30,000 without power after storm

By Toronto Star


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Thirty thousand homes in the areas hardest hit by recent thunderstorms were without power on the weekend, according to Hydro One officials.

Enzra Cancilla, Hydro One's manager of public affairs, said the company had restored power by Sunday in the Hunstville and Bracebridge areas.

Hydro One has mobilized "all available crews" and is using forestry teams to cut through many of the trees felled by lightning June 8.

Cancilla says Hydro One also has helicopters surveying damage sites to identify which remote areas have been hardest hit.

The storm left a total 121,000 people without power in Ontario June 8 before moving on to Quebec.

Related News

Ontario Breaks Ground on First Small Modular Nuclear Reactor

Ontario SMR BWRX-300 leads Canada in next-gen nuclear energy at Darlington, with GE Vernova and Hitachi, delivering clean, reliable power via modular design, passive safety, scalability, and lower costs for grid integration.

 

Key Points

Ontario SMR BWRX-300 is a 300 MW modular boiling water reactor at Darlington with passive safety and clean power.

✅ 300 MW BWR supplies power for about 300,000 homes

✅ Passive safety enables safe shutdown without external power

✅ Modular design reduces costs and speeds grid integration

 

Ontario has initiated the construction of Canada's first small modular nuclear reactor (SMR), supported by OPG's SMR commitment to deployment, marking a significant milestone in the province's energy strategy. This development positions Ontario at the forefront of next-generation nuclear technology within the G7 nations.

The project, known as the Darlington New Nuclear Project, is being led by Ontario Power Generation (OPG) in collaboration with GE Vernova and Hitachi Nuclear Energy, and through its OPG-TVA partnership on new nuclear technology development. The chosen design is the BWRX-300, a 300-megawatt boiling water reactor that is approximately one-tenth the size and complexity of traditional nuclear reactors. The first unit is expected to be operational by 2029, with plans for additional units to follow.

Each BWRX-300 reactor is projected to supply electricity to about 300,000 homes, contributing to Ontario's efforts, which include the decision to refurbish Pickering B for additional baseload capacity, to meet the anticipated 75% increase in electricity demand by 2050. The compact design of the SMR allows for easier integration into existing infrastructure, reducing the need for extensive new transmission lines.

The economic impact of the project is substantial. The construction of four such reactors is expected to create up to 18,000 jobs and contribute approximately $38.5 billion CAD to the Canadian economy, reflecting the economic benefits of nuclear projects over 65 years. The modular nature of SMRs also allows for scalability, with each additional unit potentially reducing costs through economies of scale.

Safety is a paramount consideration in the design of the BWRX-300. The reactor employs passive safety features, meaning it can safely shut down without the need for external power or operator intervention. This design enhances the reactor's resilience to potential emergencies, aligning with stringent regulatory standards.

Ontario's commitment to nuclear energy is further demonstrated by its plans for four SMRs at the Darlington site. This initiative reflects a broader strategy to diversify the province's energy mix, incorporating clean and reliable power sources to complement renewable energy efforts.

While the development of SMRs in Ontario is a significant step forward, it also aligns with the Canadian nuclear initiative positioning Canada as a leader in the global nuclear energy landscape. The successful implementation of the BWRX-300 could serve as a model for other nations exploring advanced nuclear technologies.

Ontario's groundbreaking work on small modular nuclear reactors represents a forward-thinking approach to energy generation. By embracing innovative technologies, the province is not only addressing future energy demands but also, through the Pickering NGS life extension, contributing to the global transition towards sustainable and secure energy solutions.

 

Related News

View more

Canada in top 10 for hydropower jobs, but doesn't rank on other renewables

Canada Renewable Energy Jobs rank top 10 in hydropower, says IRENA, but trail in solar PV, wind power, and liquid biofuels; clean tech growth, EV manufacturing, and Canada Infrastructure Bank funding signal broader carbon-neutral opportunities.

 

Key Points

Canada counts 61,130 clean energy roles, top 10 in hydropower, with potential in solar, wind, biofuels, and EV manufacturing.

✅ 61,130 clean energy jobs in Canada per IRENA

✅ Top 10 share in hydropower employment

✅ Growth expected in solar, wind, biofuels, and EVs

 

Canada has made the top 10 list of countries for the number of jobs in hydropower, but didn’t rank in three other key renewable energy technologies, according to new international figures.

