Nuclear leak worse than initially thought

By Associated Press


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The operator of an earthquake-ravaged nuclear plant said a radioactive leak was bigger than first reported but still below danger levels, while the mayor of the nearby city ordered the facility closed until its safety could be confirmed.

Tokyo Electric Power Co. also said about 400 barrels containing low-level radioactive waste were knocked over as a result of the recent quake, revising an earlier figure of 100.

The operator announced that a leak of radioactive water into the Sea of Japan was actually 50 percent bigger than initially announced after the deadly 6.8-magnitude quake.

"We made a mistake in calculating the amount that leaked into the ocean. We apologize and make correction," the statement said. Spokesman Jun Oshima said the amount was still "one-billionth of Japan's legal limit.''

Another spokesman, Tsutomu Uehara, told reporters in Tokyo that inspections at the Kashiwazaki-Kariwa plant showed 400 drums had fallen over and that lids had come off 40 of them. No radiation has been detected outside the facility, Uehara said.

A tour later given to Japan's Communist Party chief, Kazuo Shii, and a handful of reporters revealed widespread damage across its sprawling compound, including large cracks in roads, toppled concrete fences and buckled sidewalks.

Repair workers climbed over a three-story transformer building, which was charred from top to bottom in a fire that burned for two hours.

"This is unforgivable," Shii told TEPCO Deputy Superintendent Masakazu Minamidate. "You say there's no leak before you really know.... The delay in information was especially inexcusable.''

TEPCO President Tsunehisa Katsumata toured the site earlier in the day, declaring it "a mess" and apologizing for "all the worry and trouble we have caused.''

"It is hard to make everything go perfectly," he said. "We will conduct an investigation from the ground up. But I think fundamentally we have confirmed that our safety measures worked.''

The International Atomic Energy Agency, meanwhile, pressed Japan to undertake a transparent and thorough investigation of the accidents to see if there are lessons that can be applied to nuclear plants elsewhere in the world.

Adding to the urgency was new data from aftershocks of the quake, suggesting a fault line may run underneath the mammoth power plant.

Kashiwazaki-Kariwa is the world's largest nuclear plant in power output capacity. Signs of problems after the quake came first not from the officials, but in a plume of smoke that rose up when the quake triggered a small fire at an electrical transformer.

It was announced only 12 hours later that the quake also caused a leak of about 315 gallons of water containing radioactive material. Officials said the water leak was well within safety standards. The water was flushed into the sea.

It said 50 cases of "malfunctioning and trouble" had been found. Four of the plant's seven reactors were running at the time of the quake, and they were all shut down automatically by a safety mechanism.

Hiroshi Aida, mayor of Kashiwazaki, a city near the epicenter that is home to the plant and 93,500 people, ordered operations at the plant halted for "safety reasons.''

Speaking in Malaysia, IAEA chief Mohamed ElBaradei said a thorough review was key and offered to have his Vienna-based agency pull together global experts.

"It doesn't mean that the reactor structure or system has been damaged," ElBaradei said. "I would hope and I trust that Japan would be fully transparent in its investigation of that accident. The agency would be ready to join Japan through an international team in reviewing that accident and drawing the necessary lessons.''

Meanwhile, TEPCO spokesman Hiroshi Itagaki said that information accumulated by studying aftershocks shows that a fault line stretches under the ocean near the coast, which is not far away from the plant. He declined to say how close to the plant the fault might come, but the company is planning to further study the issue.

Osamu Kamigaichi, an official at Japan's Meteorological Agency, which monitors earthquakes, said it was possible the fault line stretched in the direction of the nuclear facility and may reach underneath its grounds.

Across town, more than 8,000 residents hunkered down for their second night in shelters. The death toll – nine, with one person missing – was not expected to rise significantly. Most of the newer parts of town escaped major damage.

For residents, thousands of whom work at the plant, the controversy over its safety compounded already severe problems, which included heavy rains and the threat of landslides, water and power outages, and spotty communications.

"Whenever there is an earthquake, the first thing we worry about is the nuclear plant. I worry about whether there will be a fire or something," said Kiyokazu Tsunajima, a tailor who sat outside on his porch with his family, afraid an aftershock might collapse his damaged house.

The area around Kashiwazaki was hit by an earthquake three years ago that killed 67 people, but the plant suffered no damage.

The malfunctions and a delay in reporting them fueled concerns about the safety of Japan's 55 nuclear reactors, which have suffered a string of accidents and cover-ups. Nuclear power plants around Japan were ordered to conduct inspections.

The Kashiwazaki-Kariwa plant, located 135 miles northwest of Tokyo, has been plagued with mishaps. In 2001, a radioactive leak was found in the turbine room of one reactor.

The plant's safety record and its proximity to a fault line prompted residents to file lawsuits claiming the government had failed to conduct sufficient safety reviews when it approved construction of the plant in the 1970s. But in 2005, a Tokyo court threw out a lawsuit filed by 33 residents, saying there was no error in the government safety reviews.

The U.S. Nuclear Regulatory Commission requires that nuclear plants be built with the capacity to withstand the strongest earthquake to hit its site within 100 years. In a "safe shutdown earthquake," the chain reaction in the reactor stops, but the cooling system keeps running so excess heat is carried away from the core.

William Miller, a professor of nuclear engineering at the University of Missouri, said the Kashiwazaki-Kariwa plant "did what it was supposed to. It shut down.''

Although its operator said there were leaks, Miller called the amounts he had heard were "so small as to be negligible.''

However, David Lochbaum, director of the Nuclear Safety Project at the Union of Concerned Scientists, noted that fire and loss of power, both of which occurred at Kashiwazaki-Kariwa, are the two most likely causes of meltdowns at nuclear facilities.

Related News

Effort to make Philippines among best power grids in Asia

NGCP-SGCC Partnership drives transmission grid modernization in the Philippines, boosting high-voltage capacity, reliability, and resilience, while developing engineering talent via the Trailblazers Program to meet Southeast Asia best practices and utility standards.

 

Key Points

A partnership to modernize the Philippines' grid, boost high-voltage capacity, and upskill NGCP engineers.

✅ Modernizes transmission assets and grid reliability nationwide

✅ Trailblazers Program develops NGCP's engineering leadership

✅ SGCC knowledge transfer on UHV, high-voltage, and best practices

 

The National Grid Corp. of the Philippines (NGCP) is building on its partnership with State Grid Corp of China (SGCC) to expand and modernize transmission facilities, as well as enhance the capabilities of its personnel to advance the country's grid network, aligning with smart grid transformation in Egypt seen in other markets. NGCP Internal Affairs Department head Edwin Natividad said the grid operator is implementing various development programs with SGCC to make the country's power grid among the best power utilities in Asia.

"We have to look at policies aligned with best global practices, including smart grid solutions increasingly adopted worldwide, that we can choose in adopting in the Philippines too," he said. One of NGCP's flagship development program is the Trailblazers Program, the company's strategy to further develop engineers "who will not just be technical experts, but also be the change agents and movers in the NGCP organization as well as in the Philippines' power sector," Natividad said.

"Having the support of the largest utility in the world gives us comfort that this program is designed and implemented by the best in the power industry," he said. Under the program, high performing personnel participating will be prepared for bigger roles later on in their careers at NGCP.

Business ( Article MRec ), pagematch: 1, sectionmatch: 1 "The advantage of such a pool is that it provides flexibility and, eventually, organizational self-sufficiency around the current and future talent needs of NGCP," Natividad said. Now on its third edition, the Trailblazers Program has already sent 76 personnel since it started in November 2016. Natividad said more than 16 of those who previously attended similar programs have already assumed higher roles in NGCP.

Apart from technical skills development, NGCP's partnership with SGCC also provides technical development to improve on the physical transmission assets. "If you will compare the facilities being handled by SGCC with other countries, in terms of handling high voltage capability, SGCC is way ahead.

The higher the voltage it's going to be more difficult to handle," Natividad said, adding they can handle more power to distribute to power distributors. As an example, SGCC's transmission facilities can handle high voltage to as much as 1,000 kiloVolts (kV), whereas the Philippines only has one high voltage facility, the interconnection between Luzon and Visayas, which can handle 500 kV, echoing proposals for macrogrids in Canada to improve reliability.

Natividad said NGCP was the first and biggest investment of SGCC outside of China before it made investments in other parts of the world, even as cybersecurity concerns in Britain have influenced supplier choices. A consortium among businessmen Henry Sy Jr., Robert Coyuito Jr., and SGCC as technical partner, NGCP holds a 25-year concession contract to operate and maintain the country's transmission grid.

Earlier, Sy, NGCP president and CEO, said the company is targeting to become the best utility firm in Southeast Asia. Since it took over the operations and maintenance of the country's power transmission network in 2009, the grid operator has introduced major physical and technological upgrades to ageing state-owned lines and facilities, while in Great Britain an independent operator model is being advanced to reshape system operations.

 

Related News

View more

Nevada on track to reach RPS mandate of 50% renewable electricity by 2030: report

Nevada Renewable Portfolio Standard 2030 targets 50% clean energy, advancing solar, geothermal, and wind, cutting GHG emissions, phasing out coal, and expanding storage, EV infrastructure, and in-state renewables under PUCN oversight and tax abatements.

 

Key Points

A state mandate requiring 50% of electricity from renewables by 2030, driving solar, geothermal, wind, and storage.

✅ 50% clean power by 2030; 100% carbon-free target by 2050

✅ Growth in solar, geothermal, wind; coal phase-out; natural gas remains

✅ RETA incentives spur 6.1 GW capacity, jobs, and in-state investment

 

Nevada is on track to meet its Renewable Portfolio Standard of 50% of electricity generated by renewable energy sources by 2030, according to the Governor's Office of Energy's annual Status of Energy Report.

Based on compliance reports the Public Utilities Commission of Nevada has received, across all providers, about 20% of power is currently generated by renewable resources, and, nationally, renewables ranked second in 2020 as filings show Nevada's investor-owned utility and other power providers have plans to reach the state's ambitious RPS of 50% by 2030, according to the report released Jan. 28.

"Because transportation and electricity generation are Nevada's two largest contributors to greenhouse gas emissions, GOE's program work in 2021 underscored our focus on transportation electrification and reaching the state's legislatively required renewable portfolio standard," GOE Director David Bobzien said in a statement Jan. 28. "While electricity generated from renewable resources currently accounts for about 25% of the state's electricity, a share similar to projections that renewables will soon provide about one-fourth of U.S. electricity overall, we continue to collaborate with the Public Utilities Commission of Nevada, electricity providers, the renewable energy industry and conservation organizations to ensure Nevada reaches our target of 50% clean energy by 2030."

The state's RPS, enacted in 1997 and last modified in 2019, requires an increase in renewable energy, starting with 22% in 2020 and increasing to 50% by 2030. The increase in renewables will reduce GHG emissions and help the state reach its goal of 100% carbon-free power by 2050, while states like Rhode Island have a 100% by 2030 plan, highlighting varying timelines.

Renewable additions
The state added 1.332 GW of renewable capacity in 2021 as part of the Renewable Energy Tax Abatement program, at a time when U.S. renewable energy hit a record 28% in April, for a total renewable capacity of 6.117 GW, according to the report.

The RETA program awards partial sales and use tax and partial property-tax abatements to eligible renewable energy facilities, which increase Nevada's tax revenue and create jobs in a growing industry. Eligible projects must employ at least 50% Nevada workers, pay 175% of Nevada's average wage during construction, and offer health care benefits to workers and their dependents.

Since its adoption in 2010, the GOE has approved 60 projects, including large-scale solar PV, solar thermal, biomass, geothermal and wind projects throughout the state, according to the report. Projects granted abatements in 2021 include:

  • 100-MW Citadel Solar Project
  • 150-MW Dry Lake Solar + Storage Project
  • 714-MW Gemini Solar Project
  • 55-MW North Valley Power Geothermal Project
  • 113-MW Boulder Flats Solar Project
  • 200-MW Arrow Canyon Solar Project

"Nevada does not produce fossil fuels of any significant amount, and gasoline, jet fuel and natural gas for electricity or direct use must be imported," according to the report. "Transitioning to domestically produced renewable resources and electrified transportation can provide cost savings to Nevada residents and businesses, as seen in Idaho's largely renewable mix today, while reducing GHG emissions. About 86% of the fuel for energy that Nevada consumes comes from outside the state."

Phasing out coal plants
Currently, more than two-thirds of the state's electricity is produced by natural gas-fired power plants, with renewables covering most of the remaining generation, according to the report. Nevada continues to phase out its remaining coal power plants, as renewables surpassed coal nationwide in 2022, which provide less than 10% of produced electricity.

"Nevada has seen a significant increase in capturing its abundant renewable energy resources such as solar and geothermal," according to the report. "Renewable energy production continues to grow, powering Nevada homes and business and serves to diversify the state's economy by exporting solar and geothermal to neighboring states, as California neared 100% renewable electricity for the first time. Nevada has more than tripled its renewable energy production since 2011."

 

Related News

View more

Wind and Solar Energy Surpass Coal in U.S. Electricity Generation

Wind and Solar Surpass Coal in U.S. power generation, as EIA data cites falling LCOE, clean energy incentives, grid upgrades, and battery storage driving renewables growth, lower emissions, jobs, and less fossil fuel reliance.

 

Key Points

An EIA-noted milestone where U.S. renewables outproduce coal, driven by lower LCOE, policy credits, and grid upgrades.

✅ EIA data shows wind and solar exceed coal generation

✅ Falling LCOE boosts project viability across the grid

✅ Policies and storage advances strengthen reliability

 

In a landmark shift for the energy sector, wind and solar power have recently surpassed coal in electricity generation in the United States. This milestone, reported by Warp News, marks a significant turning point in the country’s energy landscape and underscores the growing dominance of renewable energy sources.

A Landmark Achievement

The achievement of wind and solar energy generating more electricity than coal is a landmark moment in the U.S. energy sector. Historically, coal has been a cornerstone of electricity production, providing a substantial portion of the nation's power needs. However, recent data reveals a transformative shift, with renewables surpassing coal for the first time in 130 years, as renewable energy sources, particularly wind and solar, have begun to outpace coal in terms of electricity generation.

The U.S. Energy Information Administration (EIA) reported that in recent months, wind and solar combined produced more electricity than coal, including a record 28% share in April, reflecting a broader trend towards cleaner energy sources. This development is driven by several factors, including advancements in renewable technology, decreasing costs, and a growing commitment to reducing greenhouse gas emissions.

Technological Advancements and Cost Reductions

One of the key drivers behind this shift is the rapid advancement in wind and solar technologies, as wind power surges in the U.S. electricity mix across regions. Improvements in turbine and panel efficiency have significantly increased the amount of electricity that can be generated from these sources. Additionally, technological innovations have led to lower production costs, making wind and solar energy more competitive with traditional fossil fuels.

The cost of solar panels and wind turbines has decreased dramatically over the past decade, making renewable energy projects more economically viable. According to Warp News, the levelized cost of electricity (LCOE) from solar and wind has fallen to levels that are now comparable to or lower than coal-fired power. This trend has been pivotal in accelerating the transition to renewable energy sources.

Policy Support and Investment

Government policies and incentives have also played a crucial role in supporting the growth of wind and solar energy, with wind now the most-used renewable electricity source in the U.S. helping drive deployment. Federal and state-level initiatives, such as tax credits, subsidies, and renewable energy mandates, have encouraged investment in clean energy technologies. These policies have provided the financial and regulatory support necessary for the expansion of renewable energy infrastructure.

The Biden administration’s focus on addressing climate change and promoting clean energy has further bolstered the transition. The Infrastructure Investment and Jobs Act and the Inflation Reduction Act, among other legislative efforts, have allocated significant funding for renewable energy projects, grid modernization, and research into advanced technologies.

Environmental and Economic Implications

The surpassing of coal by wind and solar energy has significant environmental and economic implications, building on the milestone when renewables became the second-most prevalent U.S. electricity source in 2020 and set the stage for further gains. Environmentally, it represents a major step forward in reducing carbon emissions and mitigating climate change. Coal-fired power plants are among the largest sources of greenhouse gases, and transitioning to cleaner energy sources is essential for meeting climate targets and improving air quality.

Economically, the shift towards wind and solar energy is creating new opportunities and industries. The growth of the renewable energy sector is generating jobs in manufacturing, installation, and maintenance. Additionally, the decreased reliance on imported fossil fuels enhances energy security and stabilizes energy prices.

Challenges and Future Outlook

Despite the progress, there are still challenges to address. The intermittency of wind and solar power requires advancements in energy storage and grid management to ensure a reliable electricity supply. Investments in battery storage technologies and smart grid infrastructure are crucial for overcoming these challenges and integrating higher shares of renewable energy into the grid.

Looking ahead, the trend towards renewable energy is expected to continue, with renewables projected to soon provide about one-fourth of U.S. electricity as deployment accelerates, driven by ongoing technological advancements, supportive policies, and a growing commitment to sustainability. As wind and solar power become increasingly cost-competitive and efficient, their role in the U.S. energy mix will likely expand, further displacing coal and other fossil fuels.

Conclusion

The surpassing of coal by wind and solar energy in U.S. electricity generation is a significant milestone in the transition to a cleaner, more sustainable energy future. This achievement highlights the growing importance of renewable energy sources and the success of technological advancements and supportive policies in driving this transition. As the U.S. continues to invest in and develop renewable energy infrastructure, the move away from coal represents a crucial step towards achieving environmental goals and fostering economic growth in the clean energy sector.

 

Related News

View more

BNEF Report: Wind and Solar Will Provide 50% of Electricity in 2050

BNEF 2019 New Energy Outlook projects surging renewable energy demand, aggressive decarbonization, wind and solar cost declines, battery storage growth, coal phase-out, and power market reform to meet Paris Agreement targets through 2050.

 

Key Points

Bloomberg's NEO 2019 forecasts power demand, renewables growth, and decarbonization pathways through 2050.

✅ Predicts wind/solar to ~50% of global electricity by 2050

✅ Foresees coal decline; Asia transitions slower than Europe

✅ Calls for power market reform and battery integration

 

In a report that examines the ways in which renewable energy demand is expected to increase, Bloomberg New Energy Finance (BNEF) finds that “aggressive decarbonization” will be required beyond 2030 to meet the temperature goals of the Paris Agreement on climate change.

Focusing on electricity, BNEF’s 2019 New Energy Outlook (NEO) predicts a 62% increase in global power demand, leading to global generating capacity tripling between now and 2050, when wind and solar are expected to make up almost 50% of world electricity, as wind and solar gains indicate, due to decreasing costs.

The report concludes that coal will collapse everywhere except Asia, and, by 2032, there will be more wind and solar electricity than coal-fired electricity. It forecasts that coal’s role in the global power mix will decrease from 37% today, as renewables surpass 30% globally, to 12% by 2050 with the virtual elimination of oil as a power-generating source.

Highlighting regional differences, the report finds that:

Western European economies are already on a strong decarbonization path due to carbon pricing and strong policy support, with offshore wind costs dropping bolstering progress;

by 2040, renewables will comprise 90% of the electricity mix in Europe, with wind and solar accounting for 80%;

the US, with low-priced natural gas, and China, with its coal-fired plants, will transition more slowly even as 30% from wind and solar becomes feasible; and

China’s power sector emissions will peak in 2026 and then fall by more than half over the next 20 years, as solar PV growth accelerates, with wind and solar increasing from 8% to 48% of total electricity generation by 2050.

Power markets must be reformed to ensure wind, solar and batteries are properly remunerated for their contributions to the grid.

The 2019 report finds that wind and solar now represent the cheapest option for adding new power-generating capacity in much of the world, amid record-setting momentum, which is expected to attract USD 13.3 trillion in new investment. While solar, wind, batteries and other renewables are expected to attract USD 10 trillion in investment by 2050, the report warns that curbing emissions will require other technologies as well.

Speaking about the report, Matthias Kimmel, NEO 2019 lead analyst, said solar photovoltaic modules, wind turbines and lithium-ion batteries are set to continue on aggressive cost reduction curves of 28%, 14% and 18%, respectively, for every doubling in global installed capacity. He explained that by 2030, energy generated or stored and dispatched by these technologies will undercut electricity generated by existing coal and gas plants.

To achieve this level of transition and decarbonization, the report stresses, power markets must be reformed to ensure wind, solar and batteries are “properly remunerated for their contributions to the grid.”

Additionally, the 2019 NEO includes a number of updates such as:

  • new scenarios on global warming of 2°C above preindustrial levels, electrified heat and road transport, and an updated coal phase-out scenario;
  • new sections on coal and gas power technology, the future grid, energy access, and costs related to decarbonization technology such as carbon capture and storage (CCS), biogas, hydrogen fuel cells, nuclear and solar thermal;
  • sub-national results for China;
  • the addition of commercial electric vehicles;
  • an expanded air-conditioning analysis; and
  • modeling of Brazil, Mexico, Chile, Turkey and Southeast Asia in greater detail.

Every year, the NEO compares the costs of competing energy technologies, informing projections like US renewables at one-fourth in the near term. The 2019 report brought together 65 market and technology experts from 12 countries to provide their views on how the market might evolve.

 

Related News

View more

Solar PV and wind power in the US continue to grow amid favourable government plans

US Renewable Power Outlook 2030 projects surging capacity, solar PV and wind growth, grid modernization, and favorable tax credits, detailing market trends, CAGR, transmission expansion, and policy drivers shaping clean energy generation and consumption.

 

Key Points

A forecast of US power capacity, generation, and consumption, highlighting solar, wind, tax credits, and grid modernization.

✅ Targets 48.4% renewable capacity share by 2030

✅ Strong growth in solar PV and onshore wind installations

✅ Investment and tax credits drive grid and transmission upgrades

 

GlobalData’s latest report, ‘United States Power Market Outlook to 2030, Update 2021 – Market Trends, Regulations, and Competitive Landscape’ discusses the power market structure of the United States and provides historical and forecast numbers for capacity, generation and consumption up to 2030. Detailed analysis of the country’s power market regulatory structure, competitive landscape and a list of major power plants are provided. The report also gives a snapshot of the power sector in the country on broad parameters of macroeconomics, supply security, generation infrastructure, transmission and distribution infrastructure, about a quarter of U.S. electricity from renewables in recent years, electricity import and export scenario, degree of competition, regulatory scenario, and future potential. An analysis of the deals in the country’s power sector is also included in the report.

Renewable power held a 19% share of the US’s total power capacity in 2020, and in that year renewables became the second-most prevalent source in the U.S. electricity mix by generation; this share is expected to increase significantly to 48.4% by 2030. Favourable policies introduced by the US Government will continue to drive the country’s renewable sector, particularly solar photovoltaics (PV) and wind power, with wind now the most-used renewable source in the U.S. generation mix. Installed renewable capacity* increased from 16.5GW in 2000 to 239.2GW in 2020, growing at a compound annual growth rate (CAGR) of 14.3%. By 2030, the cumulative renewable capacity is expected to rise to 884.6GW, growing at a CAGR of 14% from 2020 to 2030. Despite increase in prices of renewable equipment, such as solar modules, in 2021, the US renewable sector will show strong growth during the 2021 to 2030 period as this increase in equipment prices are short term due to supply chain disruptions caused by the Covid-19 pandemic.

The expansion of renewable power capacity during the 2000 to 2020 period has been possible due to the introduction of federal schemes, such as Production Tax Credits, Investment Tax Credits and Manufacturing Tax Credits. These have massively aided renewable installations by bringing down the cost of renewable power generation and making it at par with power generated from conventional sources. Over the last few years, the cost of solar PV and wind power installations has declined sharply, and by 2023 wind, solar, and batteries made up most of the utility-scale pipeline across the US, highlighting investor confidence. Since 2010, the cost of utility-scale solar PV projects decreased by around 82% while onshore wind installations decreased by around 39%. This has supported the rapid expansion of the renewable market. However, the price of solar equipment has risen due to an increase in raw material prices and supply shortages. This may slightly delay the financing of some solar projects that are already in the pipeline.

The US will continue to add significant renewable capacity additions during the forecast period as industry outlooks point to record solar and storage installations over the coming years, to meet its target of reaching 80% clean energy by 2030. In November 2021, President Biden signed a $1tr Infrastructure Bill, within which $73bn is designated to renewables. This includes not just renewable capacity building, but also strengthening the country’s power grid and laying new high voltage transmission lines, both of which will be key to driving solar and wind power capacity additions as wind power surges in the U.S. electricity mix nationwide.

The US was one of the worst hit countries in the world due to the Covid-19 pandemic in 2020. With respect to the power sector, the electricity consumption in the country declined by 2.5% in 2020 as compared to 2019, even as renewable electricity surpassed coal in 2022 in the generation mix, highlighting continued structural change. Power plants that were under construction faced delays due to unavailability of components due to supply chain disruptions and unavailability of labour due to travel restrictions.

According to the US Energy Information Administration, 61 power projects, having a total capacity of 2.4GWm which were under construction during March and April 2020 were delayed because of the Covid-19 pandemic. Among renewable power technologies, solar PV and wind power projects were the most badly affected due to the pandemic.

In March and April 2020, 53 solar PV projects, having a total capacity of 1.3GW, and wind power projects, having a total capacity of 1.2GW, were delayed due to the Covid-19 pandemic. Moreover, several states suspended renewable energy auctions due to the pandemic.

For instance, New York State Energy Research and Development Authority (NYSERDA) had issued a new offshore wind solicitation for 1GW and up to 2.5GW in April 2020, but this was suspended due to the Covid-19 pandemic. In July 2020, the authority relaunched the tender for 2.5GW of offshore wind capacity, with a submission deadline in October 2020.

To ease the financial burden on consumers during the pandemic, more than 1,000 utilities in the country announced disconnection moratoria and implemented flexible payment plans. Duke Energy, American Electric Power, Dominion Power and Southern California Edison were among the major utilities that voluntarily suspended disconnections.

 

Related News

View more

Is tidal energy the surge remote coastal communities need?

BC Tidal Energy Micro-Grids harness predictable tidal currents to replace diesel in remote Indigenous coastal communities, integrating marine renewables, storage, and demand management for resilient off-grid power along Vancouver Island and Haida Gwaii.

 

Key Points

Community-run tidal turbines and storage deliver reliable, diesel-free electricity to remote B.C. coastal communities.

✅ Predictable power from tidal currents reduces diesel dependence

✅ Integrates storage, demand management, and microgrid controls

✅ Local jobs via marine supply chains and community ownership

 

Many remote West Coast communities are reliant on diesel for electricity generation, which poses a number of negative economic and environmental effects.

But some sites along B.C.’s extensive coastline are ideal for tidal energy micro-grids that may well be the answer for off-grid communities to generate clean power, suggested experts at a COAST (Centre for Ocean Applied Sustainable Technologies) virtual event Wednesday.

There are 40 isolated coastal communities, many Indigenous communities, and 32 of them are primarily reliant on diesel for electricity generation, said Ben Whitby, program manager at PRIMED, a marine renewable energy research lab at the University of Victoria (UVic).

Besides being a costly and unreliable source of energy, there are environmental and community health considerations associated with shipping diesel to remote communities and running generators, Whitby said.

“It's not purely an economic question,” he said.

“You've got the emissions associated with diesel generation. There's also the risks of transporting diesel … and sometimes in a lot of remote communities on Vancouver Island, when deliveries of diesel don't come through, they end up with no power for three or four days at a time.”

The Heiltsuk First Nation, which suffered a 110,000-litre diesel spill in its territorial waters in 2016, is an unfortunate case study for the potential environmental, social, and cultural risks remote coastal communities face from the transport of fossil fuels along the rough shoreline.

A U.S. barge hauling fuel for coastal communities in Alaska ran aground in Gale Pass, fouling a sacred and primary Heiltsuk food-harvesting area.

There are a number of potential tidal energy sites near off-grid communities along the mainland, on both sides of Vancouver Island, and in the Haida Gwaii region, Whitby said.

Tidal energy exploits the natural ebb and flow of the coast’s tidal water using technologies like underwater kite turbines to capture currents, and is a highly predictable source of renewable energy, he said.

Micro-grids are self-reliant energy systems drawing on renewables from ocean, wave power resources, wind, solar, small hydro, and geothermal sources.

The community, rather than a public utility like BC Hydro, is responsible for demand management, storage, and generation with the power systems running independently or alongside backup fuel generators — offering the operators a measure of energy sovereignty.

Depending on proximity, cost, and renewable solutions, tidal energy isn’t necessarily the solution for every community, Whitby noted, adding that in comparison to hydro, tidal energy is still more expensive.

However, the best candidates for tidal energy are small, off-grid communities largely dependent on costly fossil fuels, Whitby said.

“That's really why the focus in B.C. is at a smaller scale,” he said.

“The time it would take (these communities) to recoup any capital investment is a lot shorter.

“And the cost is actually on a par because they're already paying a significant amount of money for that diesel-generated power.”

Lisa Kalynchuk, vice-president of research and innovation at UVic, said she was excited by the possibilities associated with tidal power, not only in B.C., but for all of Canada’s coasts.

“Canada has approximately 40,000 megawatts available on our three coastlines,” Kalynchuk said.

“Of course, not all this power can be realized, but it does exist, so that leads us to the hard part — tapping into this available energy and delivering it to those remote communities that need it.”

Challenges to establishing tidal power include the added cost and complexity of construction in remote communities, the storage of intermittent power for later use, the economic model, though B.C.’s streamlined regulatory process may ease approvals, the costs associated with tidal power installations, and financing for small communities, she said.

But smaller tidal energy projects can potentially set a track record for more nascent marine renewables, as groups like Marine Renewables Canada pivot to offshore wind development, at a lower cost and without facing the same social or regulatory resistance a large-scale project might face.

A successful tidal energy demo project was set up using a MAVI tidal turbine in Blind Channel to power a private resort on West Thurlow Island, part of the outer Discovery Islands chain wedged between Vancouver Island and the mainland, Whitby said.

The channel’s strong tidal currents, which routinely reach six knots and are close to the marina, proved a good site to test the small-scale turbine and associated micro-grid system that could be replicated to power remote communities, he said.

The mooring system, cable, and turbine were installed fairly rapidly and ran through the summer of 2017. The system is no longer active as provincial and federal funding for the project came to an end.

“But as a proof of concept, we think it was very successful,” Whitby said, adding micro-grid tidal power is still in the early stages of development.

Ideally, the project will be revived with new funding, so it can continue to act as a test site for marine renewable energy and to showcase the system to remote coastal communities that might want to consider tidal power, he said.

In addition to harnessing a local, renewable energy source and increasing energy independence, tidal energy micro-grids can fuel employment and new business opportunities, said Whitby.

The Blind Channel project was installed using the local supply chain out of nearby Campbell River, he said.

“Most of the vessels and support came from that area, so it was all really locally sourced.”

Funding from senior levels of government would likely need to be provided to set up a permanent tidal energy demonstration site, with recent tidal energy investments in Nova Scotia offering a model, or to help a community do case studies and finance a project, Whitby said.

Both the federal and provincial governments have established funding streams to transition remote communities away from relying on diesel.

But remote community projects funded federally or provincially to date have focused on more established renewables, such as hydro, solar, biomass, or wind.

The goal of B.C.’s Remote Community Energy Strategy, part of the CleanBC plan and aligned with zero-emissions electricity by 2035 targets across Canada, is to reduce diesel use for electricity 80 per cent by 2030 by targeting 22 of the largest diesel locations in the province, many of which fall along the coast.

The province has announced a number of significant investments to shift Indigenous coastal communities away from diesel-generated electricity, but they predominantly involve solar or hydro projects.

A situation that’s not likely to change, as the funding application guide in 2020 deemed tidal projects as ineligible for cash.

Yet, the potential for establishing tidal energy micro-grids in B.C. is good, Kalynchuk said, noting UVic is a hub for significant research expertise and several local companies, including ocean and river power innovators working in the region, are employing and developing related service technologies to install and maintain the systems.

“It also addresses our growing need to find alternative sources of energy in the face of the current climate crisis,” she said.

“The path forward is complex and layered, but one essential component in combating climate change is a move away from fossil fuels to other sources of energy that are renewable and environmentally friendly.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified