would be optimistic to expect a deal to be reached there.
The prime minister said developed countries would obviously need to shoulder a major share of the burden because they can afford it, but an effective deal would include everyone.
He said getting such a deal could take months and years. The important thing is getting it right this time, he said.
"We know the history of Canada – we committed to targets without thinking those targets through 10 years ago, and then are unable to reach them," he said of the Kyoto accord.
"When others say we want a fulsome discussion before we actually determine what reasonable targets are, I think that's something we have to be flexible on."
The United States declared the go-slow approach in the agreement is a vindication of its position.
Back in Canada, the Liberals accused Harper of helping U.S. President George W. Bush delay progress in the climate-change fight.
Bush resisted a binding deal at the summit, arguing that world leaders should have until the end of 2008 to bring economic powers like China, India and Brazil on side.
His national security adviser, Stephen Hadley, said the deal reflected his call to have the top 15 polluters meet to set a long-term goal and decide for themselves how much to do toward meeting it.
Harper agreed that targets should vary depending on national circumstances.
He used as an example the European Union, which has various targets for member countries that add up to its overall goal of reducing emissions 20 per cent by 2020.
"There should be a global target. And then obviously there need to be national targets," Harper said.
"Those targets are going to have to be very different, depending on different circumstances."
He suggested developed countries should carry a heavier share of the burden. People with a higher standard of living should "accept some of the economic pain," he said.
That expressed willingness to shoulder extra responsibility stood out as a striking reminder of how much Harper's position on climate change had evolved from his time in opposition.
At the time, he called the Kyoto accord a money-sucking socialist scheme while pointing out that carbon – a key greenhouse gas – was also a necessary element for life on Earth.
He hailed the international declaration of war on carbon emissions and stressed the need for a global deal.
"We're a long way to getting there but I think we've made a very important first step," Harper said.
"We have to come towards real, mandatory, enforceable targets. That's certainly my understanding of where this needs to go."
Indonesia Coal Production Cuts reflect weaker China demand, COVID-19 impacts, falling HBA reference prices, and DMO sales to PLN, pressuring thermal coal output, miner budgets, and investment plans under the 2020 RKAB.
Key Points
Planned 2020 coal output reductions from China demand slump, lower HBA prices, and DMO constraints impacting miners.
✅ China demand drop reduces exports and thermal coal shipments.
✅ HBA reference price decline pressures margins and cash flow.
✅ DMO sales to PLN limit revenue; investment plans may slow.
The Energy and Mineral Resources (ESDM) Ministry is considering lowering the coal production target this year as demand from China has shown a significant decline, with China power demand drops reported, since the start of the outbreak of the novel coronavirus in the country late last year, a senior ministry official has said.
The ministry’s coal and mineral director general Bambang Gatot Ariyono said in Jakarta on March 12 that the decline in the demand had also caused a sharp drop in coal prices on the world market, and China's plan to reduce coal power has further weighed on sentiment, which could cause the country’s miners to reduce their production.
The 2020 minerals and coal mining program and budget (RKAB) has set a current production goal of 550 million tons of coal, a 10 percent increase from last year’s target. As of March 6, 94.7 million tons of coal had been mined in the country in the year.
“With the existing demand, revision to this year’s production is almost certain,” he said, adding that the drop in demand had also caused a decline in coal prices.
Indonesia’s thermal coal reference price (HBA) fell by 26 percent year-on-year to US$67.08 per metric ton in March, according to a Standards & Poor press release on March 5. At home, the coal price is also unattractive for local producers. Under the domestic market obligation (DMO) policy, miners are required to sell a quarter of their production to state-owned electricity company PLN at a government-set price, even as imported coal volumes rise in some markets. This year’s coal reference price is $70 per metric ton, far below the internal prices before the coronavirus outbreak hit China.
The ministry’s expert staff member Irwandy Arif said China had reduced its coal demand by 200,000 tons so far, as six of its coal-fired power plants had suspended operation due to the significant drop in electricity demand. Many factories in the country were closed as the government tried to halt the spread of the new coronavirus, which caused the decline in energy demand and created electric power woes for international supply chains.
“At present, all mines in Indonesia are still operating normally, while India is rationing coal supplies amid surging electricity demand. But we have to see what will happen in June,” he said.
The ministry predicted that the low demand would also result in a decline in coal mining investment, as clean energy investment has slipped across many developing nations.
The ministry set a $7.6 billion investment target for the mining sector this year, up from $6.17 billion last year, even as Israel reduces coal use in its power sector, which may influence regional demand. The year’s total investment realization was $192 million as of March 6, or around 2.5 percent of the annual target.
Miami Valley EV Chargers Expansion strengthens Level 2 charging infrastructure across Dayton, with Ohio EPA funding and Volkswagen settlement support, easing range anxiety and promoting sustainable transportation at Austin Landing and high-traffic destinations.
Key Points
An Ohio initiative installing 24 Level 2 stations to boost EV adoption, reduce range anxiety, and expand access in Dayton.
✅ 24 new Level 2 chargers at high-traffic regional sites
✅ Ohio EPA and VW settlement funds support deployment
✅ Reduces range anxiety, advancing sustainable mobility
The Miami Valley region in Ohio is accelerating its transition to electric vehicles (EVs) with the installation of 24 new Level 2 EV chargers, funded through a $1.1 million project supported by the Ohio Environmental Protection Agency (EPA). This initiative aims to enhance EV accessibility and alleviate "range anxiety" among drivers as the broader U.S. EV boom tests grid readiness.
Strategic Locations Across the Region
The newly installed chargers are strategically located in high-traffic areas to maximize their utility as national charging networks compete to expand coverage across travel corridors. Notable sites include Austin Landing, the Dayton Art Institute, the Oregon District, Caesar Creek State Park, and the Rose Music Center. These locations were selected to ensure that EV drivers have convenient access to charging stations throughout the region, similar to how Ontario streamlines station build-outs to place chargers where drivers already travel.
Funding and Implementation
The project is part of Ohio's broader effort to expand EV infrastructure, reflecting the evolution of U.S. charging infrastructure while utilizing funds from the Volkswagen Clean Air Act settlement. The Ohio EPA awarded approximately $3.25 million statewide for the installation of Level 2 EV chargers, with the Miami Valley receiving a significant portion of this funding, while Michigan utility programs advance additional investments to scale regional infrastructure.
Impact on the Community
The expansion of EV charging infrastructure is expected to have several positive outcomes. It will provide greater convenience for current EV owners and encourage more residents to consider electric vehicles as a viable transportation option, including those in apartments and condos who benefit from expanded access. Additionally, the increased availability of charging stations supports the state's environmental goals by promoting the adoption of cleaner, more sustainable transportation.
Looking Ahead
As the adoption of electric vehicles continues to grow, the Miami Valley's investment in EV infrastructure positions the region as a leader in sustainable transportation as utilities pursue ambitious charging strategies to meet demand. The success of this project may serve as a model for other regions looking to expand their EV charging networks. This initiative reflects a significant step towards a more sustainable and accessible transportation future for the Miami Valley.
DOE Hydropower Funding advances clean energy R&D, pumped storage hydropower, retrofits for non-powered dams, and fleet modernization under the Bipartisan Infrastructure Law and Inflation Reduction Act, boosting long-duration energy storage, licensing studies, and sustainability engagement.
Key Points
A $28M DOE initiative supporting hydropower R&D, pumped storage, retrofits, and stakeholder sustainability efforts.
✅ Funds retrofits for non-powered dams, expanding low-impact supply
✅ Backs studies to license new pumped storage facilities
✅ Engages stakeholders on modernization and environmental impacts
The U.S. Department of Energy (DOE) today announced more than $28 million across three funding opportunities to support research and development projects that will advance and preserve hydropower as a critical source of clean energy. Funded through President Biden’s Bipartisan Infrastructure Law, this funding will support the expansion of low-impact hydropower (such as retrofits for dams that do not produce power) and pumped storage hydropower, the development of new pumped storage hydropower facilities, and engagement with key voices on issues like hydropower fleet modernization, sustainability, and environmental impacts. President Biden’s Inflation Reduction Act also includes a standalone tax credit for energy storage, which will further enhance the economic attractiveness of pumped storage hydropower. Hydropower will be a key clean energy source in transitioning away from fossil fuels and meeting President Biden’s goals of 100% carbon pollution free electricity by 2035 through a clean electricity standard policy pathway and a net-zero carbon economy by 2050.
“Hydropower has long provided Americans with significant, reliable energy, which will now play a crucial role in achieving energy independence and protecting the climate,” said U.S. Secretary of Energy Jennifer M. Granholm. “President Biden’s Agenda is funding critical innovations to capitalize on the promise of hydropower and ensure communities have a say in building America’s clean energy future, including efforts to revitalize coal communities through clean projects.”
Hydropower accounts for 31.5% of U.S. renewable electricity generation and about 6.3% of total U.S. electricity generation, with complementary programs to bolster energy security for rural communities supporting grid resilience, while pumped storage hydropower accounts for 93% of U.S. utility-scale energy storage, ensuring power is available when homes and businesses need it, even as the aging U.S. power grid poses challenges to renewable integration.
The funding opportunities include, as part of broader clean energy funding initiatives, the following:
Advancing the sustainable development of hydropower and pumped storage hydropower by encouraging innovative solutions to retrofit non-powered dams, the development and testing of technologies that mitigate challenges to pumped storage hydropower deployment, as well as opportunities for organizations not extensively engaged with DOE’s Water Power Technologies Office to support hydropower research and development. (Funding amount: $14.5 million)
Supporting studies that facilitate the FERC licensing process and eventual construction and commissioning of new pumped storage hydropower facilities to facilitate the long-duration storage of intermittent renewable electricity. (Funding amount: $10 million)
Uplifting the efforts of diverse hydropower stakeholders to discuss and find paths forward on topics that include U.S. hydropower fleet modernization, hydropower system sustainability, and hydropower facilities’ environmental impact. (Funding amount: $4 million)
Nova Scotia Power Rate Increase Settlement faces UARB scrutiny as regulators weigh electricity rates, fuel costs, storm rider provisions, Bill 212 limits, and Muskrat Falls impacts on ratepayers and affordability for residential and industrial customers.
Key Points
A deal proposing 13.8% electricity hikes for 2023-2024, before the UARB, covering fuel costs, a storm rider, and Bill 212.
✅ UARB review may set different rates than the settlement
✅ Fuel cost prepayment and hedging incentives questioned
✅ Storm rider shifts climate risk onto ratepayers
Nova Scotia Premier Tim Houston is calling on provincial regulators to reject a settlement agreement between Nova Scotia Power and customer groups that would see electricity rates rise by nearly 14% electricity rate hike over the next two years.
"It is our shared responsibility to protect ratepayers and I can't state strongly enough how concerned I am that the agreement before you does not do that," Houston wrote in a letter to the Nova Scotia Utility and Review Board late Monday.
Houston urged the three-member panel to "set the agreement aside and reach its own conclusion on the aforementioned application."
"I do not believe, based on what I know, that the proposed agreement is in the best interest of ratepayers," he said.
The letter does not spell out what his Progressive Conservative government would do if the board accepts the settlement reached last week between Nova Scotia Power and lawyers representing residential, small business and large industrial customer classes.
Other groups also endorsed the deal, although Nova Scotia Power's biggest customer — Port Hawkesbury Paper — did not sign on.
'We're protecting the ratepayers' Natural Resources Minister Tory Rushton said the province was not part of the negotiations leading up to the settlement.
"As a government or department we had no intel on those conversations that were taking place," he said Tuesday. "So, we saw the information the same as the public did late last week, and right now we're protecting the ratepayers of Nova Scotia, even though the province cannot order Nova Scotia Power to lower rates under current law. We want to make sure that that voice is still heard at the UARB level."
Rushton said he didn't want to presuppose what the UARB will say.
"But I think the premier's been very loud and clear and I believe I have been, too. The ratepayers are at the top of our mind. We have different tools at our [disposal] and we'll certainly do what we can and need to [do] to protect those ratepayers."
The settlement agreement If approved by regulators, rates would rise by 6.9 per cent in 2023 and 6.9 per cent in 2024 — almost the same amount on the table when hearings before the review board ended in September.
The Houston government later intervened with legislation, known as Bill 212, that capped rates to cover non-fuel costs by 1.8 per cent. It did not cap rates to cover fuel costs or energy efficiency programs.
In a statement announcing the agreement, Nova Scotia Power president Peter Gregg claimed the settlement adhered "to the direction provided by the provincial government through Bill 212."
Consumer advocate Bill Mahody, representing residential customers, told CBC News the proposed 13.8 per cent increase was "a reasonable rate increase given the revenue requirement that was testified to at the hearing."
Settlement 'remarkably' similar to NSP application The premier disagrees, noting that the settlement and rate application that triggered the rate cap are "remarkably consistent."
He objects to the increased amount of fuel costs rolled into rates next year before the annual true up of actual fuel costs, which are automatically passed on to ratepayers.
"If Nova Scotia Power is effectively paid in advance, what motive do they have to hedge and mitigate the adjustment eventually required," Houston asked in his letter.
He also objected to the inclusion of a storm rider in rates to cover extreme weather, which he said pushed the risk of climate change on to ratepayers.
Premier second-guesses Muskrat Falls approval Houston also second-guessed the board for approving Nova Scotia Power's participation in the Muskrat Falls hydro project in Labrador.
"The fact that Nova Scotians have paid over $500 million for this project with minimal benefit, and no one has been held accountable, is wrong," he said. "It was this board of the day that approved the contracts and entered the final project into rates."
Although the Maritime Link was built on time and on budget by an affiliated company, only a fraction of Muskrat Falls hydro has been delivered because of ongoing problems in Newfoundland, including an 18% electricity rate hike deemed unacceptable by the province's consumer advocate.
"I find it remarkable that those contracts did not include different risk sharing mechanisms; they should have had provisions for issues in oversight of project management. Nevertheless, it was approved, and is causing significant harm to ratepayers in the form of increased rates."
Houston notes that because of non-delivery from Muskrat Falls, Nova Scotia Power has been forced to buy much more expensive coal to burn to generate electricity.
Opposition reaction Opposition parties in Nova Scotia reacted to Houston's letter.
NDP Leader Claudia Chender dismissed it as bluster.
"It exposes his Bill 212 as not really helping Nova Scotians in the way that he said it would," she said. "Nothing in the settlement agreement contravenes that bill. But it seems that he's upset that he's been found out. And so here we are with another intervention in an independent regulatory body."
Liberal Leader Zach Churchill said the government should intervene to help ratepayers directly.
"We just think that it makes more sense to do that directly by supporting ratepayers through heating assistance, lump-sum electricity credits, rebate programs and expanding the eligibility for that or to provide funding directly to ratepayers instead of intervening in the energy market in this way," he said.
The premier's office said that no one was available when asked about an interview on Tuesday.
"The letter speaks for itself," the office responded.
Nova Scotia Power issued a statement Tuesday. It did not directly address Houston's claims.
"The settlement agreement is now with the NS Utility and Review Board," the utility said.
"The UARB process is designed to ensure customers are represented with strong advocates and independent oversight. The UARB will determine whether the settlement results in just and reasonable rates and is in the public interest."
SaskPower 2019-20 Annual Report highlights $205M net income, grid capacity upgrades, emissions reduction progress, Chinook Power Station natural gas baseload, and wind and solar renewable energy to support Saskatchewan's Growth Plan and Prairie Resilience.
Key Points
SaskPower's 2019-20 results: $205M income, grid upgrades, emissions cuts, and new gas baseload with wind and solar.
✅ $205M net income, up $8M year-over-year
✅ Chinook Power Station adds stable natural gas baseload
✅ Increased grid capacity enables more wind and solar
SaskPower presented its annual report on Monday, with a net income of $205 million in 2019-20, even as Manitoba Hydro's financial pressures highlight regional market dynamics.
“Reliable, sustainable and cost-effective electricity is crucial to achieving the economic goals laid out in the Government of Saskatchewan’s Growth Plan and the emissions reductions targets outlined in Prairie Resilience, our made-in-Saskatchewan climate change strategy,” Minister Responsible for SaskPower Dustin Duncan said.
In the last year, SaskPower has repaired and upgraded old infrastructure, invested in growth projects and increased grid capacity, including plans to buy more electricity from Manitoba Hydro to support reliability and benefiting from new turbine investments across the region.
“During the past year, we continued to move toward our target to reduce carbon dioxide emissions 40 per cent from 2005 levels by 2030, as part of efforts to double renewable electricity by 2030 across Saskatchewan,” SaskPower President and CEO Mike Marsh said. “The newly commissioned natural gas-fired Chinook Power Station will provide a stable source of baseload power while enabling the ongoing addition of intermittent renewable generation capacity, and exploring geothermal power alongside wind and solar generation.”
Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.
Key Points
An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.
✅ VFSGs start engines, then generate 235Vac variable-frequency power
✅ Bleedless pressurization, electric anti-ice improve fuel efficiency
✅ Electric brakes cut hydraulic weight and simplify maintenance
The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.
When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.
What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.
Power sources
The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.
Engine starter/generators
The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.
The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.
APU starter/generators
In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.
The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.
The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.
Battery power
The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.
The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.
Ram air turbine (RAT) generator
When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.
Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.
External power
Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.
The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.
The aft external power is only used when the ground power is required for engine start.
Circuit breakers
Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.
Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.
Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.
A normal flight
While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.
On the ground
When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.
Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.
APU start
As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.
The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.
If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.
Engine start
Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is below 5°C.
On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.
Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.
After start
Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.
As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.
By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.
In-flight
Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.
Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.
Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.
Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.
Shutdown
With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.
However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.
Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.
Bottom line
Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.
The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.
The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.