Although Canada has only two per cent of the global workforce, it had one of the 10 largest slices of the world’s jobs in hydropower in 2019, says the Abu Dhabi-based International Renewable Energy Agency (IRENA)

Canada didn’t make IRENA’s other top-10 employment lists, for solar photovoltaic (PV) technology, where solar power lags by international standards, liquid biofuels or wind power, released Sept. 30. Figures from the agency show the whole sector represents 61,130 jobs across Canada, or 0.5 per cent of the world’s 11.5 million jobs in renewables.

The numbers show Canada needs to move faster to minimize the climate crisis, including by joining trade blocs that put tariffs on high-carbon goods, argued the Victoria-based BC Sustainable Energy Association after reviewing IRENA’s report. The Canadian Renewable Energy Association also said it showed the country has untapped job creation potential, even as growth projections were scaled back after Ontario scrapped a clean energy program.

But other clean tech advocates say there’s more to the story. When tallying clean energy jobs, it's worth a broader look, Clean Energy Canada argued, pointing to the recent Ford-Unifor deal that includes a $1.8-billion commitment to produce electric vehicles in Oakville, Ont.

Natural Resources Minister Seamus O'Regan’s office also pointed out the renewables employment figures from IRENA are proportional to global population. “While Canada's share of the global clean energy job market is in line with our population size, we produce almost 2.7 per cent of the world’s total primary renewable energy supply. As only 0.5 per cent of the global population, we punch above our weight,” said O'Regan's press secretary, Ian Cameron.

Canada joined IRENA in January 2019 and the country has been described by the association as an “important market” for renewables over the long term.

On Thursday, Prime Minister Justin Trudeau announced a new $10-billion “Growth Plan” to be run by the Canada Infrastructure Bank that would include “$2.5 billion for clean power to support renewable generation and storage and to transmit clean electricity between provinces, territories, and regions, including to northern and Indigenous communities.” The infrastructure bank's plan is expected to create 60,000 jobs, the government said, and in Alberta an Alberta renewables surge could power 4,500 jobs as projects scale up.

World ‘building the renewable energy revolution now’

A powerful renewables sector is not just about job creation. It is also imperative if we are to meet global climate objectives, according to the Intergovernmental Panel on Climate Change. Renewable energy sources have to make up at least a 63 per cent share of the global electricity market by mid-century to battle the more extreme effects of climate change, it said.

“The IRENA report shows that people all over of the world are building the renewable energy revolution now,” said Tom Hackney, policy adviser for the BC Sustainable Energy Association.

“Many people in Canada are doing so, too. But we need to move faster to minimize climate change. For example, at the level of trade policy, a great idea would be to develop low-carbon trading blocs that put tariffs on goods with high embodied carbon emissions.”

Canadian Renewable Energy Association president and CEO Robert Hornung said the IRENA jobs review highlights “significant job creation potential” in Canada. As governments explore how to stimulate economic recovery from the impact of the COVID-19 pandemic, said Hornung, it's important to “capitalize on Canada's untapped renewable energy resources.”

In Canada, 82 per cent of the electricity grid is already non-emitting, noted Sarah Petrevan, policy director for Clean Energy Canada.

With the federal government committing to a 90 per cent non-emitting grid by 2030, said Petrevan, more wind and solar deployment can be expected, even though solar demand has lagged in recent years, especially in the Prairies where renewables are needed to help with Canada’s coal-fired power plant phase out.

One example of renewables in the Prairies, where the provinces are poised to lead growth, is the Travers Solar project, which is expected to be constructed in Alberta through 2021, and is being touted as “Canada's largest solar farm.”

But renewables are only “one part of the broader clean energy sector,” said Petrevan. Clean Energy Canada has outlined how Canada could be electric and clean with the right choices, and has calculated clean tech supports around 300,000 jobs, projected to grow to half a million by 2030.

“We’re talking about a transition of our energy system in every sense — not just in the power we produce. So while the IRENA figures provide global context, they reflect only a portion of both our current reality and the opportunity for Canada,” she said.

The organization’s research has shown that manufacturing of electric vehicles would be one of the fastest-growing job creators over the next decade. Putting a punctuation mark on that is a recent $1.8-billion deal with Ford Motor Company of Canada to produce five models of electric vehicles in Oakville, Ont.

China ‘remains the clear leader’ in renewables jobs

With 4.3 million renewable energy jobs in 2019, or 38 per cent of all renewables jobs, China “remains the clear leader in renewable energy employment worldwide,” the IRENA report states. China has the world's largest population and the second-largest GDP.

The country is also by far the world’s largest emitter of carbon pollution, at 28 per cent of global greenhouse gas emissions, and has significant fossil fuel interests. Chinese President Xi Jinping called for a “green revolution” last month, and pledged to “achieve carbon neutrality before 2060.”

China holds the largest proportion of jobs in hydropower, with 29 per cent of all jobs, followed by India at 19 per cent, Brazil at 11 per cent and Pakistan at five per cent, said IRENA.

Canada, with 32,359 jobs in the industry, and Turkey and Colombia hold two per cent each of the world’s hydropower jobs, while Myanmar and Russia hold three per cent each and Vietnam has four per cent.

China also dominates the global solar PV workforce, with 59 per cent of all jobs, followed by Japan, the United States, India, Bangladesh, Vietnam, Malaysia, Brazil, Germany and the Philippines. There are 4,261 jobs in solar PV in Canada, IRENA calculated, and the country is set to hit a 5 GW solar milestone as capacity expands, out of a global workforce of 3.8 million jobs.

In wind power, China again leads, with 44 per cent of all jobs. Germany, the United States and India come after, with the United Kingdom, Denmark, Mexico, Spain, the Philippines and Brazil following suit. Canada has 6,527 jobs in wind power out of 1.17 million worldwide.

As for liquid biofuels, Brazil leads that industry, with 34 per cent of all jobs. Indonesia, the United States, Colombia, Thailand, Malaysia, China, Poland, Romania and the Philippines fill out the top 10. There are 17,691 jobs in Canada in liquid biofuels.

 

Related News

View more

TCS Partners with Schneider Electric Marathon de Paris to Boost AI and Technology

TCS AI Partnership Paris Marathon integrates predictive analytics, digital twin simulations, real-time runner tracking, and sustainability solutions to elevate logistics, athlete performance, and immersive spectator engagement across the Schneider Electric Marathon de Paris ecosystem.

 

Key Points

AI-driven TCS partnership enhancing Paris logistics, performance, engagement, and sustainability for three years.

✅ Predictive analytics and digital twins optimize race-day ops

✅ Real-time runner tracking and health insights

✅ Sustainable resource management and waste reduction

 

Tata Consultancy Services (TCS) has officially become the AI & Technology Partner for the Schneider Electric Marathon de Paris, marking the start of a three-year collaboration with one of the world’s most prestigious running events. This partnership, announced on April 1, 2025, aims to revolutionize the marathon experience by integrating cutting-edge technology, artificial intelligence (AI), and data analytics, and modern AI data centers to power scalable capabilities, enhancing both the runner's journey and the spectator experience.

The Schneider Electric Marathon de Paris, which attracts over 55,000 runners from across the globe, is a renowned event that not only challenges athletes but also captivates a worldwide audience. As the Official AI & Technology Partner, TCS is set to bring its deep expertise in AI, digital innovation, and data-driven insights to this iconic event, drawing on adjacent domains such as substation automation training to strengthen operations. With more than 30 years of presence in France and its significant partnerships with French corporations, TCS is uniquely positioned to merge its global technology capabilities with local knowledge, thus adding immense value to this prestigious marathon.

The collaboration will primarily focus on enhancing the race logistics, improving athlete performance, and creating a personalized experience for both runners and spectators. Using advanced AI tools, predictive analytics, and digital twin technologies, TCS will streamline various aspects of the event. For example, AI-powered predictive models, reflecting progress recognized by European electricity prediction specialists in forecasting, will be used to track and monitor runners in real-time, providing insights into their performance and well-being during the race. Additionally, the implementation of digital twin technology will enable TCS to create accurate virtual models of the event, improving logistics and supporting better decision-making.

One of the key goals of the partnership is to improve the sustainability of the marathon. By utilizing advanced AI solutions, including AI for energy savings approaches, TCS will help optimize race-day operations, ensuring efficient management of resources, reducing waste, and minimizing environmental impact. This aligns with the growing trend of incorporating sustainability into large-scale events, ensuring that such iconic marathons not only provide an exceptional experience for participants but also contribute to global environmental goals.

TCS’s PacePort™ innovation hub in Paris will play a pivotal role in the collaboration. This innovation center will serve as the testing ground for new AI-powered solutions and tools aimed at improving runner performance and creating a more engaging race experience. Early priorities for the project include the development of personalized AI-based training programs for runners, real-time tracking systems for athlete health monitoring, and advanced analytics to support better training and recovery strategies, drawing on insights from EU smart meter analytics to inform personalization.

Additionally, TCS will introduce new technologies to enhance spectator engagement. Digital experiences, such as virtual race tracking and immersive content, will bring spectators closer to the event, even if they are not physically present at the marathon. This will allow fans worldwide to engage with the race in more interactive ways, enhancing the global reach and excitement surrounding the event.

TCS’s role in the Schneider Electric Marathon de Paris is part of its broader strategy to leverage technology in the realm of sports. The company already supports several major global marathons, including those in New York, London, where projects like the London electricity tunnel showcase infrastructure innovation, and Mumbai, contributing to their operational success and social impact. In fact, marathons supported by TCS raised nearly $280 million for charitable causes in 2024 alone, demonstrating the company’s commitment to blending innovation with social responsibility.

The strategic partnership with the Paris marathon also underscores TCS’s continued commitment to its French operations, and aligns with Schneider Electric’s Notre Dame restoration initiatives that highlight local impact, reinforcing its role as a leader in AI and digital technology. Through this collaboration, TCS aims to not only support the marathon’s logistical and technological needs but also to contribute to the broader development of digital sports experiences.

This partnership promises to deliver a more dynamic, sustainable, and engaging marathon experience, benefiting runners, spectators, and the broader event ecosystem. With TCS’s cutting-edge technology and commitment to enhancing the marathon, the Schneider Electric Marathon de Paris is poised to set new standards for global sports events, blending athletic performance with digital innovation in unprecedented ways.

 

Related News

View more

Analysis: Out in the cold: how Japan's electricity grid came close to blackouts

Japan Electricity Crunch exposes vulnerabilities in a liberalised power market as LNG shortages, JEPX price spikes, snow-hit solar, and weak hedging strain energy security and retail providers amid cold snap demand and limited reserve capacity.

 

Key Points

A winter demand shock and LNG shortfalls sent JEPX to records, exposing gaps in hedging, data, and energy security.

✅ JEPX wholesale prices spiked to an all-time high

✅ LNG inventories and procurement proved insufficient

✅ Snow disabled solar; new entrants lacked hedging

 

Japan's worst electricity crunch since the aftermath of the Fukushima crisis has exposed vulnerabilities in the country's recently liberalised power market, although some of the problems appear self-inflicted.

Power prices in Japan hit record highs last month, mirroring UK peak power prices during tight conditions, as a cold snap across northeast Asia prompted a scramble for supplies of liquefied natural gas (LNG), a major fuel for the country's power plants. Power companies urged customers to ration electricity to prevent blackouts, although no outages occurred.

The crisis highlighted how many providers were unprepared for such high demand. Experts say LNG stocks were not topped up ahead of winter and snow disabled solar power farms, while China's power woes strained solar supply chains.

The hundreds of small power companies that sprang up after the market was opened in 2016 have struggled the most, saying the government does not disclose the market data they need to operate. The companies do not have their own generators, instead buying electricity on the wholesale market.

Prices on the Japan Electric Power Exchange (JEPX) hit a record high of 251 yen ($2.39) per kilowatt hour in January, equating to $2,390 per megawatt hour of electricity, above record European price surges seen recently and the highest on record anywhere in the world. One megawatt hour is roughly what an average home in the U.S. would consume over 35 days.

But the vast majority of the new, smaller companies are locked into low, fixed rates they set to lure customers from bigger players, crushing them financially during a price spike like the one in January.

More than 50 small power providers wrote on Jan. 18 to Japan's industry minister, Hiroshi Kajiyama, who oversees the power sector, asking for more accessible data on supply and demand, reserve capacity and fuel inventories.

"By organising and disclosing this information, retail electricity providers will be able to bid at more appropriate prices," said the companies, led by Looop Co.

They also called on Kajiyama to require transmission and distribution companies to pass on some of the unexpected profits from price spikes to smaller operators.

The industry ministry said it had started releasing more timely market data, and is reviewing the cause of the crunch and considering changes, echoing calls by Fatih Birol to keep electricity options open amid uncertainty.

Japan reworked its power markets after the Fukushima nuclear disaster in 2011, liberalizing the sector in 2016 while pushing for more renewables.

But Japan is still heavily reliant on LNG and coal, and only four of 33 nuclear reactors are operating. The power crisis has led to growing calls to restart more reactors.

Kazuno Power, a small retail provider controlled by a municipality of the same name in northern Japan, where abundant renewable energy is locally produced, buys electricity from hydropower stations and JEPX.

During the crunch, the company had to pay nearly 10 times the usual price, Kazuno Power president Takao Takeda said in an interview. Like most other new providers, it could not pass on the costs, lost money, and folded. The local utility has taken over its customers.

"There is a contradiction in the current system," Takeda said. "We are encouraged to locally produce power for local consumption as well as use more renewable energy, but prices for these power supplies are linked to wholesale prices, which depend on the overall power supply."

The big utilities, which receive most of their LNG on long-term contracts, blamed the power shortfall on a tight spot market and glitches at generation units.

"We were not able to buy as much supply as we wanted from the spot market because of higher demand from South Korea and China, where power cuts have tightened supply," Kazuhiro Ikebe, the head of the country's electricity federation, said recently.

Ikebe is also president of Kyushu Electric Power, which supplies the southern island of Kyushu.

Utilities took extreme measures - from burning polluting fuel oil in coal plants to scavenging the dregs from empty LNG tankers - to keep the grid from breaking down.

"There is too much dependence on JEPX for procurement," said Bob Takai, the local head of European Energy Exchange, where electricity pricing reforms are being discussed, and which started offering Japan power futures last year. He added that new entrants were not hedging against sharp price moves.

Three people, who requested anonymity because of the sensitivity of the matter, were more blunt. One called the utilities arrogant in assuming they could find LNG cargoes in a pinch. Prices were already rising as China snapped up supplies, the sources noted.

"You had volatility caused by people saying 'Oh, well, demand is going to be weak because of coronavirus impacts' and then saying 'we can rely more on solar than in the past,' but solar got snowed out," said a senior executive from one generator. "We have a problem of who is charge of energy security in Japan."

Inventories of LNG, generally about two weeks worth of supplies, were also not topped up enough to prepare for winter, a market analyst said.

The fallout from the crunch has become more apparent in recent days, with new power companies like Rakuten Inc suspending new sales and Tokyo Gas, along with traditional electricity utilities, issuing profit downgrades or withdrawing their forecasts.

Although prices have fallen sharply as temperatures warmed up slightly and more generation units have come back online, the power generator executive said, "we are not out of the woods yet."
 

 

Related News

View more

Why Fort Frances wants to build an integrated microgrid to deliver its electricity

Fort Frances Microgrid aims to boost reliability in Ontario with grid-connected and island modes, Siemens feasibility study, renewable energy integration, EV charging expansion, and resilience modeled after First Nations projects and regional biomass initiatives.

 

Key Points

A community microgrid in Fort Frances enabling grid and island modes to improve reliability and integrate renewables.

✅ Siemens-led feasibility via FedNor funding

✅ Grid-connected or islanded for outage resilience

✅ Integrates renewables, EV charging, and industry growth

 

When the power goes out in Fort Frances, Ont., the community may be left in the dark for hours.

The hydro system's unreliability — caused by its location on the provincial power grid — has prompted the town to seek a creative solution: its own self-contained electricity grid with its own source of power, known as a microgrid. 

Located more than 340 kilometres west of Thunder Bay, Ont., on the border of Minnesota, near the Great Northern Transmission Line corridor, Fort Frances gets its power from a single supply point on Ontario's grid. 

"Sometimes, it's inevitable that we have to have like a six- to eight-hour power outage while equipment is being worked on, and that is no longer acceptable to many of our customers," said Joerg Ruppenstein, president and chief executive officer of Fort Frances Power Corporation.

While Ontario's electrical grid serves the entire province, and national efforts explore macrogrids, a microgrid is contained within a community. Fort Frances hopes to develop an integrated, community-based electric microgrid system that can operate in two modes:

  • Grid-connected mode, which means it's connected to the provincial grid and informed by western grid planning approaches
  • Island mode, which means it's disconnected from the provincial grid and operates independently

The ability to switch between modes allows flexibility. If a storm knocks down a line, the community will still have power.

The town has been given grant funding from the Federal Economic Development Agency for Northern Ontario (FedNor), echoing smart grid funding in Sault Ste. Marie initiatives, for the project. On Monday night, council voted to grant a request for proposal to Siemens Canada Limited to conduct a feasibility study into a microgrid system.

The study, anticipated to be completed by the end of 2023 or early 2024, will assess what an integrated community-based microgrid system could look like in the town of just over 7,000 people, said Faisal Anwar, chief administrative officer of Fort Frances. A timeline for construction will be determined after that. 

The community is still reeling from the closure of the Resolute Forest Products pulp and paper mill in 2014 and faces a declining population, said Ruppenstein. It's hoped the microgrid system will help attract new industry to replace those lost workers and jobs, drawing on Manitoba's hydro experience as a model.

This gives the town a competitive advantage.

"If we were conceivably to attract a larger industrial player that would consume a considerable amount of energy, it would result in reduced rates for everyone…we're the only utility really in Ontario that can offer that model," Ruppenstein said.

The project can also incorporate renewable energy like solar or wind power, as seen in B.C.'s clean energy shift efforts, into the microgrid system, and support the growth of electric vehicles, he said. Many residents fill their gas tanks in Minnesota because it's cheaper, but Fort Frances has the potential to become a hub for electric vehicle charging.

A few remote First Nations have recently switched to microgrid systems fuelled by green energy, including Gull Bay First Nation and Fort Severn First Nation. These are communities that have historically relied on diesel fuel either flown in, which is incredibly expensive, or transported via ice roads, which are seeing shorter seasons each year.

Natural Resources Minister Jonathan Wilkinson was in Thunder Bay, Ont., to announce $35 million for a biomass generation facility in Whitesand First Nation, complementing federal funding for the Manitoba-Saskatchewan transmission line elsewhere in the region.

 

Related News

View more

B.C. Diverting Critical Minerals, Energy from U.S

Canadian Softwood Lumber Tariffs challenge British Columbia's forestry sector, strain U.S.-Canada trade, and risk redirecting critical minerals and energy resources, threatening North American supply chains, manufacturing, and energy security across integrated markets.

 

Key Points

Duties imposed by the U.S. on Canadian lumber, affecting BC forestry, trade flows, and North American energy security.

✅ U.S. duties strain BC forestry and cross-border supply chains

✅ Risks redirecting critical minerals and energy exports

✅ Tariff rollback could bolster North American energy security

 

British Columbia Premier David Eby has raised concerns that U.S. tariffs on Canadian softwood lumber are prompting the province to redirect its critical minerals and energy resources, while B.C. challenges Alberta's electricity export restrictions domestically, away from the United States. In a recent interview, Eby emphasized the broader implications of these tariffs, suggesting they could undermine North American energy security and put electricity exports at risk across the border.

Since 2017, the U.S. Department of Commerce has imposed tariffs on Canadian softwood lumber imports, alleging that Canadian producers benefit from unfair subsidies. These duties have been a persistent source of tension between the two nations, coinciding with Canadian support for energy and mineral tariffs and significantly impacting British Columbia's forestry sector—a cornerstone of the province's economy.

Premier Eby highlighted that the financial strain imposed by these tariffs not only jeopardizes the Canadian forestry industry but also has unintended repercussions for the United States. He pointed out that the economic challenges faced by Canadian producers might lead them to seek alternative markets for their critical minerals and energy resources, as tariff threats boost support for Canadian energy projects domestically, thereby reducing the supply to the U.S. British Columbia is endowed with an abundance of critical minerals essential for various industries, including technology and defense.

The potential redirection of these resources could have significant consequences for American industries that depend on a stable and affordable supply of critical minerals and energy. Eby suggested that the tariffs might incentivize Canadian producers to explore other international markets, even as experts advise against cutting Quebec's energy exports amid the tariff dispute, diminishing the availability of these vital resources to the U.S.

In light of these concerns, Premier Eby has advocated for a reassessment of the tariffs, urging a more cooperative approach between Canada and the United States. He contends that eliminating the tariffs would be mutually beneficial, aligning with views that Biden is better for Canada's energy sector and cross-border collaboration, ensuring a consistent supply of critical resources and fostering economic growth in both countries.

The issue of U.S. tariffs on Canadian softwood lumber remains complex and contentious, with far-reaching implications for trade relations and resource distribution between the two nations. As discussions continue, stakeholders on both sides of the border are closely monitoring the situation, noting that Ford has threatened to cut U.S. electricity exports amid trade tensions, recognizing the importance of collaboration in addressing shared economic and security challenges.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.