Heartbeats may power future pacemakers

By Reuters


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Pacemakers and defibrillators of the future may generate an extra power boost from a surprising energy source: The heart itself.

Using a microgenerator powered by heartbeats, a British team said their experiment produced nearly 17 percent of the electricity needed to run an artificial pacemaker.

This means the next era of pacemakers could incorporate this technology and result in longer-lasting devices with more added functions to help manage the heart, they said.

"This was a proof-of-concept study, and we provided the concept," Paul Roberts at Southampton University Hospital in Britain said in a statement.

"Harvesting surplus energy might be a major transition in implantable pacemakers and defibrillators because engineers will have more energy to work with."

A pacemaker sends electrical impulses to the heart to speed up or slow cardiac rhythm while an implantable cardioverter defibrillator signals the heart to normalize its rhythm if it gets too fast or slow.

The devices save lives and are incorporating evolving technology to become increasingly sophisticated. But the devices are now so small, the only way to produce more power needed to run more functions is to increase battery size.

The problem is this would also increase the size of the devices implanted under the skin, making them uncomfortable and cosmetically less appealing, the researchers said.

"The small devices now are really very good, but power consumption must increase if we want to take them to the next level," Roberts said.

The researchers, who presented their findings at the American Heart Association meeting in New Orleans, tested a generator that helps the heart produce more than enough energy with each beat to pump blood.

The device uses two compressible bladders and a microgenerator mounted on the lead of a pacemaker or defibrillator, the wire that connects the device to the heart.

This lead is attached to the end of the right ventricle, and the bladders relay the energy from the pressure of each heartbeat to the microgenerator, which transforms it into electricity for use by the battery, the researchers said.

The researchers are now working with different materials in the microgenerator, which they believe will produce significantly more power in their next-generation device.

"While at the moment we see about 20 percent harvesting, we're anticipating that will be significantly more in the next iteration of the device," Roberts said.

A consortium of companies including InVivo Technology, Perpetuum and Zarlink Semiconductor developed the microgenerator using British-government funds.

Related News

Chester County Landfill Converts Methane to Renewable Gas

SECCRA Waga Energy RNG Partnership captures landfill methane with WAGABOX, upgrades biogas to pipeline-quality RNG, enables grid injection, and lowers greenhouse gas emissions, delivering sustainable energy to Chester County homes and businesses.

 

Key Points

A joint project converting landfill methane to RNG with WAGABOX, cutting emissions and supplying local heat.

✅ WAGABOX captures and purifies landfill gas to RNG

✅ Grid injection supplies energy for 4,000+ homes

✅ Cuts methane and greenhouse gas emissions significantly

 

In a significant environmental initiative, the Southeastern Chester County Refuse Authority (SECCRA) has partnered with French energy company Waga Energy to convert methane emissions from its landfill into renewable natural gas (RNG). This collaboration aims to reduce greenhouse gas emissions and provide sustainable energy to the local community, echoing energy efficiency projects in Quebec seen elsewhere.

Understanding the Issue

Landfills are a substantial source of methane emissions, accounting for over 14% of human-induced methane emissions, according to the U.S. Environmental Protection Agency. Methane is a potent greenhouse gas, and issues like SF6 in power equipment further boost warming, trapping more heat in the atmosphere than carbon dioxide, making its reduction crucial in the fight against climate change.

The SECCRA-Waga Energy Partnership

SECCRA, serving approximately 105,000 residents in Chester County, processes between 450 to 500 tons of waste daily. To mitigate methane emissions from its landfill, SECCRA has partnered with Waga Energy to install a WAGABOX unit—a technology designed to capture and convert landfill methane into RNG, while related efforts like electrified LNG in B.C. illustrate sector-wide decarbonization.

How the WAGABOX Technology Works

The WAGABOX system utilizes a proprietary process to extract methane from landfill gas, purify it, and inject it into the natural gas grid. This process not only reduces harmful emissions, as emerging carbon dioxide electricity generation concepts also aim to do, but also produces a renewable energy source that can be used to heat homes and power businesses.

Environmental and Community Benefits

By converting methane into RNG, the project significantly lowers greenhouse gas emissions, supported by DOE funding for carbon capture initiatives, contributing to climate change mitigation. Additionally, the RNG produced is expected to supply energy to heat over 4,000 homes, providing a sustainable energy source for the local community.

Broader Implications

This initiative aligns with international clean energy cooperation to reduce methane emissions from landfills. Similar projects have been implemented worldwide, demonstrating the effectiveness of converting landfill methane into renewable energy. For instance, Waga Energy has successfully deployed WAGABOX units at various landfills, showcasing the scalability and impact of this technology.

The collaboration between SECCRA and Waga Energy represents a proactive step toward environmental sustainability and energy innovation. By transforming landfill methane into renewable natural gas, the project not only addresses a significant source of greenhouse gas emissions as new EPA power plant rules on carbon capture advance parallel strategies, but also provides a clean energy alternative for the Chester County community.

 

Related News

View more

Can Europe's atomic reactors bridge the gap to an emissions-free future?

EU Nuclear Reactor Life Extension focuses on energy security, carbon-free electricity, and safety as ageing reactors face gas shortages, high power prices, and regulatory approvals across the UK and EU amid winter supply risks.

 

Key Points

EU Nuclear Reactor Life Extension is the policy to keep ageing reactors safely generating affordable, low-carbon power.

✅ Extends reactor operation via inspections and component upgrades

✅ Addresses gas shortages, price volatility, and winter supply risks

✅ Requires national regulator approval and cost-benefit analysis

 

Shaken by the loss of Russian natural gas since the invasion of Ukraine, European countries are questioning whether they can extend the lives of their ageing nuclear reactors to maintain the supply of affordable, carbon-free electricity needed for net-zero across the bloc — but national regulators, companies and governments disagree on how long the atomic plants can be safely kept running.

Europe avoided large-scale blackouts last winter despite losing its largest supplier of natural gas, and as Germany temporarily extended nuclear operations to bolster stability, but industry is still grappling with high electricity prices and concerns about supply.

Given warnings from the International Energy Agency that the coming winters will be particularly at risk from a global gas shortage, governments have turned their attention to another major energy source — even as some officials argue nuclear would do little to solve the gas issue in the near term — that would exacerbate the problem if it too is disrupted: Europe’s ageing fleet of nuclear power plants.

Nuclear accounts for nearly 10% of energy consumed in the European Union, with transport, industry, heating and cooling traditionally relying on coal, oil and natural gas.

Historically nuclear has provided about a quarter of EU electricity and 15% of British power, even as Germany shut down its last three nuclear plants recently, underscoring diverging national paths.

Taken together, the UK and EU have 109 nuclear reactors running, even as Europe is losing nuclear power in several markets, most of which were built in the 1970s and 1980s and were commissioned to last about 30 years.

That means 95 of those reactors — nearly 90% of the fleet — have passed or are nearing the end of their original lifespan, igniting debates over how long they can safely continue to be granted operating extensions, with some arguing it remains a needed nuclear option for climate goals despite age-related concerns.

Regulations differ across borders, with some countries such as Germany turning its back on nuclear despite an ongoing energy crisis, but life extension discussions are usually a once-a-decade affair involving physical inspections, cost/benefit estimates for replacing major worn-out parts, legislative amendments, and approval from the national nuclear safety authority.

 

Related News

View more

Utility giant Electricite de France acquired 50pc stake in Irish offshore wind farm

Codling Bank Offshore Wind Project will deliver a 1.1 GW offshore wind farm off the Wicklow coast, as EDF Renewables and Fred Olsen Renewables invest billions to support Ireland's CAP 2030 and cut carbon emissions.

 

Key Points

A 1.1 GW offshore wind farm off Co Wicklow, led by EDF and Fred Olsen, advancing Ireland's CAP 2030 targets.

✅ Up to 1.1 GW capacity; hundreds of turbines off Co Wicklow

✅ EDF Renewables partners with Fred Olsen Renewables

✅ Investment well over €2bn, supporting 70% electricity by 2030

 

It’s been previously estimated that the entire Codling Bank project, which will eventually see hundreds of wind turbines, such as a huge offshore wind turbine now coming to market, erected about 13km off the Co Wicklow coast, could be worth as much as €100m. The site is set to generate up to 1.1 gigawatts of electricity when it’s eventually operational.

It’s likely to cost well over €2bn to develop, and with new pipelines abroad where Long Island offshore turbine proposals are advancing, scale economies are increasingly relevant.

The other half of the project is owned by Norway’s Fred Olsen Renewables, with tens of millions of euro already reportedly spent on surveys and other works associated with the scheme. Initial development work started in 2003.

Mr Barrett will now continue to focus on his non-Irish renewable projects, at a time when World Bank wind power support is accelerating in developing countries, said Hazel Shore, the company that sold the stake. It added that Johnny Ronan and Conor Ronan, the developer’s brother, will retain an equity interest in the Codling project.

“The Hazel Shore shareholders remain committed to continuing their renewable and forestry businesses,” noted the firm, whose directors include Paddy Teahon, a former secretary of the Department of the Taoiseach and chairman of the National Offshore Wind Association of Ireland.

The French group’s EDF Renewables subsidiary will now partner with the Norwegian firm to develop and build the Codling Bank project, in a sector widely projected to become a $1 trillion business over the coming decades.

EDF pointed out that the acquisition of the Codling Bank stake comes after the government committed to reducing carbon emissions. A Climate Action Plan launched last year will see renewable projects generating 70pc of Ireland’s electricity by 2030, with more than a third of Irish electricity to be green within four years according to recent analysis. Offshore wind is expected to deliver at least 3.5GW of power in support of the objective.

Bruno Bensasson, EDF Group senior executive vice-president of renewable energies and the CEO of EDF Renewables said the French group is “committed to contributing to the Irish government’s renewables goals”.

“This important project clearly strengthens our strong ambition to be a leading global player in the offshore wind industry,” he added. “This is consistent with the CAP 2030 strategy that aims to double EDF’s renewable energy generation by 2030 and increase it to 50GW net.”

Matthieu Hue, the CEO of EDF Renewables UK and Ireland said the firm already has an office in Dublin and is looking for further renewable projects, as New York's biggest offshore wind farm moves ahead, underscoring momentum.

Last November, the ESB teamed up with EDF in Scotland, reflecting how UK offshore wind is powering up, with the Irish utility buying a 50pc stake in the Neart na Gaoithe offshore wind project. The massive wind farm is expected to generate up to 450MW of electricity and will cost about €2.1bn to develop.

EDF said work on that project is “well under way”.

 

Related News

View more

Energy-hungry Europe to brighten profit at US solar equipment makers

European Solar Inverter Demand surges as photovoltaics and residential solar expand during the clean energy transition, driven by high natural gas prices; Germany leads, boosting Enphase and SolarEdge sales for rooftop systems and grid-tied installations.

 

Key Points

Rising European need for solar inverters, fueled by residential PV growth, high energy costs, and clean energy policies.

✅ Germany leads EU rooftop PV installations

✅ Enphase and SolarEdge see revenue growth

✅ High gas prices and policies spur adoption

 

Solar equipment makers are expected to post higher quarterly profit, benefiting from strong demand in Europe for critical components that convert energy from the sun into electricity, amid record renewable momentum worldwide.

The continent is emerging as a major market for solar firms as it looks to reduce its dependence on the Russian energy supply and accelerate its clean energy transition, with solar already reshaping power prices in Northern Europe across the region, brightening up businesses of companies such as Enphase Energy (ENPH.O) and SolarEdge Technologies (SEDG.O), which make solar inverters.

Wall Street expects Enphase and SolarEdge to post a combined adjusted net income of $323.8 million for the April-June quarter, a 56.7% jump from a year earlier, even as demand growth slows in the United States.

The energy crisis in Europe is not as acute as last year when Western sanctions on Russia severely crimped supplies, but prices of natural gas and electricity continue to be much higher than in the United States, Raymond James analyst Pavel Molchanov said.

As a result, demand for residential solar keeps growing at a strong pace in the region, with Germany being one of the top markets and solar adoption in Poland also accelerating in recent years across the region.

About 159,000 residential solar systems became operational in the first quarter in Germany amid a solar power boost that reflects policy and demand, a 146% rise from a year earlier, according to BSW solar power association.

Adoption of solar is also helping European homeowners have greater control over their energy costs as fossil fuel prices tend to be more volatile, Morningstar analyst Brett Castelli said.

SolarEdge, which has a bigger exposure to Europe than Enphase, said its first-quarter revenue from the continent more than doubled compared with last year.

In comparison, growth in the United States has been tepid due to lukewarm demand in states like Texas and Arizona where cheaper electricity prices make the economics of residential solar less attractive, even though solar is now cheaper than gas in parts of the U.S. market.

Higher interest rates following the U.S. Federal Reserve's recent actions to tame inflation are also weighing on demand, even as power outage risks rise across the United States.

Analysts also expect weakness in California where a new metering reform reduces the money credited to rooftop solar owners for sending excess power into the grid, underscoring how policy shifts can reshape the sector. The sunshine state accounts for nearly a third of the U.S. residential solar market.

Enphase will report its results on Thursday after the bell, while SolarEdge will release its second-quarter numbers on Aug. 1.

 

Related News

View more

Why electric buses haven't taken over the world—yet

Electric Buses reduce urban emissions and noise, but require charging infrastructure, grid upgrades, and depot redesigns; they offer lower operating costs and simpler maintenance, with range limits influencing routes, schedules, and on-route fast charging.

 

Key Points

Battery-electric buses cut emissions and noise while lowering operating and maintenance costs for transit agencies.

✅ Lower emissions, noise; improved rider experience

✅ Requires charging, grid upgrades, depot redesigns

✅ Range limits affect routes; on-route fast charging helps

 

In lots of ways, the electric bus feels like a technology whose time has come. Transportation is responsible for about a quarter of global emissions, and those emissions are growing faster than in any other sector. While buses are just a small slice of the worldwide vehicle fleet, they have an outsize effect on the environment. That’s partly because they’re so dirty—one Bogotá bus fleet made up just 5 percent of the city’s total vehicles, but a quarter of its CO2, 40 percent of nitrogen oxide, and more than half of all its particulate matter vehicle emissions. And because buses operate exactly where the people are concentrated, we feel the effects that much more acutely.

Enter the electric bus. Depending on the “cleanliness” of the electric grid into which they’re plugged, e-buses are much better for the environment. They’re also just straight up nicer to be around: less vibration, less noise, zero exhaust. Plus, in the long term, e-buses have lower operating costs, and related efforts like US school bus electrification are gathering pace too.

So it makes sense that global e-bus sales increased by 32 percent last year, according to a report from Bloomberg New Energy Finance, as the age of electric cars accelerates across markets worldwide. “You look across the electrification of cars, trucks—it’s buses that are leading this revolution,” says David Warren, the director of sustainable transportation at bus manufacturer New Flyer.

Today, about 17 percent of the world’s buses are electric—425,000 in total. But 99 percent of them are in China, where a national mandate promotes all sorts of electric vehicles. In North America, a few cities have bought a few electric buses, or at least run limited pilots, to test the concept out, and early deployments like Edmonton's first e-bus offer useful lessons as systems ramp up. California has even mandated that by 2029 all buses purchased by its mass transit agencies be zero-emission.

But given all the benefits of e-buses, why aren’t there more? And why aren’t they everywhere?

“We want to be responsive, we want to be innovative, we want to pilot new technologies and we’re committed to doing so as an agency,” says Becky Collins, the manager of corporate initiative at the Southeastern Pennsylvania Transportation Authority, which is currently on its second e-bus pilot program. “But if the diesel bus was a first-generation car phone, we’re verging on smartphone territory right now. It’s not as simple as just flipping a switch.”

One reason is trepidation about the actual electric vehicle. Some of the major bus manufacturers are still getting over their skis, production-wise. During early tests in places like Belo Horizonte, Brazil, e-buses had trouble getting over steep hills with full passenger loads. Albuquerque, New Mexico, canceled a 15-bus deal with the Chinese manufacturer BYD after finding equipment problems during testing. (The city also sued). Today’s buses get around 225 miles per charge, depending on topography and weather conditions, which means they have to re-up about once a day on a shorter route in a dense city. That’s an issue in a lot of places.

If you want to buy an electric bus, you need to buy into an entire electric bus system. The vehicle is just the start.

The number one thing people seem to forget about electric buses is that they need to get charged, and emerging projects such as a bus depot charging hub illustrate how infrastructure can scale. “We talk to many different organizations that get so fixated on the vehicles,” says Camron Gorguinpour, the global senior manager for the electric vehicles at the World Resources Institute, a research organization, which last month released twin reports on electric bus adoption. “The actual charging stations get lost in the mix.”

But charging stations are expensive—about $50,000 for your standard depot-based one. On-route charging stations, an appealing option for longer bus routes, can be two or three times that. And that’s not even counting construction costs. Or the cost of new land: In densely packed urban centers, movements inside bus depots can be tightly orchestrated to accommodate parking and fueling. New electric bus infrastructure means rethinking limited space, and operators can look to Toronto's TTC e-bus fleet for practical lessons on depot design. And it’s a particular pain when agencies are transitioning between diesel and electric buses. “The big issue is just maintaining two sets of fueling infrastructure,” says Hanjiro Ambrose, a doctoral student at UC Davis who studies transportation technology and policy.

“We talk to many different organizations that get so fixated on the vehicles. The actual charging stations get lost in the mix as the American EV boom gathers pace across sectors.”

Then agencies also have to get the actual electricity to their charging stations. This involves lengthy conversations with utilities about grid upgrades, rethinking how systems are wired, occasionally building new substations, and, sometimes, cutting deals on electric output, since electric truck fleets will also strain power systems in parallel. Because an entirely electrified bus fleet? It’s a lot to charge. Warren, the New Flyer executive, estimates it could take 150 megawatt-hours of electricity to keep a 300-bus depot charged up throughout the day. Your typical American household, by contrast, consumes 7 percent of that—per year. “That’s a lot of work by the utility company,” says Warren.

For cities outside of China—many of them still testing out electric buses and figuring out how they fit into their larger fleets—learning about what it takes to run one is part of the process. This, of course, takes money. It also takes time. Optimists say e-buses are more of a question of when than if. Bloomberg New Energy Finance projects that just under 60 percent of all fleet buses will be electric by 2040, compared to under 40 percent of commercial vans and 30 percent of passenger vehicles.

Which means, of course, that the work has just started. “With new technology, it always feels great when it shows up,” says Ambrose. “You really hope that first mile is beautiful, because the shine will come off. That’s always true.”

 

Related News

View more

Texans to vote on funding to modernize electricity generation

Texas Proposition 7 Energy Fund will finance ERCOT grid reliability via loans and grants for new on-demand natural gas plants, maintenance, and modernization, administered by the Public Utility Commission of Texas after Winter Storm Uri.

 

Key Points

State-managed fund providing loans and grants to expand and upgrade ERCOT power generation for grid reliability.

✅ $7.2B incentives for new dispatchable plants in ERCOT

✅ Administered by Public Utility Commission of Texas

✅ Aims to prevent outages like Winter Storm Uri

 

Texans are set to vote on Tuesday on a constitutional amendment to determine whether the state will create a special fund for financing the "construction, maintenance, and modernization of its electric generating facilities."

The energy fund would be administered and used only by the Public Utility Commission of Texas to provide loans and grants to maintain and upgrade electric generating facilities and improve electricity reliability across the state.

The biggest chunk of the fund, $7.2 billion, would go into loans and incentives to build new power-generating facilities in the ERCOT (Electric Reliability Council of Texas) region, where ERCOT has issued an RFP for winter capacity to address seasonal concerns.

The proposal, titled Proposition 7, is one of several electricity market reforms under consideration by lawmakers and regulators in Texas to avoid another energy crisis like the one caused by a deadly winter storm in February 2021.

That storm, known as Winter Storm Uri, left millions without power, water and heat for days as ERCOT struggled to prevent a grid collapse after the shutdown of an unusually large amount of generation, and bailout proposals soon surfaced in the Legislature as the market reeled.

Pablo Vegas, president and CEO of ERCOT, emphasized the grid has become more “volatile” given the current resources, as the Texas power grid faces recurring challenges.

“The complexities of managing a growing demand, and a very dynamic load environment with those types of resources becomes more and more challenging,” Vegas said Tuesday during a meeting of the ERCOT board of directors.

Vegas said one solution to overcome the challenge is investing in power production that is available on demand, like power plants fueled by natural gas. Those plants can help during times when the need for electricity strains the supply.

“With the passing of Proposition 7 on the ballot this November, we’ll see those incentives combined to incentivize a more balanced development strategy going forward,” Vegas told board members.

If Proposition 7 is passed by voters, it would enact S.B. 2627, which establishes an advisory committee to oversee the fund and the various projects it could be used for, amid severe-heat blackout risks that affect the broader U.S. $5 billion would be transferred from the General Revenue Fund to the Texas Energy Fund if Proposition 7 passes.

Opposition for Proposition 7 comes from the Lone Star chapter of the Sierra Club, an environmental organization based in Austin and which has issued a statement on Gov. Abbott's demands regarding grid policy. Cyrus Reed, conservation director of the Lone Star chapter, said the Texas energy fund is slated to benefit private utilities to build gas plants using taxpayer’s money.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.