Going Green: Air Burners turn wood waste into power

By eReleases


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Air Burners, LLC announced the introduction of a portable wood waste burner that produces up to 350 kW of electricity, enough to support more than 30 homes.

The machine is based on the companyÂ’s proven standard wood waste disposal systems that are used worldwide, including by the U.S. National Park Service, Department of Energy, the Military and many state agencies. The U.S. Forest Service supports the use of the equipment for forest fuels reduction as highlighted in its Tech Tip publication.

Millions of trees killed by beetle infestations in the Western U.S. and Canada can now be simply converted into clean energy and quickly disposed of at the same time, thereby avoiding the natural decomposition that would result in the massive release of harmful greenhouse gases. This opens the way for rapid reforestation to replace the lost “carbon sink” with new trees that once again will transform carbon dioxide into the oxygen we breathe. The electric power can be sold back into the local electric grid at landfills and transfer stations or used to power public buildings and facilities.

“What is really exciting,” says Brian O’Connor, the firm’s CEO and chief engineer, “is the prospect of bringing plenty of electric power deep into the forest where much of the dead tree disposal, logging and forest restoration takes place. This may make it advantageous for companies like Caterpillar, John Deere, Komatsu or Volvo to expand their Hybrid technologies to rely less on hydrocarbon-based fuels and more on clean electricity.

“With the PowerGen FireBox they now have the means to recharge their batteries on-site from the wood waste that has to be disposed of anyway.”

The electricity is generated by a “turbo-expander” power generator that is integrated into Air Burners’ standard firebox and the heat is collected from the thermo-ceramic refractory walls and very efficiently converted into electricity. The largest system PG327 is priced at $695,000 and the smaller Model PG220 at $395,000. No on-site assembly is required.

Related News

Why Fort Frances wants to build an integrated microgrid to deliver its electricity

Fort Frances Microgrid aims to boost reliability in Ontario with grid-connected and island modes, Siemens feasibility study, renewable energy integration, EV charging expansion, and resilience modeled after First Nations projects and regional biomass initiatives.

 

Key Points

A community microgrid in Fort Frances enabling grid and island modes to improve reliability and integrate renewables.

✅ Siemens-led feasibility via FedNor funding

✅ Grid-connected or islanded for outage resilience

✅ Integrates renewables, EV charging, and industry growth

 

When the power goes out in Fort Frances, Ont., the community may be left in the dark for hours.

The hydro system's unreliability — caused by its location on the provincial power grid — has prompted the town to seek a creative solution: its own self-contained electricity grid with its own source of power, known as a microgrid. 

Located more than 340 kilometres west of Thunder Bay, Ont., on the border of Minnesota, near the Great Northern Transmission Line corridor, Fort Frances gets its power from a single supply point on Ontario's grid. 

"Sometimes, it's inevitable that we have to have like a six- to eight-hour power outage while equipment is being worked on, and that is no longer acceptable to many of our customers," said Joerg Ruppenstein, president and chief executive officer of Fort Frances Power Corporation.

While Ontario's electrical grid serves the entire province, and national efforts explore macrogrids, a microgrid is contained within a community. Fort Frances hopes to develop an integrated, community-based electric microgrid system that can operate in two modes:

  • Grid-connected mode, which means it's connected to the provincial grid and informed by western grid planning approaches
  • Island mode, which means it's disconnected from the provincial grid and operates independently

The ability to switch between modes allows flexibility. If a storm knocks down a line, the community will still have power.

The town has been given grant funding from the Federal Economic Development Agency for Northern Ontario (FedNor), echoing smart grid funding in Sault Ste. Marie initiatives, for the project. On Monday night, council voted to grant a request for proposal to Siemens Canada Limited to conduct a feasibility study into a microgrid system.

The study, anticipated to be completed by the end of 2023 or early 2024, will assess what an integrated community-based microgrid system could look like in the town of just over 7,000 people, said Faisal Anwar, chief administrative officer of Fort Frances. A timeline for construction will be determined after that. 

The community is still reeling from the closure of the Resolute Forest Products pulp and paper mill in 2014 and faces a declining population, said Ruppenstein. It's hoped the microgrid system will help attract new industry to replace those lost workers and jobs, drawing on Manitoba's hydro experience as a model.

This gives the town a competitive advantage.

"If we were conceivably to attract a larger industrial player that would consume a considerable amount of energy, it would result in reduced rates for everyone…we're the only utility really in Ontario that can offer that model," Ruppenstein said.

The project can also incorporate renewable energy like solar or wind power, as seen in B.C.'s clean energy shift efforts, into the microgrid system, and support the growth of electric vehicles, he said. Many residents fill their gas tanks in Minnesota because it's cheaper, but Fort Frances has the potential to become a hub for electric vehicle charging.

A few remote First Nations have recently switched to microgrid systems fuelled by green energy, including Gull Bay First Nation and Fort Severn First Nation. These are communities that have historically relied on diesel fuel either flown in, which is incredibly expensive, or transported via ice roads, which are seeing shorter seasons each year.

Natural Resources Minister Jonathan Wilkinson was in Thunder Bay, Ont., to announce $35 million for a biomass generation facility in Whitesand First Nation, complementing federal funding for the Manitoba-Saskatchewan transmission line elsewhere in the region.

 

Related News

View more

Renewable electricity powered California just shy of 100% for the first time in history

California Renewable Energy Record highlights near-100% clean power as CAISO reports solar, wind, and storage meeting demand, with Interstate 10 arrays and distributed rooftop photovoltaics boosting the grid during Stagecoach, signaling progress toward 100%.

 

Key Points

CA Renewable Energy Record marks CAISO's peak when renewables nearly met total load, led by utility solar and storage.

✅ CAISO hit 99.87% renewables serving load at 2:50 p.m.

✅ Two-thirds of power came from utility-scale solar along I-10.

✅ Tariff inquiry delays solar-storage projects statewide.

 

Renewable electricity met just shy of 100% of California's demand for the first time on Saturday, officials said, much of it from large amounts of solar power, part of a California solar boom, produced along Interstate 10, an hour east of the Coachella Valley.

While partygoers celebrated in the blazing sunshine at the Stagecoach music festival,  "at 2:50 (p.m.), we reached 99.87 % of load served by all renewables, which broke the previous record," said Anna Gonzales, spokeswoman for California Independent System Operator, a nonprofit that oversees the state's bulk electric power system and transmission lines. Solar power provided two-thirds of the amount needed.

Environmentalists who've pushed for years for all of California's power to come from renewables and meet clean energy targets were jubilant as they watched the tracker edge to 100% and slightly beyond. 

"California busts past 100% on this historic day for clean energy!" Dan Jacobson, senior adviser to Environment California, tweeted.

"Once it hit 100%, we were very excited," said Laura Deehan, executive director for Environment California. She said the organization and others have worked for 20 years to push the Golden State to complete renewable power via a series of ever tougher mandates, even as solar and wind curtailments increase across the grid. "California solar plants play a really big role."

But Gonzales said CAISO double-checked the data Monday and had to adjust it slightly because of reserves and other resource needs, an example of rising curtailments in the state. 

Environment California pushed for 1 million solar rooftops statewide, which has been achieved, adding what some say is a more environmentally friendly form of solar power, though wildfire smoke can undermine gains, than the solar farms, which eat up large swaths of the Mojave desert and fragile landscapes.

Want more climate news? Sign up for Climate Point once a week in your inbox

What's everyone talking about? Sign up for our trending newsletter to get the latest news of the day

'Need to act with that same boldness':A record 10% of the world's power was generated by wind, solar methods in 2021

Deehan said in a statement that more needs to be done, especially at the federal level. "Despite incredible progress illustrated by the milestone this weekend, and the fact that U.S. renewable electricity surpassed coal in 2022, a baffling regulatory misstep by the Biden administration has advocates concerned about backsliding on California’s clean energy targets." 

Deehan said a Department of Commerce inquiry into tariffs on imported solar panels is delaying thousands of megawatts of solar-storage projects in California, even as U.S. renewable energy hit a record 28% in April across the grid.

Still, Deehan said, “California has shown that, for one brief and shining moment, we could do it! It's time to move to 100% clean energy, 100% of the time.”

 

Related News

View more

Ukraine fights to keep the lights on as Russia hammers power plants

Ukraine Power Grid Attacks disrupt critical infrastructure as missiles and drones strike power plants, substations, and lines, causing blackouts. Emergency repairs, international aid, generators, and renewables bolster resilience and keep hospitals and water running.

 

Key Points

Russian strikes on Ukraine's power infrastructure cause blackouts; repairs and aid sustain hospitals and water.

✅ Missile and drone strikes target plants, substations, and lines.

✅ Crews restore power under fire; air defenses protect sites.

✅ Allies supply equipment, generators, and grid repair expertise.

 

Ukraine is facing an ongoing battle to maintain its electrical grid in the wake of relentless Russian attacks targeting power plants and energy infrastructure. These attacks, which have intensified in the last year, are part of Russia's broader strategy to weaken Ukraine's ability to function amid the ongoing war. Power plants, substations, and energy lines have become prime targets, with Russian forces using missiles and drones to destroy critical infrastructure, as western Ukraine power outages have shown, leaving millions of Ukrainians without electricity and heating during harsh winters.

The Ukrainian government and energy companies are working tirelessly to repair the damage and prevent total blackouts, while also trying to ensure that civilians have access to vital services like hospitals and water supplies. Ukraine has received support from international allies in the form of technical assistance and equipment to help strengthen its power grid, and electricity reserve updates suggest outages can be avoided if no new strikes occur. However, the ongoing nature of the attacks and the complexity of repairing such extensive damage make the situation extraordinarily difficult.

Despite these challenges, Ukraine's resilience is evident, even as winter pressures on the battlefront intensify operations. Energy workers are often working under dangerous conditions, risking their lives to restore power and prevent further devastation. The Ukrainian government has prioritized the protection of energy infrastructure, with military forces being deployed to safeguard workers and critical assets.

Meanwhile, the international community continues to support Ukraine through financial and technical aid, though some U.S. support programs have ended recently, as well as providing temporary power solutions, like generators, to keep essential services running. Some countries have even sent specialized equipment to help repair damaged power lines and energy plants more quickly.

The humanitarian consequences of these attacks are severe, as access to electricity means more than just light—it's crucial for heating, cooking, and powering medical equipment. With winter temperatures often dropping below freezing, plans to keep the lights on are vital to protect vulnerable communities, and the lack of reliable energy has put many lives at risk.

In response to the ongoing crisis, Ukraine has also focused on enhancing its energy independence, seeking alternatives to Russian-supplied energy. This includes exploring renewable energy sources, such as solar and wind power, and new energy solutions adopted by communities to overcome winter blackouts, which could help reduce reliance on traditional energy grids and provide more resilient options in the future.

The battle for energy infrastructure in Ukraine illustrates the broader struggle of the country to maintain its sovereignty and independence in the face of external aggression. The destruction of power plants is not only a military tactic but also a psychological one—meant to instill fear and disrupt daily life. However, the unwavering spirit of the Ukrainian people, alongside international support, including Ukraine's aid to Spain during blackouts as one example, continues to ensure that the fight to "keep the lights on" is far from over.

As Ukraine works tirelessly to repair its energy grid, it also faces the challenge of preparing for the long-term impact of these attacks. The ongoing war has highlighted the importance of securing energy infrastructure in modern conflicts, and the world is watching as Ukraine's resilience in this area could serve as a model for other nations facing similar threats.

Ukraine’s energy struggle is far from over, but its determination to keep the lights on remains a beacon of hope and defiance in the face of ongoing adversity.

 

Related News

View more

Wind and solar make more electricity than nuclear for first time in UK

UK Renewables Surpass Nuclear Milestone as wind farms and solar panels outpace atomic output, cutting greenhouse gas emissions. BEIS data show low-carbon power generation rising while onshore wind subsidies and auction timelines face policy debate.

 

Key Points

It is the quarter when UK wind and solar generated more electricity than nuclear, signaling cleaner, low-carbon growth.

✅ BEIS reports wind and solar at 18.33 TWh vs nuclear 16.69 TWh

✅ Energy sector emissions fell 8% as coal use dropped

✅ Calls grow to reopen onshore wind support via CFD auctions

 

Wind farms and solar panels, with wind leading the power mix during key periods, produced more electricity than the UK’s eight nuclear power stations for the first time at the end of last year, official figures show.

Britain’s greenhouse gas emissions also continued to fall, dropping 3% in 2017, as coal use fell and the use of renewables climbed, though low-carbon generation stalled in 2019 according to later data.

Energy experienced the biggest drop in emissions of any UK sector, of 8%, while pollution from transport and businesses stayed flat.

Energy industry chiefs said the figures showed that the government should rethink its ban on onshore wind subsidies, a move that ministers have hinted could happen soon.

Lawrence Slade, chief executive of the big six lobby group Energy UK, said: “We need to keep up the pace ... by ensuring that the lowest cost renewables are no longer excluded from the market.”

Across the whole year, low-carbon sources of power – wind, solar, biomass and nuclear – provided a record 50.4% of electricity, up from 45.7% in 2016, when wind beat coal for the first time.

But in the fourth quarter of 2017, high wind speeds, new renewables installations and lower nuclear output saw wind and solar becoming the second biggest source of power for the first time.

Wind and solar generated 18.33 terawatt hours (TWh), with nuclear on 16.69TWh, and the UK later set a new record for wind power during 2019, the figures published by the Department for Business, Energy and Industrial Strategy show.

But renewables still have a long way to go to catch up with gas, the UK’s top source of electricity at 36.12TWh, which saw its share of generation fall slightly, though at times wind became the main source as capacity expanded.

Greenpeace said the figures showed the government should capitalise on its lead in renewables and “stop wasting time and money propping up nuclear power”.

Horizon Nuclear Power, a subsidiary of the Japanese conglomerate Hitachi, is in talks with Whitehall officials for a financial support package from the government, which it says it needs by midsummer.

By contrast, large-scale solar and onshore wind projects are not eligible for support, after the Conservative government cut subsidies in 2015.

However the energy minister, Claire Perry, recently told House Magazine that “we will have another auction that brings forward wind and solar, we just haven’t yet said when”.

 

Related News

View more

Greening Ontario's electricity grid would cost $400 billion: report

Ontario Electricity Grid Decarbonization outlines the IESO's net-zero pathway: $400B investment, nuclear expansion, renewables, hydrogen, storage, and demand management to double capacity by 2050 while initiating a 2027 natural gas moratorium.

 

Key Points

A 2050 plan to double capacity, retire gas, and invest $400B in nuclear, renewables, and storage for a net-zero grid.

✅ $400B over 25 years to meet net-zero electricity by 2050

✅ Capacity doubles to 88,000 MW; demand grows ~2% annually

✅ 2027 gas moratorium; build nuclear, renewables, storage

 

Ontario will need to spend $400 billion over the next 25 years in order to decarbonize the electricity grid and embrace clean power according to a new report by the province’s electricity system manager that’s now being considered by the Ford government.

The Independent System Electricity Operator (IESO) was tasked with laying out a path to reducing Ontario’s reliance on natural gas for electricity generation and what it would take to decarbonize the entire electricity grid by 2050.

Meeting the goal, the IESO concluded, will require an “aggressive” approach of doubling the electricity capacity in Ontario over the next two-and-a-half decades — from 42,000 MW to 88,000 MW — by investing in nuclear, hydrogen and wind and solar power while implementing conservation policies and managing demand.

“The process of fully eliminating emissions from the grid itself will be a significant and complex undertaking,” IESO president Lesley Gallinger said in a news release.

The road to decarbonization, the IESO said, begins with a moratorium on natural gas power generation starting in 2027 as long as the province has “sufficient, non-emitting supply” to meet the growing demands on the grid.

The approach, however, comes with significant risks.

The IESO said hydroelectric and nuclear facilities can take 10 to 15 years to build and if costs aren’t controlled the plan could drive up the price of clean electricity, turning homeowners and businesses away from electrification.

“Rapidly rising electricity costs could discourage electrification, stifle economic growth or hurt consumers with low incomes,” the report states.

The IESO said the province will need to take several “no regret” actions, including selecting sites and planning to construct new large-scale nuclear plants as well as hydroelectric and energy storage projects and expanding energy-efficiency programs beyond 2024.

READ MORE: Ontario faces calls to dramatically increase energy efficiency rebate programs

Ontario’s minister of energy didn’t immediately commit to implementing the recommendations, citing the need to consult with stakeholders first.

“I look forward to launching a consultation in the new year on next steps from today’s report, including the potential development of major nuclear, hydroelectric and transmissions projects,” Todd Smith said in a statement.

Currently, electricity demand is increasing by roughly two per cent per year, raising concerns Ontario could be short of electricity in the coming years as the manufacturing and transportation sectors electrify and as more sectors consider decarbonization.

At the same time, the province’s energy supply is facing “downward pressure” with the Pickering nuclear power plant slated to wind down operations and the Darlington nuclear generating station under active refurbishment.

To meet the energy need, the Ford government said it intended to extend the life of the Pickering plant until 2026.

READ MORE: Ontario planning to keep Pickering nuclear power station open until 2026

But to prepare for the increase, the Ontario government was told the province would also need to build new natural gas facilities to bridge Ontario’s electricity supply gap in the near term — a recommendation the Ford government agreed to.

The IESO said a request for proposals has been opened and the province is looking for host communities, with the expectation that existing facilities would be upgraded before projects on undeveloped land would be considered.

The IESO said the contract for any new facilities would expire in 2040, and all natural gas facilities would be retired in the 2040s.

 

Related News

View more

NRC Makes Available Turkey Point Renewal Application

Turkey Point Subsequent License Renewal seeks NRC approval for FP&L to extend Units 3 and 4, three-loop pressurized water reactors near Homestead, Miami; public review, docketing, and an Atomic Safety and Licensing Board hearing.

 

Key Points

The NRC is reviewing FP&L's request to extend Turkey Point Units 3 and 4 operating licenses by 20 years.

✅ NRC will docket if application is complete

✅ Public review and opportunity for adjudicatory hearing

✅ Units commissioned in 1972 and 1973, near Miami

 

The U.S. Nuclear Regulatory Commission said Thursday that it had made available the first-ever "subsequent license renewal application," amid milestones at nuclear power projects worldwide, which came from Florida Power and Light and applies to the company's Turkey Point Nuclear Generating Station's Units 3 and 4.

The Nuclear Regulatory Commission recently made available for public review the first-ever subsequent license renewal application, which Florida Power & Light Company submitted on Jan. 1.

In the application, FP&L requests an additional 20 years for the operating licenses of Turkey Point Nuclear Generating Units 3 and 4, three-loop, pressurized water reactors located in Homestead, Florida, where the Florida PSC recently approved a municipal solid waste energy purchase, approximately 40 miles south of Miami.

The NRC approved the initial license renewal in June 2002, as new reactors at Georgia's Vogtle plant continue to take shape nationwide. Unit 3 is currently licensed to operate through July 19, 2032. Unit 4 is licensed to operate through April 10, 2033.

#google#

NRC staff is currently reviewing the application, while a new U.S. reactor has recently started up, underscoring broader industry momentum. If the staff determines the application is complete, they will docket it and publish a notice of opportunity to request an adjudicatory hearing before the NRC’s Atomic Safety and Licensing Board.

The first-ever subsequent license renewal application, submitted by Florida Power & Light Company asks for an additional 20 years for the already-renewed operating licenses of Turkey Point, even as India moves to revive its nuclear program internationally, which are currently set to expire in July of 2032 and April of 2033. The two thee-loop, pressurized water reactors, located about 40 miles south of Miami, were commissioned in July 1972 and April 1973.

If the application is determined to be complete, the staff will docket it and publish a notice of opportunity to request an adjudicatory hearing before the NRC’s Atomic Safety and Licensing Board, the agency said.

The application is available for public review on the NRC website. Copies of the application will be available at the Homestead Branch Library in Homestead, the Naraja Branch Library in Homestead and the South Dade Regional Library in Miami.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified