EVs donÂ’t make sense in Canada

By Gwyn Morgan, former CEO of EnCana Corp.


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Only one week after the much-hyped rollout of electric cars at the Los Angeles Auto Show, Canadian news media carried reports about how Ontario electricity costs are expected to double over the next 20 years.

That forecast must have Ontarians questioning whether buying an electric car is a good idea. But there are other questions all Canadians would be wise to ask about electric cars, and the electricity needed to power them.

Even the staggering electricity rate increases announced by Ontario would not generate nearly enough power to handle a large auto-recharge load, nor could already stretched power grids handle it. In other provinces also, costly retooling of power generation, mainline transmission and local distribution grids would be required.

Wind and solar generate less than one per cent of Canada's power supply, and most provinces have subsidies aimed at increasing that portion. The most spectacular example of the skyrocketing cost of subsidies can be seen in Ontario, where the Liberal government forces consumers to pay 16 times as much for solar power, and three times more for wind, as the current average electricity rate.

Ontario's 20-year power plan calls for $23 billion in subsidies to the wind and solar industry, which supposedly would allow coal-fired power to be phased out. But its own numbers show that with wind and solar capacity available less than 30 per cent of the time, these costly projects still won't bring about the end of coal.

Meanwhile, electricity consumers will be hit with price increases of 46 per cent over the next five years, making Ontario industry uncompetitive with almost all provinces and American states.

Are electric cars really "green?" That depends on how the electricity is generated.

Water generates most of the electricity in Newfoundland and Labrador, Quebec, Manitoba and British Columbia, while Alberta and Saskatchewan generate nearly all power from coal and natural gas. Over all, about 75 per cent of Canada's electricity comes from water and nuclear power, and 25 per cent from fossil fuels.

When measured by fossil-fuel emissions, use of electric cars in Canada can generally be considered green.

Besides their high price tag, limited range and the inconvenience of long charging cycles, there's another factor Canadians need to consider before buying an electric car: our northern climate. Anyone who has had trouble starting a car in cold weather knows that battery performance plummets with temperature. In our dark, cold winters, we also need battery power to heat the car and run headlights. The combined result is a much shorter driving range than they'll be touting in the electric-car showroom.

The green-car race is imploding as beleaguered citizens, struggling to deal with tough economies, see their electricity rates soar and expensive wind and solar power missing in action when most needed. Other jurisdictions are rapidly changing direction, but Ontario keeps whistling merrily in the wind, bound for uncompetitive green oblivion.

Recently, U.S. Energy Secretary Steven Chu said the development of an electric-car battery to be competitive with the internal combustion engine might be five years away.

Related News

Working From Home Will Drive Up Electricity Bills for Consumers

Remote Work Energy Costs are rising as home offices and telecommuting boost electricity bills; utilities, broadband usage, and COVID-19-driven stay-at-home policies affect productivity, consumption patterns, and household budgets across the U.K. and Europe.

 

Key Points

Remote Work Energy Costs are increased household electricity and utility expenses from telecommuting and home office use.

✅ WFH shifts energy load from offices to households.

✅ Higher device, lighting, and heating/cooling usage drives bills.

✅ Broadband access gaps limit remote work equity.

 

Household electricity bills are set to soar, with rising residential electricity use tied to the millions of people now working at home to avoid catching the coronavirus.

Running laptops and other home appliances will cost consumers an extra 52 million pounds ($60 million) each week in the U.K., according to a study from Uswitch, a website that helps consumers compare the energy prices that utilities charge.

For each home-bound household, the pain to the pocketbook may be about 195 pounds per year extra, even as some utilities pursue pandemic cost-cutting to manage financial pressures.

The rise in price for households comes even as overall demand is falling rapidly in Europe, with wide swaths of the economy shut down to keep workers from gathering in one place, and the U.S. grid overseer issuing warnings about potential pandemic impacts on operations.

People stuck at home will plug in computers, lights and appliances when they’d normally be at the office, increasing their consumption.

With the Canadian government declaring a state of emergency due to the coronavirus, companies are enabling work-from-home structures to keep business running and help employees follow social distancing guidelines, and some utilities have even considered housing critical staff on site to maintain operations. However, working remotely has been on the rise for a while.

“The coronavirus is going to be a tipping point. We plodded along at about 10% growth a year for the last 10 years, but I foresee that this is going to really accelerate the trend,” Kate Lister, president of Global Workplace Analytics.

Gallup’s State of the Workplace 2017 study found that 43% of employees work remotely with some frequency. Research indicates that in a five-day workweek, working remotely for two to three days is the most productive. That gives the employee two to three days of meetings, collaboration and interaction, with the opportunity to just focus on the work for the other half of the week.

Remote work seems like a logical precaution for many companies that employ people in the digital economy, even as some federal agencies sparked debate with an EPA telework policy during the pandemic. However, not all Americans have access to the internet at home, and many work in industries that require in-person work.

According to the Pew Research Center, roughly three-quarters of American adults have broadband internet service at home. However, the study found that racial minorities, older adults, rural residents and people with lower levels of education and income are less likely to have broadband service at home. In addition, 1 in 5 American adults access the internet only through their smartphone and do not have traditional broadband access. 

Full-time employees are four times more likely to have remote work options than part-time employees. A typical remote worker is college-educated, at least 45 years old and earns an annual salary of $58,000 while working for a company with more than 100 employees, according to Global Workplace Analytics, and in Canada there is growing interest in electricity-sector careers among younger workers. 

New York, California and other states have enacted strict policies for people to remain at home during the coronavirus pandemic, which could change the future of work, and Canadian provinces such as Saskatchewan have documented how the crisis has reshaped local economies across sectors.

“I don’t think we’ll go back to the same way we used to operate,” Jennifer Christie, chief HR officer at Twitter, told CNBC. “I really don’t.”

 

Related News

View more

High Natural Gas Prices Make This The Time To Build Back Better - With Clean Electricity

Build Back Better Act Energy Savings curb volatile fossil fuel heating bills by accelerating electrification and renewable electricity, insulating households from natural gas, propane, and oil price spikes while cutting emissions and lowering energy costs.

 

Key Points

BBBA policies expand clean power and electrification to curb volatility, lower bills, and cut emissions.

✅ Tax credits for renewables, EVs, and efficient all-electric homes

✅ Shields households from natural gas, propane, and heating oil spikes

✅ Cuts methane, lowers bills, and improves grid reliability and jobs

 

Experts are forecasting serious sticker shock from home heating bills this winter. Nearly 60 percent of United States’ households heat their homes with fossil fuels, including natural gas, propane, or heating oil, and these consumers are expected to spend much more this winter because of fuel price increases.

That could greatly burden many families and businesses already operating on thin margins. Yet homes that use electricity for heating and cooking are largely insulated from the pain of volatile fuel markets, and they’re facing dramatically lower price increases as a result.

Projections say cost increases for households could range anywhere from 22% to 94% more, depending on the fuel used for heating and the severity of the winter temperatures. But the added expenditures for the 41% of U.S. households using electricity for heating are much less stark—these consumers will see only a 6% price increase on average. The projected fossil fuel price spikes are largely due to increased demand, limited supply, declining fuel stores, and shifting investment priorities in the face of climate change.

The fossil fuel industry is already seizing this moment to use high prices to persuade policymakers to vote against clean energy policies, particularly the Build Back Better Act (BBBA). Spokespeople with ties to the fossil fuel industry and some consumer groups are trying to pin higher fuel prices on the proposed legislation even before it has passed, even as analyses show the energy crisis is not spurring a green revolution on its own, let alone begun impacting fuel markets. But the claim the BBBA would cost Americans and the economy is false.

The facts tell a different story. Adopting smart climate policies and accelerating the clean energy transition are precisely the solutions to counter this vicious cycle by ending our dependance on volatile fossil fuels. The BBBA will ensure reliable, affordable clean electricity for millions of Americans, in line with a clean electricity standard many experts advocate—a key strategy for avoiding future vulnerability. Unlike fossil fuels subject to the whims of a global marketplace, wind and sunshine are always free. So renewable-generated electricity comes with an ultra-low fixed price decades into the future.

By expanding clean energy and electric vehicle tax credits, creating new incentives for efficient all-electric homes, and dedicating new funding for state and local programs, the BBBA provides practical solutions that build on lessons from Biden's climate law to protect Americans from price shocks, save consumers money, and reduce emissions fueling dangerous climate change.


What’s really causing the gas price spikes?
The U.S. Energy Information Administration’s winter 2021 energy price forecasts project that homes heated with natural gas, fuel oil, and propane will see average price increases of 30%, 43%, and 54%, respectively. Those who heat their homes with electricity, on the other hand, should expect a modest 6% increase. At the pump, drivers are seeing some of the highest gas prices in nearly a decade as the U.S. energy crisis ripples through electricity, gas, and EV markets today. And the U.S. is not alone. Countries around the globe are experiencing similar price jumps, including Britain's high winter energy costs this season.

A closer look confirms the cause of these high prices is not clean energy or climate policies—it’s fossil fuels themselves.  

First, the U.S. (and the world) are just now feeling the effects of the oil and gas industry’s reduced fuel production and spending due to the pandemic. COVID-19 brought the world’s economies to a screeching halt, and most countries have not returned to pre-COVID economic activity. During the past 20 months, the oil and gas industry curtailed its production to avoid oversupply as demand fell to all-time lows. Just as businesses were reopening, stored fuel was needed to meet high demand for cooling during 2021’s hottest summer on record, driving sky-high summer energy bills for many households. February’s Texas Big Freeze also disrupted gas distribution and production.

The world is moving again and demand for goods and services is rebounding to pre-pandemic levels. But even with higher energy demand, OPEC announced it would not inject more oil into the economy. Major oil companies have also held oil and gas spending flat in 2021, with their share of overall upstream spending at 25%, compared with nearly 40% in the mid-2010s. And as climate change threats loom in the financial world, investors are reducing their exposure to the risks of stranded assets, increasingly diversifying and divesting from fossil fuels. 

Second, despite strong and sustained growth for renewable energy, energy storage, and electric vehicles, the relatively slow pace to adopt fossil fuel alternatives at scale has left U.S. households and businesses tethered to an industry well-known for price volatility. Today, some oil drillers are using profits from higher gas prices to pay back debt and reward shareholders as demanded by investors, instead of increasing supply. Rising prices for a limited commodity in high demand is generating huge profits for many of the world’s largest companies at the expense of U.S. households.

Because 48% of homes use fossil gas for heating and another 10% heat with propane and fuel oil, more than half of U.S. households will feel the impact of rising prices on their home energy bills. One in four U.S. households continues to experience a high energy burden (meaning their energy expenses consume an inordinate amount of their income), including risks of pandemic power shut-offs that deepen energy insecurity, and many are still experiencing financial hardships exacerbated by the pandemic. Those with inefficient fossil-fueled appliances, homes, and cars will be hardest hit, and many families with fixed- and lower-incomes could be forced to choose between heat or other necessities.

We have the solutions—the BBBA will unlock their benefits for all households

Short-term band-aids may be enticing, but long-term policies are the only way out of this negative feedback loop. Clean energy and building electrification will prevent more costly disasters in the future, but they’re the very solutions the fossil fuel industry fights at every turn. All-electric homes and vehicles are a natural hedge against the price spikes we’re experiencing today since renewables are inherently devoid of fuel-related price fluctuations.

RMI analysis shows all-electric single-family homes in all regions of the country have lower energy bills than a comparable mixed fuel-homes (i.e., electricity and gas). Electric vehicles also save consumers money. Research from University of California, Berkeley and Energy Innovation found consumers could save a total of $2.7 trillion in 2050—or $1,000 per year, per household for the next 30 years—if we accelerate electric vehicle deployment in the coming decade.

The BBBA would help deliver these consumer savings by expanding and expediting clean energy, while ensuring equitable adoption among lower-income households and underserved communities. Extending and expanding clean energy tax credits; new incentives for electric vehicles (including used electric vehicles); and new incentives for energy efficient homes and all-electric appliances (and electrical upgrades) will reduce up-front costs and spur widespread adoption of all-electric homes, buildings, and cars.

A combination of grants, incentives, and programs will promote private sector investments in a decarbonized economy, while also funding and supporting state and local governments already leading the way. The BBBA also allocates dedicated funding and makes important modifications (such as higher rebate amounts and greater point-of-purchase availability) to ensure these technologies are available to low-income households, underserved urban and rural communities, tribes, frontline communities, and people living in multifamily housing.

Finally, the BBBA proposes to make oil and gas polluters pay for the harm they are causing to people’s health and the climate through a methane fee. This fee would cost companies less than 1% of their revenue, meaning the industry would retain over 99% of its profits. In return return we’d see substantial reductions of a powerful greenhouse gas and a healthier environment in communities living near fossil fuel production. These benefits also come with a stronger economy—Energy Innovation analysis shows the methane fee would create more than 70,000 jobs by 2050 and boost gross domestic product more than $250 billion from 2023 to 2050.

The facts speak for themselves. Gas prices are rising because of reasons totally unrelated to smart climate and clean energy policies, which research shows actually lower costs. For the first time in more than a decade, America has the opportunity to enact a comprehensive energy policy that will yield measurable savings to consumers and free us from oil and gas industry control over our wallets.

The BBBA will help the U.S. get off the fossil fuel rollercoaster and achieve a stable energy future, ensuring that today’s price spikes will be a thing of the past. Proving, once and for all, that the solution to our fossil fuel woes is not more fossil fuels.

 

Related News

View more

Experts Question Quebec's Push for EV Dominance

Quebec EV transition plan aims for 2 million electric vehicles by 2030 and bans new gas cars by 2035, stressing charging infrastructure, incentives, emissions cuts, and industry impacts, with debate over feasibility and economic risks.

 

Key Points

A provincial policy targeting 2M EVs by 2030 and a 2035 gas-car sales ban, backed by charging buildout and incentives.

✅ Requires major charging infrastructure and grid upgrades

✅ Balances incentives with economic impacts and industry readiness

✅ Gas stations persist while EV adoption accelerates cautiously

 

Quebec's ambitious push to dominate the electric vehicle (EV) market, echoing Canada's EV goals in its plan, by setting a target of two million EVs on the road by 2030 and planning to ban the sale of new gas-powered vehicles by 2035 has sparked significant debate among industry experts. While the government's objectives aim to reduce greenhouse gas emissions and promote sustainable transportation, some experts question the feasibility and potential economic impacts of such rapid transitions.

Current Landscape of Gas Stations in Quebec

Contrary to Environment Minister Benoit Charette's assertion that gas stations may become scarce within the next decade, industry experts suggest that the number of gas stations in Quebec is unlikely to decline drastically. Carol Montreuil, Vice President of the Canadian Fuels Association, describes the minister's statement as "wishful thinking," emphasizing that the number of gas stations has remained relatively stable over the past decade. Statistics indicate that in 2023, Quebec residents purchased more gasoline than ever before, and EV shortages and wait times further underscore the continued demand for traditional fuel sources.

Challenges in Accelerating EV Adoption

The government's goal of having two million EVs on Quebec roads by 2030 presents several challenges. Currently, there are approximately 200,000 fully electric cars in the province. Achieving a tenfold increase in less than a decade requires substantial investments in charging infrastructure, consumer incentives, and public education to address concerns such as range anxiety and charging accessibility, especially amid electricity shortage warnings across Quebec and other provinces.

Economic Considerations and Industry Concerns

Industry stakeholders express concerns about the economic implications of rapidly phasing out gas-powered vehicles. Montreuil warns that the industry is already struggling and that attempting to transition too quickly could lead to economic challenges, a view echoed by critics who label the 2035 EV mandate delusional. He suggests that the government may be spending excessive public funds on subsidies for technologies that are still expensive and not yet widely adopted.

Public Sentiment and Adoption Rates

Public sentiment towards EVs is mixed, and experiences in Manitoba suggest the road to targets is not smooth. While some consumers, like Montreal resident Alex Rajabi, have made the switch to electric vehicles and are satisfied with their decision, others remain hesitant due to concerns about vehicle cost, charging infrastructure, and the availability of incentives. Rajabi, who transitioned to an EV nine months ago, notes that while he did not take advantage of the incentive program, he is happy with his decision and suggests that adding charging ports at gas stations could facilitate the transition.

The Need for a Balanced Approach

Experts advocate for a balanced approach that considers the pace of technological advancements, consumer readiness, and economic impacts. While the transition to electric vehicles is essential for environmental sustainability, it is crucial to ensure that the infrastructure, market conditions, and public acceptance are adequately addressed, and to recognize that a share of Canada's electricity still comes from fossil fuels, to make the shift both feasible and beneficial for all stakeholders.

In summary, Quebec's ambitious EV targets reflect a strong commitment to environmental sustainability. However, industry experts caution that achieving these goals requires careful planning, substantial investment, and a realistic assessment of the challenges involved as federal EV sales regulations take shape, in transitioning from traditional vehicles to electric mobility.

 

Related News

View more

Americans aren't just blocking our oil pipelines, now they're fighting Hydro-Quebec's clean power lines

Champlain Hudson Power Express connects Hydro-Québec hydropower to the New York grid via a 1.25 GW high voltage transmission line, enabling renewable energy imports, grid decarbonization, storage synergy, and reduced fossil fuel generation.

 

Key Points

A 1.25 GW cross-border transmission project delivering Hydro-Québec hydropower to New York City to displace fossil power.

✅ 1.25 GW buried HV line from Quebec to Astoria, Queens

✅ Supports renewable imports and grid decarbonization in NYC

✅ Enables two-way trade and reservoir storage synergy

 

Last week, Quebec Premier François Legault took to Twitter to celebrate after New York State authorities tentatively approved the first new transmission line in three decades, the Champlain Hudson Power Express, that would connect Quebec’s vast hydroelectric network to the northeastern U.S. grid.

“C’est une immense nouvelle pour l’environnement. De l’énergie fossile sera remplacée par de l’énergie renouvelable,” he tweeted, or translated to English: “This is huge news for the environment. Fossil fuels will be replaced by renewable energy.”

The proposed construction of a 1.25 gigawatt transmission line from southern Quebec to Astoria, Queens, known as the Champlain Hudson Power Express, ties into a longer term strategy by Hydro Québec: in the coming decade, as cities such as New York and Boston look to transition away from fossil fuel-generated electricity and decarbonize their grids, Hydro-Québec sees opportunities to supply them with energy from its vast network of 61 hydroelectric generating stations and other renewable power, as Quebec has closed the door on nuclear power in recent years.

Already, the provincial utility is one of North America’s largest energy producers, generating $2.3 billion in net income in 2020, and planning to increase hydropower capacity over the near term. Hydro-Quebec has said it intends to increase exports and had set a goal of reaching $5.2 billion in net income by 2030, though its forecasts are currently under review.

But just as oil and gas companies have encountered opposition to nearly every new pipeline, Hydro-Québec is finding resistance as it seeks to expand its pathways into major export markets, which are all in the U.S. northeast. Indeed, some fossil fuel companies that would be displaced by Hydro-Québec are fighting to block the construction of its new transmission lines.

“Linear projects — be it a transmission line or a pipeline or highway or whatever — there’s always a certain amount of public opposition,” Gary Sutherland, director of strategic affairs and stakeholder relations for Hydro-Québec, told the Financial Post, “which is a good thing because it makes the project developer ask the right questions.”

While Sutherland said he isn’t expecting opposition to the line into New York, he acknowledged Hydro-Québec also didn’t fully anticipate the opposition encountered with the New England Clean Energy Connect, a 1.2 gigawatt transmission line that would cost an estimated US$950 million and run from Quebec through Maine, eventually connecting to Massachusetts’ grid.

In Maine, natural gas and nuclear energy companies, which stand to lose market share, and also environmentalists, who oppose logging through sensitive habitat, both oppose the project.

In August, Maine’s highest court invalidated a lease for the land where the lines were slated to be built, throwing permits into question. Meanwhile, Calpine Corporation and Vistra Energy Corp., both Texas-based companies that operate natural gas plants in Maine, formed a political action committee called Mainers for Local Power. It has raised nearly US$8 million to fight the transmission line, according to filings with the Maine Ethics Commission.

Neither Calpine nor Vistra could be reached for comment by the time of publication.

“It’s been 30 years since we built a transmission line into the U.S. northeast,” said Sutherland. “In that time we have increased our exports significantly … but we haven’t been able to build out the corresponding transmission to get that energy from point A to point B.”

Indeed, since 2003, Hydro-Québec’s exports outside the province have grown from roughly two terrawatts per year to more than 30 terrawatts, including recent deals with NB Power to move more electricity into New Brunswick. The provincial utility produces around 210 terrawatts annually, but uses less than 178 terrawatts in Quebec.

Linear projects — be it a transmission line or a pipeline or highway or whatever — there’s always a certain amount of public opposition

In Massachusetts, it has signed contracts to supply 9.4 terrawatts annually — an amount roughly equivalent to 8 per cent of the New England region’s total consumption. Meanwhile, in New York, Hydro-Québec is in the final stages of negotiating a 25-year contract to sell 10.4 terawatts — about 20 per cent of New York City’s annual consumption.

In his tweets, Legault described the New York contract as being worth more than $20 billion over 25 years, although Hydro Québec declined to comment on the value because the contract is still under negotiation and needs approval by New York’s Public Services Commission — expected by mid-December.

Both regions are planning to build out solar and wind power to meet their growing clean energy needs and reach ambitious 2030 decarbonization targets. New York has legislated a goal of 70 per cent renewable power by that time, while Massachusetts has called for a 50 per cent reduction in emissions in the same period.

Hydro-Quebec signage is displayed on a manhole cover in Montreal. PHOTO BY BRENT LEWIN/BLOOMBERG FILES
According to a 2020 paper titled “Two Way Trade in Green Electrons,” written by three researchers at the Center for Energy and Environmental Policy Research at the Massachusetts’ Institute for Technology, Quebec’s hydropower, which like fossil fuels can be dispatched, will help cheaply and efficiently decarbonize these grids.

“Today transmission capacity is used to deliver energy south, from Quebec to the northeast,” the researchers wrote, adding, “…in a future low-carbon grid, it is economically optimal to use the transmission to send energy in both directions.”

That is, once new transmission lines and wind and solar power are built, New York and Massachusetts could send excess energy into Quebec where it could be stored in hydroelectric reservoirs until needed.

“This is the future of this northeast region, as New York state and New England are decarbonizing,” said Sutherland. “The only renewable energies they can put on the grid are intermittent, so they’re going to need this backup and right to the north of them, they’ve got Hydro-Québec as backup.”

Hydro-Québec already sells roughly 7 terrawatts of electricity per year into New York on the spot market, but Sutherland says it is constrained by transmission constraints that limit additional deliveries.

And because transmission lines can cost billions of dollars to build, he said Hydro-Québec needs the security of long-term contracts that ensure it will be paid back over time, aligning with its broader $185-billion transition strategy to reduce reliance on fossil fuels.

Sutherland expressed confidence that the Champlain Hudson Power Express project would be constructed by 2025. He noted its partners, Blackstone-backed Transmission Developers, have been working on the project for more than a decade, and have already won support from labour unions, some environmental groups and industry.

The project calls for a barge to move through Lake Champlain and the Hudson River, and dig a trench while unspooling and burying two high voltage cables, each about 10-12 centimetres in diameter. In certain sections of the Hudson River, known to have high concentrations of PCP pollutants, the cable would be buried underground alongside the river.

 

Related News

View more

Hinkley C nuclear reactor roof lifted into place

Hinkley Point C dome lift marks a nuclear reactor milestone in Somerset, as EDF used Big Carl crane to place a 245-tonne steel roof, enabling 2027 startup amid costs, delays, and precision indoor welding.

 

Key Points

A 245-tonne dome lifted onto Hinkley Point C's first reactor, finishing the roof and enabling fit-out for a 2027 startup.

✅ 245-tonne steel dome lifted by Big Carl onto 44m-high reactor

✅ Indoor welding avoided weather defects seen at Flamanville

✅ Cost now £33bn; first power targeted by end of 2027

 

Engineers have lifted a steel roof onto a building which will house the first of two nuclear reactors at Hinkley Point in Somerset.

Hundreds of people helped with the delicate operation to get the 245-tonne steel dome into position.

It means the first reactor can be installed next year, ready to be switched on in June 2027.

Engineers at EDF said the "challenging job" was completed in just over an hour.

They first broke the ground on the new nuclear station in March 2017. Now, some 10,000 people work on what is Europe's largest building site.

Yet many analysts note that Europe is losing nuclear power even as demand for reliable energy grows.

They have faced delays from Covid restrictions and other recent setbacks, and the budget has doubled to £33bn, so getting the roof on the first of the two reactor buildings is a big deal.

EDF's nuclear island director Simon Parsons said it was a "fantastic night".

"Lifting the dome into place is a celebration of all the work done by a fantastic team. The smiles on people's faces this morning were something else.

"Now we can get on with the fitting of equipment, pipes and cables, including the first reactor which is on site and ready to be installed next year."

Nuclear minister Andrew Bowie hailed the "major milestone" in the building project, citing its role in the UK's green industrial revolution ambitions.

He said: "This is a key part of the UK Government's plans to revitalise nuclear."

But many still question whether Hinkley Point C will be worth all the money, especially after Hitachi's project freeze in Britain, with Roy Pumfrey of the Stop Hinkley campaign describing the project as "shockingly bad value".


Why lift the roof on?

The steel dome is bigger than the one on St Paul's Cathedral in London.

To lift it onto the 44-metre-high reactor building, they needed the world's largest land-based crane, dubbed Big Carl by engineers.

So why not just build the roof on top of the building?

The answer lies in a remote corner of Normandy in France, near a village called Flamanville.

EDF has been building a nuclear reactor there since 2007, ten years before they started in west Somerset.

The project is now a decade behind schedule and has still not been approved by French regulators.

Why? Because of cracks found in the precision welding on the roof of the reactor building.

In nuclear-powered France, they built the roof in situ, out in the open. 

Engineers have decided welding outside, exposed to wind and rain, compromised the high standards needed for a nuclear reactor.

So in Somerset they built a temporary workshop, which looks like a fair sized building itself. All the welding has been done inside, and then the completed roof was lifted into place.


Is it on time or on budget?

No, neither. When Hinkley C was first approved a decade ago, EDF said it would cost £14bn.

Four years later, in 2017, they finally started construction. By now the cost had risen to £19.5bn, and EDF said the plant would be finished by the end of 2025.

Today, the cost has risen to £33bn, and it is now hoped Hinkley C will produce electricity by the end of 2027.

"Nobody believes it will be done by 2027," said campaigner Roy Pumfrey.

"The costs keep rising, and the price of Hinkley's electricity will only get dearer," they added.

On the other hand, the increase in costs is not a problem for British energy bill payers, or the UK government.

EDF agreed to pay the full cost of construction, including any increases.

When I met Grant Shapps, then the UK Energy Secretary, at the site in April, he shrugged off the cost increases.

He said: "I think we should all be rather pleased it is not the British tax payer - it is France and EDF who are paying."

In return, the UK government agreed a set rate for Hinkley's power, called the Strike Price, back in 2013. The idea was this would guarantee the income from Hinkley Point for 35 years, allowing investors to get their money back.


Will it be worth the money?

Back in 2013, the Strike Price was set at £92.50 for each megawatt hour of power. At the time, the wholesale price of electricity was around £50/MWh, so Hinkley C looked expensive.

But since then, global shocks like the war in Ukraine have increased the cost of power substantially, and advocates argue next-gen nuclear could deliver smaller, cheaper, safer designs.

 

Related News

View more

NEW Hydro One shares down after Ontario government says CEO, board out

Hydro One Leadership Shakeup unsettles investors as Ontario government ousts CEO and board, pressuring shares; analysts cite political and regulatory risk, stock volatility, trimmed price targets, and dividend stability at the regulated utility.

 

Key Points

An abrupt CEO exit and board overhaul at Hydro One, driving share declines and raising political and regulatory risk.

✅ Shares fall as CEO retires and board resigns under provincial pressure.

✅ Analysts cut price targets; warn of political, regulatory risks.

✅ New board to pick CEO; province consults on compensation.

 

Hydro One Ltd. shares slid Thursday with some analysts sounding warnings of greater uncertainty after the new Ontario government announced the retirement of the electrical utility's chief executive and the replacement of its board of directors.

 After sagging by almost eight per cent in early trading on the Toronto Stock Exchange, following news that Q2 profit plunged 23% amid weaker electricity revenue, shares of the company were later down four per cent, or 81 cents, at $19.36 as of 11:42 a.m. ET.

On Wednesday, after stock markets had closed for the day, Ontario Premier Doug Ford announced the immediate retirement of Hydro One CEO Mayo Schmidt. He leaves with a $400,000 payout in lieu of post-retirement benefits and allowances, Hydro One said.

Doug Ford's government forces out Hydro One '$6-million man'

During the recent provincial election campaign, Ford vowed to fire Schmidt, who earned $6.2 million last year and whose salary wouldn't be reduced despite calls to cut electricity costs.

Paul Dobson, Hydro One's chief financial officer, will serve as acting CEO until a new top executive is selected.

Ford also said the entire board of directors of the utility would resign. Hydro One said a new board — four members of which will be nominated by the province — will select the company's next CEO, and the province will be consulted on the next leader's compensation.

A new board is expected to be formed by mid-August.

The provincial government is the largest single investor in Hydro One, holding a 47 per cent stake. The company was partly privatized by the former Liberal government in 2015, while the NDP has proposed to make hydro public again in Ontario to change course.

 

Doug Ford promises to keep Pickering nuclear plant open until 2024

In response to the government's move to supplant the utility's board and CEO, some analysts cautioned investors about too many unknowns in the near-term outlook, citing raised political or regulatory risks.

Analyst Jeremy Rosenfield of iA Securities cut his rating on Hydro One shares to hold from buy, and reduced his 12-month price target for the stock to $24 from $26.

Rosenfield said the stock is still a defensive investment supported by stable earnings and cash flows, good earnings growth and healthy dividend.

However, he said in a research note that "the heightened potential for further political interference in the province's electricity market and regulated utility framework represent key risk factors that are likely to outweigh Hydro One's fundamentals over the near term."

 

Potential challenge to find new CEO

Laurentian Bank Securities analyst Mona Nazir said in a research note that the magnitude of change all at once was "surprising but not shocking."

She said the agreement that will see Hydro One consult with the provincial government on matters involving executive pay could have an impact on the hiring of a new CEO for the utility.

"Given the government's open and public criticism of the company and a potential ceiling on compensation, it may be challenging to attract top talent to the position," she wrote.

Laurentian cut its rating on the Hydro One to hold and reduced its price target to $21 from $24.

Analysts at CIBC World Markets said investors face an uncertain future, noting parallels with debates at Manitoba Hydro over political direction.

"In particular, we are are concerned about the government meddling in with [power] rates," wrote Robert Catellier and Archit Kshetrapal in a research note, adding they believe the new provincial government is aiming for a 12 per cent reduction in customers' power bills.

CIBC reduced its price target on Hydro One's shares to $20.50 from its previous target of $24.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified