Alternative Energy Cost - Green Energy Premiums


Alternative Energy Cost

Alternative energy cost analyzes LCOE, CAPEX, OPEX, and grid parity across solar PV, wind turbines, and battery storage, considering efficiency, load factors, and grid integration to optimize system design and lifecycle economics.

 

What Is Alternative Energy Cost?

Alternative energy cost is LCOE-based pricing for solar, wind, and storage, reflecting CAPEX, OPEX, and grid impacts.

✅ Uses LCOE comparing PV, wind, and storage across duty cycles.

✅ Includes CAPEX, OPEX, maintenance, and financing assumptions.

✅ Evaluates grid integration, curtailment, and reliability metrics.

 

Alternative energy cost is determined by how utilities typically set their rates and account for the cost differential between alternative energy and conventional energy sources. Basically, cost recovery of a utility’s investments and operating expenses determine electricity rates. For background on definitions and resource types, see this overview of what is renewable energy to align terminology across programs.

These alternative energy costs include:

Understanding the breadth of technologies captured under renewable alternative energy helps clarify why cost components vary by resource.

  • owning generation
  • owning transmission and distribution assets
  • a return on owned assets
  • purchased power contracts
  • recovery of various operating expenses, including fuel costs, maintenance, and administration.

    Costs for generating, transmitting, and distributing electricity are in a utility’s rate. Because utility costs are bundled together, all generation resources are combined to create a utility “system mix” of generation. In other words, utilities do not normally distinguish between individual generation sources for their customers. Therefore, an equivalent mix of the utility’s generation resources and purchased power is provided to each customer. In practice, product structures for alternative energy power are designed to work within this system mix paradigm.

    For alternative energy cost determination, utilities and regulators are interested in separating the specific alternative energy costs related to securing green power. In this way, green power products are unique, differentiated electricity products. Since customer participation is voluntary, only those customers that choose to sign up for these programs pay the incremental costs. Alternative energy power program participants typically pay the higher alternative energy cost in the form of a premium on their monthly bill. In some jurisdictions, available alternative energy incentives help offset premiums for early adopters.

    Four Main Components In Determinating Alternative Energy Cost

  • 1. The cost of the alternative energy source. This includes the total cost of electricity and/or environmental attributes from all alternative energy resources used in the product, whether from wind, solar, geothermal, biomass, or another source, and whether owned by the utility or acquired through a power purchase contract. For example, cost trajectories for alternative energy solar power have declined sharply in recent years due to technology improvements.
  • 2. Program implementation costs. Any additional alternative energy costs attributed to implementing the alternative energy program, including administration and marketing. Utilities sometimes leverage alternative energy grants to defray outreach and administration expenses.
  • 3. Ancillary services costs. The additional costs incurred to integrate variable output resources, particularly wind, into a utility’s system.
  • 4. Displaced utility generation (and capacity) resource costs. The renewable resource displaces electricity that the utility would otherwise have generated or purchased.

     

    In conclusion, alternative energy costs can be represented as: Alternative energy premium = (1) + (2) + (3) – (4)

    Alternative Energy Cost Determination

    Alternative energy costs are captured through the specific power purchase agreements for alternative energy (in this case, the term alternative energy is interchanged with renewable energy) or RECs (renewable energy contracts), or through the regulatory approval process for utility-owned renewable projects. As long as these are tracked separately from the rest of the generation mix, the appropriate alternative generation costs can be determined. However, generation costs are hard to determine because it's uncertain how many customers plan to enroll in the program and how long they plan to participate. In electric markets that have not gone through restructuring from the electric industry, contracts for generation are typically long-term (10 years or more), and investment in owned facilities is generally considered to be for the life of the facility (20 years or more). For readers new to key terms and market structures, this primer on renewable energy facts provides helpful context for interpreting contract and REC pricing.

    The long-term nature of the resource commitment severely contrasts with the program subscription commitment required of most customers. Most alternative energy programs do not require that customers enroll for a specific term, much less sign up for 10 or 20 years to match the facility or contract life of the renewable power supply source. Therefore, while the annual cost of renewable energy is straightforward to determine, the utility faces some level of risk that will likely be reflected in the product pricing.

    However, if the utility is also subject to a renewable portfolio standard and is therefore required to procure a certain fraction of renewable energy for its overall load, there may be less risk, because the utility has greater flexibility in managing its overall renewable portfolio between its compliance and voluntary program obligations.

 

Related Articles

Related News

Alternative Energy Projects - Home Energy Systems

Alternative energy projects integrate solar PV, wind turbines, battery storage, and smart grid controls, using power electronics, inverters, and HVDC to optimize grid integration, reliability, and decarbonization in electrical engineering applications.

 

What Are Alternative Energy Projects?

Projects deploying renewables and storage with power electronics to ensure efficient, reliable grid integration.

✅ Solar PV, wind, and storage integrated via power converters

✅ Smart inverters, MPPT, and grid-forming control strategies

✅ HVDC links, microgrids, and protection coordination

 

Alternative energy projects are technologies that use alternative energy sources (wind energy, solar energy, among others) instead of conventional fossil fuels that damage the environment with toxic greenhouse (GHG) emissions. Natural Resources Canada (NRCAN) and the Department of Energy (DOE) are among some of the North American governmental organizations looking for ways to use alternative energy sources. While using the alternative energy source is important, so is educating the public about ways that they can someday use future alternative energy projects. Here are some energy systems the government is working on for your home: For a concise primer on definitions and policy context, see what alternative energy means to better frame the technologies discussed below.

 

Alternative Energy Projects - Home Solar Photovoltaic (PV) Systems

As one of several major categories, the forms of alternative energy place solar alongside wind, geothermal, and hydrogen options for residential planning.

This alternative energy project is a great way to preserve Earth's fossil-fuel resources and an efficient way to reduce air pollution. Another benefit of home PV systems is that it reduces the amount of power bought from local utilities thus making the residence less vulnerable to fluctuating price increases. A drawback to a home PV system are the extremely high installation costs, however, funding could be available from governments as an incentive to invest in alternative power. Unobstructed and clear access to the sun’s rays for most or all of the day is required throughout the year for well-designed PV systems. Location affects performance meaning that the roof of a house must be facing south (best option), east or west. Flat roofs are great options for solar electric systems because the PV modules are flat on the roof facing the sky or mounted on frames on an optimal angle facing south. One option for commercial application includes building structures that can create provide shade (such as window awnings) or covered parking. For homeowners evaluating PV feasibility, a detailed guide to solar power clarifies system sizing, orientation, and incentive considerations.

 

Alternative Energy Projects - Solar Concentrator System

Solar concentrators are alternative energy projects that track and focus the sun's energy; the sun's energy is then converted to hot water and space heat for day-to-day consumption. These alternative energy projects also have thermal storage, so it can distribute the sun's energy during the night or during a cloudy day. In addition to thermal applications, alternative energy power resources explain how concentrators integrate with broader energy management strategies.

 

Alternative Energy Projects - Hydrogen Electrolyzer

Hydrogen could be a valuable energy source in the future, so alternative energy projects are being funded by governments to heat residential homes. One such project, the hybrid hydrogen electrolyzer/high efficiency furnace system works by generating hydrogen from water using electricity. The generated hydrogen is then used to replace the natural gas that is conventionally used in furnaces. These hybrid energy systems can be installed in a variety of houses, including single detached houses. For system comparisons and component basics, an overview of alternative energy systems outlines how electrolyzers interface with storage and heating equipment.

 

Alternative Energy Projects - Geo Power

Geothermal Energy is also being used to provide heat to residential homes. One such alternative energy project, known as the Geo Power System, takes heat from the ground and sends it into the house. This tube-in-tube ground heat exchanger, made from polyethylene and aluminum is inserted vertically into a bore-hole in the ground either in the basement or crawlspace of a house. The alternative energy project is supposed to contribute energy during the winter months and absorb energy during the summer months in the ground. For site assessment and retrofit pathways, these alternative energy solutions highlight best practices for efficient geothermal installations.

 

Alternative Energy Projects - Solid-Oxide Fuel Cells

Fuel-cell combined heat and power (CHP) systems are alternative energy projects that can heat houses and provide hot water while electricity is sent to and from the electricity grid. The continued issues this residential alternative energy project faces include grid connection, thermal storage and proper fuel-cell size. To see how residential CHP fits within the wider clean energy mix, a primer on renewable and alternative energy offers context on adoption trends and grid impacts.

 

Related Articles

View more

Alternative Energy Sources – Clean Electric Power Options

Alternative energy sources encompass solar PV, wind, hydroelectric, and geothermal generation, leveraging power electronics, inverters, HVDC, storage, and smart grid integration to deliver efficient, low-carbon electricity and resilient microgrids and stable operation.

 

What Are Alternative Energy Sources?

Technologies that convert renewables to electricity using power electronics, storage, and advanced grid control.

✅ Includes solar PV, wind turbines, hydroelectric, and geothermal

✅ Uses inverters, MPPT, converters, HVDC, and protection relays

✅ Integrates storage, microgrids, smart grid controls, and V2G

 

Are there other alternative energy sources besides renewables? There are other alternative energy sources that are used instead of conventional energy sources, such as oil and coal, that produce (or hardly produce) greenhouse gas emissions (GHG) that are harmful for the environment. For a broader definition of the term, see this overview at what is alternative energy to understand key concepts.

 

Alternative Energy Sources – Nuclear Energy

Nuclear energy is one of the few alternative energy sources that can generate a lot of electricity from very little fuel, which makes it a very abundant energy source. Nuclear energy is generated when atoms are either split (fission) or merged (fusion) to create energy from the reaction. It’s a clean energy because, unlike coal or oil, nuclear energy doesn’t introduce harmful gases, such as carbon dioxide, into the environment. However, nuclear energy becomes harmful during the production stage. The leftover waste is highly radioactive (unstable continuously decaying elements with high-energy particles or rays that penetrate and damage anything that it touches), which makes it hard to contain. Nuclear waste has to be stored in a secure location until alternative containing options are determined. Nuclear energy is used to generate electricity, launch space ships, and to power weapons. Comparative context across non-fossil options is outlined in forms of alternative energy for additional perspective.

For contrast with resources that naturally replenish, explore renewable energy sources to see how they differ in fuel cycles and emissions profiles.

 

Alternative Energy Sources – Natural Gas

Natural gas is considered a nonrenewable fossil fuel, but it’s considered clean because it doesn’t produce the greenhouse gas, carbon dioxide. Natural gas’s main ingredient is methane, with all other core elements filtered through an extensive filtering process. Advantages of natural gas include its global abundance, low cost and ease of use (natural gas plants can come online very quickly). However, isolating methane is quite a complex process, which makes it a disadvantage. And, even though natural gas doesn’t introduce carbons into the air, it still produces greenhouse gases. Natural gas can also be used to make electricity. Energy industry experts believe that natural gas will have a bigger role in electricity production as future demand for electricity increases. Within the broader mix of alternative energy fuels, natural gas is often positioned as a transitional option.

Grid planners evaluate flexible generation, storage, and demand-side measures among various alternative energy solutions to integrate resources efficiently.

 

Alternative Energy Sources – Hydrogen Fuel

Hydrogen hasn’t become a money-making venture, unlike other alternative energy sources, because the energy return on hydrogen isn’t very high. In other words, more energy is needed during the manufacturing process than the amount of hydrogen that is actually produced. At this point, hydrogen has proven to be an environment-friendly fuel source for vehicles. Hydrogen fuel is used mostly in batteries, by combining oxygen and hydrogen to produce power. The only waste factor is water vapor, which is a lot friendlier than the greenhouse gas, carbon dioxide. Ultimately, advancements in technology are required in hydrogen production in order for this form of alternative energy to become profitable. Renewable electricity from sources such as solar power can drive electrolysis to lower hydrogen's lifecycle emissions.

For a strategic view of how renewables complement low-carbon options, review renewable alternative energy to understand deployment pathways and tradeoffs.

 

 

Related Articles

View more

What is Alternative Energy?

What is alternative energy? In electrical engineering, it denotes renewable power sources—solar PV, wind, hydro, geothermal—and enabling systems like power electronics, inverters, storage, microgrids, and grid integration to decarbonize electricity.

 

What Is Alternative Energy?

Alternative energy uses renewable electrical sources and grid tech to cut emissions and boost efficiency.

✅ Includes solar PV, wind turbines, hydro, geothermal, and bioenergy.

✅ Enabled by power electronics, inverters, converters, and smart grids.

✅ Integrates storage, demand response, and grid stabilization controls.

 

What is Alternative Energy? Alternative energy is power that comes from sources which are not going to run out, do not pollute as much as fossil fuels (oil, coal, natural gas), or do not create leftover materials that are harmful to people and the environment.

The term, "alternative," in a sense, is meant to contrast environment friendly energy against forms of energy that hurt the environment (coal power, natural gas, and oil power). Other names for alternative energy include clean energy, green energy and renewable energy. For readers new to the topic, you can explore concise summaries of technologies in the guide to forms of alternative energy to see how they compare.

 

Alternative Energy Vs. Renewable Energy

Renewable energy and alternative energy are often interchangeable, but they do have different meanings. Renewable energy comes from a replinishable energy source (it can never deplete). Electric energy that is generated from the sun (solar), the wind, the ocean (waves, currents or tides), the earth (geothermal), waste (biomass), landfill gas, or water (hydro power) is considered to be renewable energy. Renewable energy falls under the alternative energy umbrella because renewable fuel sources like wind and solar don't hurt the environment. For a broader overview, the relationship between categories like clean power and storage is outlined in the resource at renewable and alternative energy for further reading.

 

Alternative Energy Sources

 

A comprehensive overview of major options, deployment trends, and resource potential is compiled at alternative energy sources for additional context.

1. Alternative Energy as Solar Power

The sun has been around, shining on the earth with warmth and light for many, many years. This alternative energy source is available at no cost, and will be available to generate energy tomorrow and for millions of years to come, which explains why scientists continue to strive to figure out new ways on how to capture and use energy from the sun. For system basics, component choices, and siting tips, see alternative energy solar power to understand practical applications.

Long ago, it was discovered that leaving objects in the sun not only increased the object's thermal temperature, but the radiating heat also produced energy. Today, this type of alternative solar power, letting the sun heat something up, is called thermal solar energy. This alternative energy source is used to heat water for people's homes by passing cool water through pipes that are exposed to sunlight. As the pipes heat up, the water gets hot.

Another type of solar energy, known as light solar energy or photovoltaic energy, has only been used since the 1950s. This type of solar power comes from changing sunlight into actual electrical current. Very thin photovoltaic cells, which contain layers of different chemicals, absorb light from the sun and change it into electricity. The photovoltaic electricity is then stored in large batteries for later use, or it is actually sent back through the power lines to the electric company, which pays you for making electricity. Photovoltaic energy is growing in popularity every year. New types of photovoltaic cells, called “thin films”, are making solar electrical systems easier to put into homes, and less expensive than they were before.

Did you know: If one minute’s worth of all the sun’s energy that falls on the Earth was captured, it would be enough to provide the world with enough power for an entire year.

 

2. Alternative Energy as Wind Power

Wind energy has been utilized as an energy source for thousands of years. For example, the earliest sailors realized that putting sails on their boats to catch the wind made their boats go faster. More than 100 years ago, many farms used wind power to pump water from underground up to a container where it could be used for their homes or to water their animals. Today, wind power is used to turn large propeller blades that are put on top of towers. As the blades turn, their movement turns a generator, which changes the movement into electricity, which is sent to power stations or stored in batteries. Today, more people are buying small wind towers that make enough electricity to run their homes.

These days, very large windmills (known today as windfarms) are built in large groups. These windfarms are located miles away from where people live, and when the power is generated, the power is sent back to the cities and towns. Because wind patterns vary from location to location, some windfarms won’t work very well. But in windy areas, windfarms provide an efficient amount of electricity. Integrating wind with storage, efficiency, and grid modernization is covered under broader alternative energy solutions that help scale projects.

 

3. Alternative Energy as Water Energy (Hydro Electricity)

Water energy is another type of alternative energy that has been utilized for many years. Have you ever seen a water wheel next to a mill in an old painting or picture? The wheel was turned by the flowing water in a creek. The turning wheel was connected to a large millstone, which was used to crush grain to make flour and cornmeal. Today, electricity is generated using water. Large walls (dams) are built with tunnels to block flowing rivers so that the water can navigate through them, and, as the water goes through these tunnels, propellers turn a motor, which then generates electrical power. The generated power either is stored in batteries or is sent to a power station. Technology has developed enough that a small home can generate its own hydro power.

If a home is next to a creek or stream, a micro hydro system can turn a very small wheel, which then generates electrical power. Activists, scientists and some government officials have voiced their concerns that building large dams interrupt ecosystems, despite the fact that it generates millions of watts of power. However, the micro hydro technology can be used without hurting a small stream or the plants and animals that live there.

 

4. Alternative Energy as Biomass Energy

The farming industry, among other industries, are using corn and other plants as a biomass alternative energy source that can be put into the gas tanks of cars and trucks that can replace earth-damaging fossil fuels. Further feedstock pathways, conversion methods, and project case studies are outlined under biomass energy to illustrate real-world use.

The oldest type of biofuel is called biodiesel, which was first made out of plants and vegetables. Today, biodiesel is made out of old cooking oil and other types of plant materials that are not needed for other things. When it’s burning biodiesel made out of old cooking oil, the exhaust from a car’s tail pipe smells like french fries.

Ethanol, a second biofuel, is made by distilling plant materials (eg. corn) into grain alcohol, which is then mixed with small amounts of fossil fuel. When finished, this form of alternative energy can be used in cars, trucks and vans. While the farming industry is utilizing this readily available alternative energy resource, studies show that unless farms stop using petroleum-based chemicals for fertilizer and for killing pests, growing crops to make ethanol fuels may be more damaging to the environment than other forms of alternative energy. Comparisons with hydrogen, renewable diesel, and other alternative energy fuels highlight trade-offs in cost and lifecycle impacts.

 

Related Articles

View more

Alternative Energy Cost - Green Energy Premiums

Alternative energy cost analyzes LCOE, CAPEX, OPEX, and grid parity across solar PV, wind turbines, and battery storage, considering efficiency, load factors, and grid integration to optimize system design and lifecycle economics.

 

What Is Alternative Energy Cost?

Alternative energy cost is LCOE-based pricing for solar, wind, and storage, reflecting CAPEX, OPEX, and grid impacts.

✅ Uses LCOE comparing PV, wind, and storage across duty cycles.

✅ Includes CAPEX, OPEX, maintenance, and financing assumptions.

✅ Evaluates grid integration, curtailment, and reliability metrics.

 

Alternative energy cost is determined by how utilities typically set their rates and account for the cost differential between alternative energy and conventional energy sources. Basically, cost recovery of a utility’s investments and operating expenses determine electricity rates. For background on definitions and resource types, see this overview of what is renewable energy to align terminology across programs.

These alternative energy costs include:

Understanding the breadth of technologies captured under renewable alternative energy helps clarify why cost components vary by resource.

  • owning generation
  • owning transmission and distribution assets
  • a return on owned assets
  • purchased power contracts
  • recovery of various operating expenses, including fuel costs, maintenance, and administration.

    Costs for generating, transmitting, and distributing electricity are in a utility’s rate. Because utility costs are bundled together, all generation resources are combined to create a utility “system mix” of generation. In other words, utilities do not normally distinguish between individual generation sources for their customers. Therefore, an equivalent mix of the utility’s generation resources and purchased power is provided to each customer. In practice, product structures for alternative energy power are designed to work within this system mix paradigm.

    For alternative energy cost determination, utilities and regulators are interested in separating the specific alternative energy costs related to securing green power. In this way, green power products are unique, differentiated electricity products. Since customer participation is voluntary, only those customers that choose to sign up for these programs pay the incremental costs. Alternative energy power program participants typically pay the higher alternative energy cost in the form of a premium on their monthly bill. In some jurisdictions, available alternative energy incentives help offset premiums for early adopters.

    Four Main Components In Determinating Alternative Energy Cost

  • 1. The cost of the alternative energy source. This includes the total cost of electricity and/or environmental attributes from all alternative energy resources used in the product, whether from wind, solar, geothermal, biomass, or another source, and whether owned by the utility or acquired through a power purchase contract. For example, cost trajectories for alternative energy solar power have declined sharply in recent years due to technology improvements.
  • 2. Program implementation costs. Any additional alternative energy costs attributed to implementing the alternative energy program, including administration and marketing. Utilities sometimes leverage alternative energy grants to defray outreach and administration expenses.
  • 3. Ancillary services costs. The additional costs incurred to integrate variable output resources, particularly wind, into a utility’s system.
  • 4. Displaced utility generation (and capacity) resource costs. The renewable resource displaces electricity that the utility would otherwise have generated or purchased.

     

    In conclusion, alternative energy costs can be represented as: Alternative energy premium = (1) + (2) + (3) – (4)

    Alternative Energy Cost Determination

    Alternative energy costs are captured through the specific power purchase agreements for alternative energy (in this case, the term alternative energy is interchanged with renewable energy) or RECs (renewable energy contracts), or through the regulatory approval process for utility-owned renewable projects. As long as these are tracked separately from the rest of the generation mix, the appropriate alternative generation costs can be determined. However, generation costs are hard to determine because it's uncertain how many customers plan to enroll in the program and how long they plan to participate. In electric markets that have not gone through restructuring from the electric industry, contracts for generation are typically long-term (10 years or more), and investment in owned facilities is generally considered to be for the life of the facility (20 years or more). For readers new to key terms and market structures, this primer on renewable energy facts provides helpful context for interpreting contract and REC pricing.

    The long-term nature of the resource commitment severely contrasts with the program subscription commitment required of most customers. Most alternative energy programs do not require that customers enroll for a specific term, much less sign up for 10 or 20 years to match the facility or contract life of the renewable power supply source. Therefore, while the annual cost of renewable energy is straightforward to determine, the utility faces some level of risk that will likely be reflected in the product pricing.

    However, if the utility is also subject to a renewable portfolio standard and is therefore required to procure a certain fraction of renewable energy for its overall load, there may be less risk, because the utility has greater flexibility in managing its overall renewable portfolio between its compliance and voluntary program obligations.

 

Related Articles

View more

Forms Of Alternative Energy Explored

Forms of alternative energy span solar, wind, hydro, geothermal, and biomass, engineered with power electronics, inverters, and grid-tied systems for efficient generation, storage, and distribution across smart grids and microgrids.

 

What Are Forms of Alternative Energy?

They include solar PV, wind, hydro, geothermal, and biomass, converted via generators, inverters, and grid storage.

✅ Solar PV: MPPT inverters convert DC modules to AC for the grid.

✅ Wind: variable-speed turbines use converters to regulate frequency and voltage.

✅ Hydro, geothermal, biomass: dispatchable sources aid grid stability and storage.

 

Forms of Alternative Energy - Solar Energy

The sun is one gigantic star that constantly radiates an enormous amount of energy (solar energy). How much is "enormous?" Well, let's just say that the sun sends out more energy in one second than Earth has used since the beginning of time. Like most stars, the sun is a huge ball of gas made up mostly of helium gas and hydrogen. As a primer on solar technologies, the resource at solar power fundamentals offers context for how these systems scale.

The Earth, being the third planet from the sun, only receives a small portion of the sun's solar energy, however, that amount is more than enough to supply all our electric power needs. For comparisons across resources, see renewable energy sources to understand how solar's potential relates to wind, hydro, and more.

Two ways to make electricity from solar power are photovoltaic and solar thermal systems. Photovoltaic electric generation is produced using photovoltaic (PV) cells: the sunlight hits the solar cell and converts sunlight into electricity instantly and silently--without the hassle of wearing out any mechanical parts. These solar systems are mainly used to generate power in areas that are a long distance from electric power lines. For configurations and component choices, alternative energy systems guidance explains typical PV setups used off-grid and in hybrid applications.

Solar thermal systems (or concentrated solar power) use a solar collector with a mirrored surface to focus sunlight onto a receiver that heats a liquid into steam and then turned into electric power. The process is in the same vain as coal plants: coal is burned into steam, which is then turned into electricity. Deployment considerations are explored in alternative energy solutions that compare CSP with other utility-scale options.

Solar power is expected to be a global supplier of electricity between 2015 and 2020. Solar power's benefits are phenomenal: it's free, its supply can never deplete, it doesn't pollute, and it doesn't damage the environment. These benefits underpin broader renewable alternative energy strategies that accelerate decarbonization across sectors.

 

Forms Of Alternative Energy - Wind Energy

The sun’s heat reaching the planet earth creates winds, which makes wind a form of solar energy. How does it work? Well, as the sun's rays heat the Earth’s air is heated by the sun, it expands and regions of high and low pressure are formed, these high and low movements create wind energy. For context on definitions and categories, what is alternative energy clarifies how wind fits within the broader mix.

Harnessing wind energy is done using contraptions such as wind turbines. Large wind turbines are built close together to operate on wind farms to produce large amounts of power for electrical utilities. Smaller small wind turbines can be used by homeowners and remote villages who want to generate their own electricity.

Generated Wind power, like other forms of alternative energy, can also be used for charging batteries, pumping water, or grinding grain. All of this can be done without causing greenhouse gas emissions which damage the environment. This form of alternative energy also uses minimal land area, but intermittent wind patterns make it difficult for this form of alternative energy to be a constant and reliable energy source.

 

Forms of Alternative Energy - Biomass Energy

Biomass energy is a way to turn your food waste into electricity. Biomass is any kind of organic matter (anything that was once alive) that can be used as an energy source. Besides food waste, crops, wood, animal and yard waste are examples of biomass. People have used this form of alternative energy for thousands of years - longer than any other energy source.

Biomass feedstock (farm animal wastes, crops and residues, etc.) is the main ingredient of biomass energy. The heat in this form of alternative energy is used to generate power, fuels and other energy options. The biomass fuels (or biofuels), which comes from biomass feedstock, can be used in a solid, liquid, or gas state. Disposed food, paper, sewage, lawn clippings and sawdust, are some available biomass energy resources used for power production.

 

Forms of Alternative Energy - Geothermal Energy

Geothermal is a Greek word: geo (earth) and therme (heat). This form of alternative energy comes from the heat, which is from the earth's core (almost 4,000 miles beneath the earth’s surface). Earth's double-layered core is made from melted rock (hot magma), which surrounds a solid iron center. The heat comes from the slow decay of radioactive particles produce high temperatures that constantly rise to the earth's surface. Geothermal electricity is created by pumping a fluid (oil or water) into the Earth, allowing it to evaporate and using the hot gases vented from the earth's crust to run turbines linked to electrical generators. Further technical detail is summarized in geothermal energy basics for readers interested in plant designs and resource types.

In some areas on the planet (such as Iceland), there is very hot water or steam that is close enough to the surface where this alternative energy resource can be reached economically with a drill. When obtained, the steam, or hot water flashed to steam, turns a turbine, which then, turns a generator that produces electricity. Many experts believe that geothermal energy only be a minor contributor to the global energy supply because of the scarcity of geothermal sites in the world.

 

Related Articles

View more

Alternative Energy Solutions - Fresh Air Choices

Alternative energy solutions leverage renewables like solar PV and wind turbines, with battery storage, smart grids, power electronics, and advanced inverters enabling grid integration, microgrids, load balancing, and high-efficiency electrical systems.

 

What Are Alternative Energy Solutions?

Systems using renewables, storage, and power electronics to provide efficient, reliable, grid-integrated electrical power.

✅ Power electronics: MPPT, inverters, converters for grid-tied PV and wind.

✅ Energy storage and EMS for frequency regulation and peak shaving.

✅ Smart grids, microgrids, protection, SCADA, and IEC 61850.

 

Why are alternative energy solutions so important? Fossil fuels, such as coal and oil, continue to contribute to the ever-growing pollution in the environment by producing carbon dioxide and other harmful chemicals, which causes further damage to Earth's atmosphere by increasing the hole in the layer of the upper atmosphere (the ozone layer). The ozone layer, which protects Earth's inhabitants from the sun's radiation, prevents the snow in the Northern and Southern atmospheres from melting. These increased atmospheric temperatures, known as global warming, is a concern for governments all over the globe because flooding could occur on such catastrophic levels (much of North America, Europe and other parts of the world would be under water and countless lives would be lost). So, many of the world's nations are rallying together to reduce their fuel consumption and dependency on fossil fuels and find other alternative energy solutions. For readers new to the topic, see this overview of what constitutes alternative energy to understand how these technologies differ from conventional fuels.

According to the U.S. Department of Energy, fossil fuels currently give the U.S. more than 85 per cent of all consumed electric power and almost all of consumed transportation fuels. DOE points out that the likelihood that America's reliance on fossil fuels will continue to increase over the next two decades as the economy expands--even with aggressive development and deployment of new alternative energy technologies. In parallel, DOE and industry roadmaps highlight the role of renewable alternative energy in moderating long-term demand growth.

What does this mean? Energy is essential to economic growth. Without adequate energy supplies, a world population of six to ten billion people would not be possible. Every human life and every sector of the economy requires energy and even the most basic needs of humanity (such as food and water) could not be supplied without adequate energy supplies. Diverse renewable energy sources can help meet these fundamental needs while reducing environmental and supply risks.

For any alternative energy solution to be successful in today's marketplace, it must provide more energy than other large energy sources (fossil fuels and natural gas), which presents a formidable challenge. Why? Most of today's energy sources are already considered difficult to satisfy current demand. The difficulty doesn't exist in the resource being too small, but the challenge is to maintain a high rate of growth necessary to keep up with demand. How is this to be done? Here are some alternative energy solutions. For a broader primer on technology categories, explore the principal forms of alternative energy described by industry educators.

 

Alternative Energy Solutions - Hydro Power

Hydroelectricity is a well-established and cost-effective form of alternative energy. This alternative energy solution has helped support energy-intensive industries like rely on cheaper forms of electricity. Hydro Electricity also plays an important role in energy storage, but, hydro energy's potential won't be enough to power the global economy on hydroelectricity. However, hydro-electric energy projects will continue to be deployed wherever the resource is readily available. Readers can compare hydro with other options by reviewing key alternative energy sources and their typical applications.

 

Alternative Energy Solutions - Solar Power

Solar energy hasn't gone large scale mainly due to cost and distribution issues, but that hasn't stopped solar energy companies from making investments. In fact, recent expansions have resulted in 265 megawatts of energy and more than two billion dollars of investment in the U.S. economy. When cost isn't such a major factor, it's expected that solar energy will play a larger role in the world economy. Solar energy, particularly in thee electricity sector, will have to become much more cost efficient before it can compete with other energy resources. While there is no obvious floor to the price of solar energy, progress in the last few decades has been slow. Another factor affecting cost is electricity storage, which, at present, is not currently available to meet immediate high energy demands. But, if cost becomes roughly three times cheaper than other electricity sources that satisfy immediate demand, then solar energy stands a chance of becoming a major energy source. It's expected that prices will decrease dramatically with emerging solar technologies, such as photovoltaic cells. It remains be seen, however, if these reductions can give solar energy the competitive edge in the world economy. For technology pathways and case studies, see this guide to alternative energy solar power and its emerging cost trends.

 

Alternative Energy Solutions - Wind Power

Wind energy is helping many nations meet their ever-growing energy demands. Today, wind energy provides the U.S. with enough electricity to power over 9.7 million American homes. And, according to the National Renewable Energy Laboratory (NREL), there is a potential of 37 trillion kilowatt-hours of electricity that could be used to power the U.S. annually——nearly 10 times the country’s existing power needs. At the moment, there are over 400 American manufacturing plants that build wind components including blades, towers and other major turbine components. Plus, new wind energy manufacturers are currently coming online, being announced or expanding (over 100 since 2007). However, wind energy requires further development in technologies before they are ready to operate at full scale. Grid planners often analyze how alternative energy power integrates with reliability standards and transmission upgrades.

 

Alternative Energy Solutions - Geothermal Power

The geothermal potential is very large. At the moment, the technology for this alternative energy solution is limited to special locations (such as Iceland, Kenya and locations in California) with very steep thermal gradients, resulting in very large temperature differentials between the surface and the geological reservoir. For the time being, many of the possible energy resources are simply not large enough to operate at the scale necessary to satisfy a substantial fraction of the world’s energy demand. In some cases, like wind energy, the locations are large enough, but raise serious questions about the environmental impact of large-scale deployment.

 

What is the best alternative solution?

Governments continue to strive to find one energy solution that can power the world, but it might be that a collaboration of alternative energy solutions is best to saving the world.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified