Turning streetlight grids into a communications network

By Business Wire


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Sunrise Technologies is teaming with Ember to turn the countryÂ’s grid of streetlights into a wide-area communications network for a host of new public utility, security, environmental and other applications.

Sunrise TechnologiesÂ’ new BrownBetty system creates a mesh network for communications between ground-based sensor and control devices and the Internet, utilizing EmberÂ’s ZigBee wireless network technology. By taking advantage of the existing streetlight infrastructure with its high elevation poles and clean line of sight, BrownBetty dramatically lowers the cost of backhaul communications while enabling applications that were previously not practical or affordable.

For utilities, these could include automatic meter reading (AMR), time-of-use metering (TOU), advanced metering infrastructure (AMI), remote water meter reading, remote electric meter disconnect, fault indication, distribution automation, and utility GPS mapping.

Other applications include Homeland Security sensor monitoring, peak period load shedding (air conditioners, water heaters, pool pumps, etc.), vehicle tracking, bridge stress monitoring, advanced parking meters (APM), storm drain blockage monitoring, water flow monitoring, home/business heating oil tank monitoring, and bridge stress monitoring, among many others.

The system gets its curious name from Brown Betty, the horse used by Paul Revere in his famous ride to alert the Minuteman in Lexington and Concord of the British ArmyÂ’s approach.

“BrownBetty makes smart use of ZigBee to eliminate the need for expensive long haul communications options like cellular, pagers or powerline,” said Bob Gohn, Ember’s Vice President of Marketing. “Because it uses standard based communications, BrownBetty can network work with any other ZigBee enabled devices to form a reliable and robust network.”

Inexpensive communication nodes are plugged into a streetlightÂ’s standard NEMA twist lock receptacles, replacing the lightÂ’s dusk to dawn photocontrols. Thanks to ZigBeeÂ’s self-forming network capabilities, the nodes automatically install themselves into the BrownBetty network, resulting in minimal installation costs. This local network communicates with a network computer operating center through bridge nodes which connect to the internet via fiber, broadband or WiFi connections. A single low cost node can communicate with multiple houses with multiple applications. Each node incorporates a photo control circuit to provide normal dusk to dawn lighting control of the streetlight.

Sunrise Technologies partnered with muNet, a provider of IP and ZigBee-based electric meter interfaces, in a successful pilot of the BrownBetty system at the Taunton Municipal Light Plant (TMLP) in Taunton, Mass. “The system is great because you can start inexpensively on a small scale and expand coverage and add on additional applications when you want them. It makes so many things more efficient,” said Mike Horrigan, General Manager for TMLP. Other participants in the project included NightHawk to perform remote electric meter disconnect/reconnect, DataMatic remote water meter reading, Graphic Technologies, Inc. (GTI) to provide geospatial data, and Power Delivery Products, Inc. for its faulted circuit indicators.

Vance Spillman, Vice President and General Manager of Sunrise Technologies said, “BrownBetty was created to fill the void of cost effective wide area coverage for backhaul of ZigBee device information to the Internet,” he said. “Smart grid implementation becomes instantly affordable. Adding the BrownBetty communications layer to Municipal WiFi systems makes the WiFi technology more useful. It adds value to the WiFi network and makes the WiFi network much more financially viable.”

The BrownBetty system used Ember’s EM250 ZigBee “system-on-chip” transceiver and EmberZNet PRO wireless mesh networking software. Sunrise Technologies realizes that Ember’s ZigBee technology addresses the need for a cost-effective, standards-based wireless networking solution that supports low data-rates, low-power consumption, security and reliability.

Related News

Learn how fees and usage impacts your electricity bill in new online CER tool

CER Interactive Electricity Bill Tool compares provincial electricity prices, fees, taxes, and usage. Explore household appliance costs, hydroelectric generation, and consumption trends across Canada with interactive calculators and a province-by-province breakdown.

 

Key Points

An online CER report with calculators comparing electricity prices, fees, and usage to explain household energy costs.

✅ Province-by-province bill, price, and consumption comparison

✅ Calculator for appliance and electronics energy costs

✅ Explains fees, taxes, regulation, and generation sources

 

Canadians have a new way to assess their electricity bill in a new, interactive online report released by the Canada Energy Regulator (CER).

The report titled What is in a residential electricity bill? features a province-to-province comparison of electricity bills, generation and consumption. It also explains electricity prices across the country, including how Calgary electricity prices have changed, allowing people to understand why costs vary depending on location, fees, regulation and taxes.  

Learn how fees and usage impacts your electricity bill in new online CER tool
Interactive tools allow people to calculate the cost of household appliances and electronic use for each province and territory, and to understand how Ontario rate increases may affect monthly bills. For example, an individual can use the tools to find out that leaving a TV on for 24-hours in Quebec costs $5.25 per month, while that same TV on for a whole day would cost $12.29 per month in Saskatchewan, $20.49 per month in the Northwest Territories, and $15.30 per month in Nova Scotia.

How Canadians use energy varies as much as how provinces and territories produce it, especially in regions like Nunavut where unique conditions influence costs. Millions of Canadians rely on electricity to power their household appliances, charge their electronics, and heat their homes. Provinces with abundant hydro-electric resources like Quebec, B.C., Manitoba, and Newfoundland and Labrador use electricity for home heating and tend to consume the most electricity.

By gathering data from various sources, this report is the first Canadian publication that features interactive tools to allow for a province-by-province comparison of electricity bills while highlighting different elements within an electricity bill, a helpful context as Canada faces a critical supply crunch in the years ahead.

The CER monitors energy markets and assesses Canadian energy requirements and trends, including clean electricity regulations developments that shape pricing. This report is part of a portfolio of publications on energy supply, demand and infrastructure that the CER publishes regularly as part of its ongoing market monitoring.

"No matter where you go in the country, Canadians want to know how much they pay for power and why, especially amid price spikes in Alberta this year," says lead author Colette Craig. "This innovative, interactive report really explains electricity bills to help everyone understand electricity pricing and consumption across Canada."

Quick Facts

  • Quebec ranks first in electricity consumption per capita at 21.0 MW.h, followed by Saskatchewan at 20.0 MW.h, Newfoundland and Labrador at 19.3 MW.h.
  • About 95% of Quebec's electricity is produced from hydroelectricity.
  • Provinces that use electricity for home heating tend to consume the most electricity.
  • Canada's largest consuming sector for electricity was industrial at 238 TW.h. The residential and commercial sectors consumed 168 TW.h and 126 TW.h, respectively.
  • In 2018, Canada produced 647.7 terawatt hours (TW.h) of electricity. More than half of the electricity in Canada (61%) is generated from hydro sources. The remainder is produced from a variety of sources, such as fossil fuels (natural gas and petroleum), nuclear, wind, coal, biomass, solar.
  • Canada is a net exporter of electricity. In 2019, net exports to the U.S. electricity market totaled 47.0 TW.h.
  • The total value of Canada's electricity exports was $2.5 billion Canadian dollars and the value of imports was $0.6 billion Canadian dollars, resulting in 2019 net exports of $1.9 billion.
  • All regions in Canada are reflected in this report but it does not include data that reflects the COVID-19 lockdown and its effects on residential electricity bills.
     

 

 

Related News

View more

Here's what we know about the mistaken Pickering nuclear alert one week later

Pickering Nuclear Alert Error prompts Ontario investigation into the Alert Ready emergency alert system, Pelmorex safeguards, and public response at Pickering Nuclear Generating Station, including potassium iodide orders and geo-targeted notification issues.

 

Key Points

A mistaken Ontario emergency alert about the Pickering plant, now under probe for human error and system safeguards.

✅ Investigation led by Emergency Management Ontario

✅ Alert Ready and Pelmorex safeguards under review

✅ KI pill demand surged; geo-targeting questioned

 

A number of questions still remain a week after an emergency alert was mistakenly sent out to people across Ontario warning of an unspecified incident at the Pickering Nuclear Generating Station. 

The province’s solicitor general has stepped in and says an investigation into the incident should be completed fairly quickly according to the minister.

However, the nuclear scare has still left residents on edge with tens of thousands of people ordering potassium iodide, or KI, pills that protect the body from radioactive elements in the days following the incident.

Here’s what we know and still don’t know about the mistaken Pickering nuclear plant alert:

Who sent the alert?

According to the Alert Ready Emergency Alert System website, the agency works with several federal, provincial and territorial emergency management officials, Environment and Climate Change Canada and Pelmorex, a broadcasting industry and wireless service provider, to send the alerts.

Martin Belanger, the director of public alerting for Pelmorex, a company that operates the alert system, said there are a number of safeguards built in, including having two separate platforms for training and live alerts.

"The software has some steps and some features built in to minimize that risk and to make sure that users will be able to know whether or not they're sending an alert through the... training platform or whether they're accessing the live system in the case of a real emergency," he said.

Only authorized users have access to the system and the province manages that, Belanger said. Once in the live system, features make the user aware of which platform they are using, with various prompts and messages requiring the user's confirmation. There is a final step that also requires the user to confirm their intent of issuing an alert to cellphones, radio and TVs, Belanger said.

Last Sunday, a follow-up alert was sent to cellphones nearly two hours after the original notification, and during separate service disruptions such as a power outage in London residents also sought timely information.

What has the investigation revealed?

It’s still unclear as to how exactly the alert was sent in error, but Solicitor General Sylvia Jones has tapped the Chief of Emergency Management Ontario to investigate.

"It's very important for me, for the people of Ontario, to know exactly what happened on Sunday morning," Jones said.

Jones said initial observations suggest human error was responsible for the alert that was sent out during routine tests of the emergency alert.

“I want to know what happened and equally important, I want some recommendations on insurances and changes we can make to the system to make sure it doesn't happen again,” Jones said.

Jones said she expects the results of the probe to be made public.

Can you unsubscribe from emergency alerts?

It’s not possible to opt out of receiving the alerts, according to the Alert Ready Emergency Alert System website, and Ontario utilities warn about scams to help customers distinguish official notices.

“Given the importance of warning Canadians of imminent threats to the safety of life and property, the CRTC requires wireless service providers to distribute alerts on all compatible wireless devices connected to an LTE network in the target area,” the website reads.

The agency explains that unlike radio and TV broadcasting, the wireless public alerting system is geo-targeted and is specific to the a “limited area of coverage”, and examples like an Alberta grid alert have highlighted how jurisdictions tailor notices for their systems.

“As a result, if an emergency alert reaches your wireless device, you are located in an area where there is an imminent danger.”

The Pickering alert, however, was received by people from as far as Ottawa to Windsor.

Is the Pickering Nuclear Generating Station closing?

The Pickering nuclear plant has been operating since 1971, and had been scheduled to be decommissioned this year, but the former Liberal government -- and the current Progressive Conservative government -- committed to keeping it open until 2024. Decommissioning is now set to start in 2028.

It operates six CANDU reactors, and in contingency planning operators have considered locking down key staff to maintain reliability, generates 14 per cent of Ontario's electricity and is responsible for 4,500 jobs across the region, according to OPG, while utilities such as Hydro One's relief programs have supported customers during broader crises.

What should I do if I receive an emergency alert?

Alert Ready says that if you received an alert on your wireless device it’s important to take action “safely”.

“Stop what you are doing when it is safe to do so and read the emergency alert,” the agency says on their website.

“Alerting authorities will include within the emergency alert the information you need and guidance for any action you are required to take, and insights from U.S. grid pandemic response underscore how critical infrastructure plans intersect with public safety.”

“This could include but is not limited to: limit unnecessary travel, evacuate the areas, seek shelter, etc.”

The wording of last Sunday's alert caused much initial confusion, warning residents within 10 kilometres of the plant of "an incident," though there was no "abnormal" release of radioactivity and residents didn't need to take protective steps, but emergency crews were responding.

“In the event of a real emergency, the wording would be different,” Jones said.

 

Related News

View more

Can the Electricity Industry Seize Its Resilience Moment?

Hurricane Grid Resilience examines how utilities manage outages with renewables, microgrids, and robust transmission and distribution systems, balancing solar, wind, and batteries to restore service, harden infrastructure, and improve storm response and recovery.

 

Key Points

Hurricane grid resilience is a utility approach to withstand storms, reduce outages, and speed safe power restoration.

✅ Focus on T&D hardening, vegetation management, remote switching

✅ Balance generation mix; integrate solar, wind, batteries, microgrids

✅ Plan 12-hour shifts; automate forecasting and outage restoration

 

When operators of Duke Energy's control room in Raleigh, North Carolina wait for a hurricane, the mood is often calm in the hours leading up to the storm.

“Things are usually fairly quiet before the activity starts,” said Mark Goettsch, the systems operations manager at Duke. “We’re anxiously awaiting the first operation and the first event. Once that begins, you get into storm mode.”

Then begins a “frenzied pace” that can last for days — like when Hurricane Florence parked over Duke’s service territory in September.

When an event like Florence hits, all eyes are on transmission and distribution. Where it’s available, Duke uses remote switching to reconnect customers quickly. As outages mount, the utility forecasts and balances its generation with electricity demand.

The control center’s four to six operators work 12-hour shifts, while nearby staff members field thousands of calls and alarms on the system. After it’s over, “we still hold our breath a little bit to make sure we’ve operated everything correctly,” said Goettsch. Damage assessment and rebuilding can only begin once a storm passes.

That cycle is becoming increasingly common in utility service areas like Duke's.

A slate of natural disasters that reads like a roll call — Willa, Michael, Harvey, Irma, Maria, Florence and Thomas — has forced a serious conversation about resiliency. And though Goettsch has heard a lot about resiliency as a “hot topic” at industry events and meetings, those conversations are only now entering Duke’s control room.

Resilience discussions come and go in the energy industry. Storms like Hurricane Sandy and Matthew can spur a nationwide focus on resiliency, but change is largely concentrated in local areas that experienced the disaster. After a few news cycles, the topic fades into the background.

However, experts agree that resilience is becoming much more important to year-round utility planning and operations as utilities pursue decarbonization goals across their fleets. It's not a fad.

“If you look at the whole ecosystem of utilities and vendors, there’s a sense that there needs to be a more resilient grid,” said Miki Deric, Accenture’s managing director of utilities, transmission and distribution for North America. “Even if they don’t necessarily agree on everything, they are all working with the same objective.”

Can renewables meet the challenge?

After Hurricane Florence, The Intercept reported on coal ash basins washed out by the storm’s overwhelming waters. In advance of that storm, Duke shut down one nuclear plant to protect it from high winds. The Washington Post also recently reported on a slowly leaking oil spill, which could surpass Deepwater Horizon in size, caused by Hurricane Ivan in 2004.

Clean energy boosters have seized on those vulnerabilities.They say solar and wind, which don’t rely on access to fuel and can often generate power immediately after a storm, provide resilience that other electricity sources do not.

“Clearly, logistics becomes a big issue on fossil plants, much more than renewable,” said Bruce Levy, CEO and president at BMR Energy, which owns and operates clean energy projects in the Caribbean and Latin America. “The ancillaries around it — the fuel delivery, fuel storage, water in, water out — are all as susceptible to damage as a renewable plant.”

Duke, however, dismissed the notion that one generation type could beat out another in a serious storm.

“I don’t think any generation source is immune,” said Duke spokesperson Randy Wheeless. “We’ve always been a big supporter of a balanced energy mix, reflecting why the grid isn't 100% renewable in practice today. That’s going to include nuclear and natural gas and solar and renewables as well. We do that because not every day is a good day for each generation source.”

In regard to performance, Wade Schauer, director of Americas Power & Renewables Research at Wood Mackenzie, said the situation is “complex.” According to him, output of solar and wind during a storm depends heavily on the event and its location.

While comprehensive data on generation performance is sparse, Schauer said coal and gas generators could experience outages at 25 percent while stormy weather might cut 95 percent of output from renewables, underscoring clean energy's dirty secret about variability under stress. Ahead of last year’s “bomb cyclone” in New England, WoodMac data shows that wind dropped to less than 1 percent of the supply mix.

“When it comes to resiliency, ‘average performance’ doesn't cut it,” said Schauer.

In the future, he said high winds could impact all U.S. offshore wind farms, since projects are slated for a small geographic area in the Northeast. He also pointed to anecdotal instances of solar arrays in New England taken out by feet of snow. During Florence, North Carolina’s wind farms escaped the highest winds and continued producing electricity throughout. Cloud cover, on the other hand, pushed solar production below average levels.

After Florence passed, Duke reported that most of its solar came online quickly, although four of its utility-owned facilities remained offline for weeks afterward. Only one was because of damage; the other three remained offline due to substation interconnection issues.

“Solar performed pretty well,” said Wheeless. “But did it come out unscathed? No.”

According to installer reports, solar systems fared relatively well in recent storms, even as the Covid-19 impact on renewables constrained projects worldwide. But the industry has also highlighted potential improvements. Following Hurricanes Maria and Irma, the Federal Emergency Management Agency published guidelines for installing and maintaining storm-resistant solar arrays. The document recommended steps such as annual checks for bolt tightness and using microinverters rather than string inverters.

Rocky Mountain Institute (RMI) also assembled a guide for retrofitting and constructing new installations. It described attributes of solar systems that survived storms, like lateral racking supports, and those that failed, like undersized and under-torqued bolts.

“The hurricanes, as much as no one liked them, [were] a real learning experience for folks in our industry,” said BMR’s Levy. “We saw what worked, and what didn’t.”          

Facing the "800-pound gorilla" on the grid

Advocates believe wind, solar, batteries and microgrids offer the most promise because they often rely less on transmitting electricity long distances and could support peer-to-peer energy models within communities.

Most extreme weather outages arise from transmission and distribution problems, not generation issues. Schauer at WoodMac called storm damage to T&D the “800-pound gorilla.”

“I'd be surprised if a single customer power outage was due to generators being offline, especially since loads where so low due to mild temperatures and people leaving the area ahead of the storm,” he said of Hurricane Florence. “Instead, it was wind [and] tree damage to power lines and blown transformers.”

 

Related News

View more

Portsmouth residents voice concerns over noise, flicker generated by turbine

Portsmouth Wind Turbine Complaints highlight noise, shadow flicker, resident impacts, Town Council hearings, and Green Development mitigation plans near Portsmouth High School, covering renewable energy output, PPAs, and community compliance.

 

Key Points

Resident reports of noise and shadow flicker near Portsmouth High School, prompting review and mitigation efforts.

✅ Noise exceeds ambient levels seasonally, residents report fatigue.

✅ Shadow flicker lasts up to 90 minutes on affected homes.

✅ Town tasks developer to meet neighbors and propose mitigation.

 

The combination of the noise and shadows generated by the town’s wind turbine has rankled some neighbors who voiced their frustration to the Town Council during its meeting Monday.

Mark DePasquale, the founder and chairman of the company that owns the turbine, tried to reassure them with promises to address the bothersome conditions.

David Souza, a lifelong town resident who lives on Lowell Drive, showed videos of the repeated, flashing shadows cast on his home by the three blades spinning.

“I am a firefighter. I need to get my sleep,” he said. “And now it’s starting to affect my job. I’m tired.”

Town Council President Keith Hamilton tasked DePasquale with meeting with the neighbors and returning with an update in a month. “What I do need you to do, Mr. DePasquale, is to follow through with all these people.”

DePasquale said he was unaware of the flurry of complaints lodged by the residents Monday. His company had only heard of one complaint. “If I knew there was an issue before tonight, we would have responded,” he said.

His company, Green Development LLC, formerly Wind Energy Development LLC, installed the 279-foot-tall turbine near Portsmouth High School that started running in August 2016, as offshore developers like Deepwater Wind in Massachusetts plan major construction nearby. It replaced another turbine installed by a separate company that broke down in 2012.

In November 2014, the town signed an agreement with Wind Energy Development to take down the existing turbine, pay off the remaining $1.45 million of the bond the town took out to install it and put up a new turbine, amid broader legal debates like the Cornwall wind farm ruling that can affect project timelines.

In exchange, Wind Energy Development sells a portion of the energy generated by the turbine to the town at a rate of 15.5 cents per kilowatt hour for 25 years. Some of the energy generated is sold to the town of Coventry.

“We took down (the old turbine) and paid off the debt,” DePasquale said, noting that cancellations can carry high costs as seen in Ontario wind project penalties for scrapping projects. “I have no problem doing whatever the council wants … There was an economic decision made to pay off the bond and build something better.”

The turbine was on pace to produce 4 million-plus kilowatt hours per year, Michelle Carpenter, the chief operating officer of Wind Energy Development, said last April. It generates enough energy to power all municipal and school buildings in town, she said, while places like Summerside’s wind power show similarly strong output.

The constant stream of shadows cast on certain homes in the area can last for as long as an hour-and-a-half, according to Souza. “We shouldn’t have to put up with this,” he said.

Sprague Street resident John Vegas said the turbine’s noise, especially in late August, is louder than the neighborhood’s ambient noise.

“Throughout the summer, there’s almost no flicker, but this time of year it’s very prominent,” Vegas added. “It can be every day.”

He mentioned neighbors needed to be better organized to get results.

“When the residents purchased our properties we did not have this wind turbine in our backyard,” Souza said in a memo. “Due to the wind turbine … our quality of life has suffered.”

After the discussion, the council unanimously voted to allow Green Development to sublease excess energy to the Rhode Island Convention Center Authority, a similar agreement to the one the company struck with Coventry, as regional New England solar growth adds pressure on grid upgrade planning.

“This has to be a sustainable solution,” DePasquale said. “We will work together with the town on a solution.”

 

 

Related News

View more

Power Outage Disrupts Morning Routine for Thousands in London

London, Ontario Power Outage disrupts the electricity grid, causing a citywide blackout, stalled commuters, dark traffic signals, and closed businesses, as London Hydro crews race restoration after a transformer malfunction and infrastructure failures.

 

Key Points

A blackout caused by a transformer malfunction, disrupting commuters, businesses, and traffic across London, Ontario.

✅ Traffic signals dark; delays and congestion citywide

✅ London Hydro crews repairing malfunctioning transformer

✅ Businesses closed; transit routes delayed and rerouted

 

A widespread power outage early Monday morning left thousands of residents in London, Ontario, without electricity, causing significant disruption for commuters and businesses at the start of the workday. The outage, which affected several neighborhoods across the city, lasted for hours, creating a chaotic morning as residents scrambled to adjust to the unexpected interruption.

The Outage Strikes

The power failure was first reported at approximately 6:30 a.m., catching many off guard as they began their day. The affected areas included several busy neighborhoods, with power lines down and substations impacted, issues that windstorms often exacerbate for utilities. Early reports indicated that the outage was caused by a combination of issues, including technical failures and possible equipment malfunctions. London Hydro, the city's primary electricity provider, responded quickly to the situation, assuring residents that crews were dispatched to restore power as soon as possible.

"Crews are on site and working hard to restore power to those affected," a spokesperson for London Hydro said. "We understand the frustration this causes and are doing everything we can to get the power back on as soon as possible."

Impact on Commuters and Businesses

The power outage had an immediate impact on the morning commute. Traffic lights across the affected areas were down, leading to delays and rush-hour disruptions at major intersections. Drivers were forced to navigate through intersections without traffic control, creating an additional layer of complexity for those trying to get to work or school.

Public transit was also affected, with some bus routes delayed due to the power loss at key transit stations. The situation added further stress to commuters already dealing with the challenges of a typical Monday morning rush.

Businesses in the affected neighborhoods faced a variety of challenges. Some were forced to close early or delay their opening hours due to a lack of electricity. Many shops and offices struggled with limited access to the internet and phone lines, which hindered their ability to process orders and serve customers. Local coffee shops, often a go-to for busy workers, were also unable to operate their coffee machines or provide basic services, forcing customers to go without their usual morning caffeine fix.

"For a lot of people, it's their first stop in the morning," said one local business owner. "It’s frustrating because we rely on power to function, and with no warning, we had to turn away customers."

The Response

As the hours ticked by, residents were left wondering when the power would return. London Hydro’s social media accounts were filled with updates, keeping residents informed about the restoration efforts, a practice echoed when BC Hydro crews responded during an atypical storm. The utility company urged those who were experiencing issues to report them online to help prioritize repair efforts.

"We are aware that many people are affected, and our teams are working tirelessly to restore power," the utility posted on Twitter. "Please stay safe, and we thank you for your patience."

Throughout the morning, the power was gradually restored to different areas of the city. However, some parts remained without electricity well into the afternoon, a situation reminiscent of extended outages that test city resilience. London Hydro confirmed that the outage was caused by a malfunctioning transformer, and the necessary repairs would take time to complete.

Long-Term Effects and Community Concerns

While the immediate effects of the outage were felt most acutely during the morning hours, some residents expressed concern about the potential long-term effects. The city’s reliance on a stable electricity grid became a focal point of discussion, with many wondering if similar outages could occur in the future, as seen in the North Seattle outage earlier this year.

"I understand that things break, but it’s frustrating that it took so long for power to come back," said a London resident. "This isn’t the first time something like this has happened, and it makes me wonder about the reliability of our infrastructure."

City officials responded by reassuring residents that efforts are underway to upgrade the city's infrastructure to prevent such outages from happening in the future. A report released by London Hydro highlighted ongoing investments in upgrading transformers and other key components of the city's power grid. Province-wide, Hydro One restored power to more than 277,000 customers after damaging storms, underscoring the scale of upgrades needed. Despite these efforts, however, experts warn that older infrastructure in some areas may still be vulnerable to failure, especially during extreme weather events or other unforeseen circumstances.

The morning outage serves as a reminder of how reliant modern cities are on stable electricity networks. While the response from London Hydro was swift and effective in restoring power, it’s clear that these types of events can cause significant disruptions to daily life. As the city moves forward, many are calling for increased investment in infrastructure and proactive measures to prevent future outages, especially after Toronto outages persisted following a spring storm in the region.

In the meantime, Londoners have adapted, finding ways to go about their day as best they can. For some, it’s a reminder of the importance of preparedness in an increasingly unpredictable world. Whether it’s an extra flashlight or a backup power source, residents are learning to expect the unexpected and be ready for whatever the next workday might bring.

 

Related News

View more

Australian operator warns of reduced power reserves

Australia Electricity Supply Shortfall highlights AEMO's warning of reduced reserves as coal retirements outpace capacity, risking load shedding. Calls for 1GW strategic reserves and investment in renewables, storage, and dispatchable power in Victoria.

 

Key Points

It is AEMO's forecast of reduced reserves, higher outage risk, and a need for 1GW strategic backup capacity.

✅ Coal retirements outpacing firm, dispatchable capacity

✅ AEMO urges 1GW strategic reserves in Victoria and South Australia

✅ Investment needed: renewables, storage, grid and reliability services

 

Australia’s electricity operator has warned of threats to electricity supply including a shortfall in generation and reduced power reserves on the horizon.

The Australian Energy Market Operator (AEMO) has called for further investment in the country’s energy portfolio as retiring coal plants are replaced by intermittent renewables poised to eclipse coal, leaving the grid with less back-up capacity.

AEMO has said this increases the chances of supply interruption and load shedding.

It added the federal government should target 1GW of strategic reserves in the states most at risk – Victoria and South Australia, even as the Prime Minister has ruled out taxpayer-funded power plants in the current energy battle.

CEO of the Clean Energy Council, Kane Thornton, said the shortfall in generation, reflected in a short supply of electricity, was due a decade of indecisiveness and debate leading to a “policy vacuum”.

He added: “The AEMO report revealed that the new projects added to the system under the renewable energy target will help to improve reliability over the next few years.

“We need to accept that the energy system is in transition, with lessons from dispatchable power shortages in Europe, and long term policy is now essential to ensure private investment in the most efficient new energy technology and solutions.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified