B.C. Hydro predicts 'bottleneck' as electric-vehicle demand ramps-up


vancouver ev charger

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

B.C. EV Bottleneck signals a post-pandemic demand surge for electric vehicles amid semiconductor and lithium-ion battery shortages, driving waitlists, record sales, rebates, charging infrastructure needs, and savings on fuel and maintenance across British Columbia.

 

Key Points

B.C. EV bottleneck is rising demand outpacing supply from chip and battery shortages, creating waitlists.

✅ 85% delayed EV purchase; demand rebounds with reopening.

✅ Supply chain limits: chips and lithium-ion batteries.

✅ Plan ahead: join waitlists, consider used EVs, claim rebates.

 

B.C. Hydro is warning of a post-pandemic “EV bottleneck” as it predicts pent-up demand and EV shortages will lead to record-breaking sales for electric vehicles in 2021.

A new survey by B.C. Hydro found 85 per cent of British Columbians put off buying an electric vehicle during the pandemic, but as the province reopens, the number of people on the road commuting to-and-from work and school is expected to rise 15 per cent compared with before the pandemic.

It found about two-thirds of British Columbians are considering buying an EV over the next five years, with 60 per cent saying they would go with an EV if they can get one sooner.

“The EV market is at a potential tipping point, as demand is on the rise and will likely continue to grow long-term, with one study projecting doubling power output to meet full road electrification,” said a report about the findings released Wednesday.

The demand for EVs is prompted by rising gas prices, environmental concerns and to save money on maintenance costs like oil changes and engine repairs, said the report. At the same time, a shortage of semiconductor chips and lithium ion batteries needed for auto production is squeezing supply.

For people wanting to make the switch to electric, B.C. Hydro recommended they plan ahead and get on several waiting lists and explore networks offering faster charging options. Used EVs are also a cheaper option.

B.C. Hydro said an electric vehicle can save 80 per cent in gas expenses over a year and about $100 a month in maintenance costs compared with a gas-powered vehicle. There are also provincial and federal rebates of up to $8,000 for EV purchases in B.C., and additional charger rebates can help with installation costs.

B.C. has the highest electric vehicle uptake in North America, with zero-emission vehicles making up almost 10 per cent of all car sales in the province in 2020 as the province expands EV charging to support growth — more than double the four per cent in 2018.

According to a report by University of B.C. business Prof. Werner Antweiler on the state of EV adoption in B.C., electric vehicles are still concentrated in urban areas like Metro Vancouver and the Capital Regional District on Vancouver Island where public charging stations are more readily available.

He said electric vehicle purchases are still hampered by limited choice and a lack of charging stations, especially for people who park on the street or in condo parkades, which would require permission from strata councils to install a charging station, though rebates for home and workplace charging can ease installation.

The online survey was conducted by market researcher Majid Khoury of 800 British Columbians from May 17-19. It has a margin of error of plus-or-minus 3.5 per cent, 19 times out of 20.

 

Related News

Electric vehicles can now power your home for three days

Vehicle-to-Home (V2H) Power enables EVs to act as backup generators and home batteries, using bidirectional charging, inverters, and rooftop solar to cut energy costs, stabilize the grid, and provide resilient, outage-proof electricity.

 

Key Points

Vehicle-to-Home (V2H) Power lets EV batteries run household circuits via bidirectional charging and an inverter.

✅ Cuts energy bills using solar, time-of-use rates, and storage

✅ Provides resilient backup during outages, storms, and blackouts

✅ Enables grid services via V2G/V2H with smart chargers

 

When the power went out at Nate Graham’s New Mexico home last year, his family huddled around a fireplace in the cold and dark. Even the gas furnace was out, with no electricity for the fan. After failing to coax enough heat from the wood-burning fireplace, Graham’s wife and two children decamped for the comfort of a relative’s house until electricity returned two days later.

The next time the power failed, Graham was prepared. He had a power strip and a $150 inverter, a device that converts direct current from batteries into the alternating current needed to run appliances, hooked up to his new Chevy Bolt, an electric vehicle. The Bolt’s battery powered his refrigerator, lights and other crucial devices with ease. As the rest of his neighborhood outside Albuquerque languished in darkness, Graham’s family life continued virtually unchanged. “It was a complete game changer making power outages a nonissue,” says Graham, 35, a manager at a software company. “It lasted a day-and-a-half, but it could have gone much longer.”

Today, Graham primarily powers his home appliances with rooftop solar panels and, when the power goes out, his Chevy Bolt. He has cut his monthly energy bill from about $220 to $8 per month. “I’m not a rich person, but it was relatively easy,” says Graham “You wind up in a magical position with no [natural] gas, no oil and no gasoline bill.”

Graham is a preview of what some automakers are now promising anyone with an EV: An enormous home battery on wheels that can reverse the flow of electricity to power the entire home through the main electric panel.

Beyond serving as an emissions-free backup generator, the EV has the potential of revolutionizing the car’s role in American society, with California grid programs piloting vehicle-to-grid uses, transforming it from an enabler of a carbon-intensive existence into a key step in the nation’s transition into renewable energy.

Home solar panels had already been chipping away at the United States’ centralized power system, forcing utilities to make electricity transfer a two-way street. More recently, home batteries have allowed households with solar arrays to become energy traders, recharging when electricity prices are low, replacing grid power when prices are high, and then sell electricity back to the grid for a profit during peak hours.

But batteries are expensive. Using EVs makes this kind of home setup cheaper and a real possibility for more Americans as the American EV boom accelerates nationwide.

So there may be a time, perhaps soon, when your car not only gets you from point A to point B, but also serves as the hub of your personal power plant.

I looked into new vehicles and hardware to answer the most common questions about how to power your home (and the grid) with your car.


Why power your home with an EV battery

America’s grid is not in good shape. Prices are up and reliability is down, and many state power grids face new challenges from rising EV adoption. Since 2000, the number of major outages has risen from less than two dozen to more than 180 per year, based on federal data, the Wall Street Journal reports. The average utility customer in 2020 endured about eight hours of power interruptions, double the previous decade.

Utilities’ relationship with their customers is set to get even rockier. Residential electricity prices, which have risen 21 percent since 2008, are predicted to keep climbing as utilities spend more than $1 trillion upgrading infrastructure, erecting transmission lines for renewable energy and protecting against extreme weather, even though grids can handle EV loads with proper management and planning.

U.S. homeowners, increasingly, are opting out. About 8 percent of them have installed solar panels. An increasing number are adding home batteries from companies such as LG, Tesla and Panasonic. These are essentially banks of battery cells, similar to those in your laptop, capable of storing energy and discharging electricity.

EnergySage, a renewable energy marketplace, says two-thirds of its customers now request battery quotes when soliciting bids for home solar panels, and about 15 percent install them. This setup allows homeowners to declare (at least partial) independence from the grid by storing and consuming solar power overnight, as well as supplying electricity during outages.

But it doesn’t come cheap. The average home consumes about 20 kilowatt-hours per day, a measure of energy over time. That works out to about $15,000 for enough batteries on your wall to ensure a full day of backup power (although the net cost is lower after incentives and other potential savings).

 

How an EV battery can power your home

Ford changed how customers saw their trucks when it rolled out a hybrid version of the F-150, says Ryan O’Gorman of Ford’s energy services program. The truck doubles as a generator sporting as many as 11 outlets spread around the vehicle, including a 240-volt outlet typically used for appliances like clothes dryers. During disasters like the 2021 ice storm that left millions of Texans without electricity, Ford dealers lent out their hybrid F-150s as home generators, showing how mobile energy storage can bring new flexibility during outages.

The Lightning, the fully electric version of the F-150, takes the next step by offering home backup power. Under each Lightning sits a massive 98 kWh to 131 kWh battery pack. That’s enough energy, Ford estimates, to power a home for three days (10 days if rationing). “The vehicle has an immense amount of power to move that much metal down the road at 80 mph,” says O’Gorman.

 

Related News

View more

Offshore chargepoint will power vessels with wind turbine electricity

Offshore Wind Vessel Charging System enables renewable energy offshore charging from wind turbines, delivering clean power to electric vessels and crew transfer ships, boosting range, safety, and net zero maritime operations with reliable, efficient infrastructure.

 

Key Points

A turbine-mounted offshore charger delivering renewable power to electric vessels, extending range and improving safety.

✅ Turbine-mounted, field-proven offshore charging interface

✅ Delivers 100% renewable electricity to electric vessels

✅ Accelerates net zero, cuts maritime fossil fuel use

 

An offshore charging system will power vessels with 100% renewably generated electricity from wind turbines, aligning with projects like battery-electric high-speed ferries now advancing in the United States.

The system, developed by Teesside marine electrical engineering firm MJR Power and Automation, will be presented at the Global Offshore Wind event in Manchester (21-22 June), alongside interest in EV energy storage for buildings that could complement offshore charging solutions.

Known as the Offshore Wind On-Turbine Electrical Vessel Charging System, MJR says the chargepoints will provide efficient, safe and reliable transfer of clean power for crew vehicles and other offshore support vessels, while emerging vehicle-to-grid capacity on wheels concepts highlight the wider role of electric fleets.

“This innovation will break down the existing range barriers and increase the uptake by vessel owners and operators, as demonstrated by electric ships on the B.C. coast moving to fully electric and green propulsion systems for retrofit and new-build vessels,” an announcement said.

“In combination with other field-proven technologies, the charging system will be an important part for government and offshore wind owners and operators to achieve their net zero maritime operations targets, and switch away from fossil fuels, complemented by port initiatives such as all-electric berth at London Gateway now under development. The ability to charge when in the field will significantly accelerate adoption of current emission-free propulsion systems, which will be a major asset for the decarbonisation of the global maritime sector.”

The firm recently announced that construction and in-house testing of the system had been completed. The development project was part of the Clean Maritime Demonstration Competition, funded by the Department for Transport and delivered in partnership with Innovate UK, reflecting wider interest in reversing the charge to the grid for resilient energy systems.

MJR electrical engineer Mohammed Latif said: “Our system will be absolutely crucial in helping governments to deliver on their net zero carbon targets, supported by plans like new UK-Europe interconnectors that strengthen clean energy supply, and I am looking forward to demonstrating how it works and the benefits it offers.”

As part of the project, MJR Power and Automation led a consortium of partners – Ore Catapult, Xceco, Artemis Technologies and Tidal Transit – that all provided expertise.

 

Related News

View more

China's electric carmakers make their move on Europe

Chinese EV Makers in Europe target the EU market with electric SUVs, battery swapping, competitive pricing, and subsidies, led by NIO, Xpeng, MG, and BYD, starting in Norway amid Europe's zero-emissions push.

 

Key Points

Chinese EV makers expanding into EU markets with tech, pricing, and lean retail to gain share.

✅ Early launches in Norway leverage EV incentives

✅ Compete via battery swapping, OTA tech, and price

✅ Mix of importers, online sales, and lean dealerships

 

China's electric carmakers are darting into Europe, hoping to catch traditional auto giants cold and seize a slice of a market supercharged by the continent's EV transition towards zero emissions.

Nio Inc (NIO.N), among a small group of challengers, launches its ES8 electric SUV in Oslo on Thursday - the first foray outside China for a company that is virtually unheard of in Europe even though it's valued at about $57 billion.

Other brands unfamiliar to many Europeans that have started selling or plan to sell cars on the continent include Aiways, BYD's (002594.SZ) Tang, SAIC's (600104.SS) MG, Dongfeng's VOYAH, and Great Wall's (601633.SS) ORA.

Yet Europe, a crowded, competitive car market dominated by famous brands, has proved elusive for Chinese carmakers in the past. They made strategic slips and also contended with a perception that China, long associated with cheap mass-production, could not compete on quality.

Indeed, Nio Chief Executive William Li told Reuters he foresees a long road to success in a mature market where it is "very difficult to be successful".

Chinese carmakers may need up to a decade to "gain a firm foothold" in Europe, the billionaire entrepreneur said - a forecast echoed by He Xiaopeng, CEO of electric vehicle (EV) maker Xpeng (9868.HK) who told Reuters his company needs 10 years "to lay a good foundation" on the continent.

These new players, many of which have only ever made electric vehicles, believe they have a window of opportunity to finally crack the lucrative market.

While electric car sales in the European Union more than doubled last year and jumped 130% in the first half of this year, even as threats to the EV boom persist, traditional manufacturers are still gradually shifting their large vehicle ranges over to electric and have yet to flood the thirsty market with models.

"The market is not that busy yet, if you compare it with combustion-engine models where each of the major carmakers has a whole range of vehicles," said Alexander Klose, who heads the foreign operations of Chinese electric vehicle maker Aiways.

"That is where we think we have an opportunity," he added on a drive around Munich in a U5, a crossover SUV on sale in Germany, the Netherlands, Belgium and France, where new EV rules are aimed at discouraging purchases of Chinese models.

The U5 starts at 30,000 euros ($35,000) in Germany - below the average new car price and most local EV prices - before factoring in 9,000 euros in EV subsidies, though France's EV incentives have tightened for Chinese models - and comes in just four colours and two trim levels to minimize costs.

'GERMAN PEOPLE BUY GERMAN CARS'
As Chinese carmakers gear up to enter Europe, they are trying out different business models, from relying on importers, low-cost retail options or building up more traditional dealerships.

The new reality that top Western carmakers like BMW (BMWG.DE) and Tesla Inc (TSLA.O) now produce cars in technological powerhouse China, where the EV market is intensely competitive, has likely undermined past perceptions of low quality workmanship - though they can be hard to shake.

Antje Levers, a teacher who lives in western Germany near the Dutch border, and her husband owned a diesel Chevrolet Orlando but wanted a greener option. They bought an Aiways U5 last year after plenty of research to fend off criticism for not buying local, and loves its handling and low running costs.

She said people had told her: "You can't buy a Chinese car, they're plastic and cheap and do not support German jobs." But she feels that is no longer true in a global car industry where you find German auto parts in Chinese cars and vice versa.

"German people buy German cars, so to buy a Chinese car you need to have a little courage," the 47-year-old added. "Sometimes you just have to be open for new things."

NIO LANDS IN NORWAY WITH NOMI
Nio launches its ES8 electric SUV alongside a NIO House - part-showroom, part-cafe and workspace for customers in the capital of Norway, a country that's also the initial base for Xpeng.

Norwegian state support for EVs has put the country at the forefront of the shift to electric. It makes sense as a European entry point because customers are used to electric vehicles so only have to be sold on an unknown Chinese brand, said Christina Bu, secretary general of the Norwegian EV Association.

"If you go to another European country you may struggle to sell both," said Bu, adding that her organisation has talked extensively with a number of Chinese EV makers keen to learn market specifics and consumer culture before launching there.

She is uncertain, though, how consumers will react to Nio's approach of swapping out batteries for customers rather than stopping to charge them, a contrast to other EV battery strategies in the industry, or the carmaker's strategy of leasing rather than selling batteries to customers.

"But where the Chinese are really at the forefront is the technology," she added, referring in particular to Nomi, the digital assistant in the dashboard of Nio's cars.

NEWCOMERS' STRATEGIES DIVERGE
One size does not fit all. While Nio and Xpeng have been hiring staff building up their organizations in Norway, SAIC's MG works through a car importer to sell cars in a handful of European markets.

Aiways is trying an lower-cost approach to selling cars in Europe, though Klose says it varies by market.

In Germany, for instance, the company sells its cars through Euronics, an association of independent electronics retailers, rather than building traditional dealerships.

It aims to sell across the EU by next year and to enter the U.S. market by 2023, said Klose, a former Volvo and Ford executive.

Past failed attempts by Chinese carmakers to conquer Europe are unlikely to hurt Chinese EV makers today, as consumers have grown accustomed to electronics coming from China, he added.

Such failures included Brilliance in 2007, whose vehicle received one out of five stars in a German car crash test, damaging the brand.

"The fact there are more Chinese carmakers entering the market will also help us, as it will make Chinese brands more accepted by consumers," Klose said.

Selling cars to Europeans is a "tough business, especially if your product isn't well known," said Arnie Richters, chairman of Brussels-based industry group Platform for Electromobility.

"But if they bring a lot of innovation they have a lot of opportunity."

 

Related News

View more

These companies are using oceans and rivers to generate electricity

Tidal Energy harnesses ocean currents with tidal turbines to deliver predictable, renewable power. From Scotland's Orkney to New York's East River, clean baseload electricity complements wind and solar in decarbonizing grids.

 

Key Points

Tidal energy uses underwater turbines to capture predictable ocean currents, delivering reliable, low-carbon power.

✅ Predictable 2-way flows enable forecastable baseload

✅ Higher energy density than wind, slower flow speeds

✅ Costs remain high; scaling and deployment are challenging

 

As the world looks to curb climate change and reduce fossil fuel emissions, some companies are focusing on a relatively untapped but vast and abundant source of energy — tidal waves.

On opposite sides of the Atlantic, two firms are working to harness ocean currents in different ways to try to generate reliable clean energy.

Off the coast of Scotland, Orbital Marine Power operates what it says is the "most powerful tidal turbine in the world." The turbine is approximately the size of a passenger airplane and even looks similar, with its central platform floating on the water and two wings extending downwards on either side. At the ends of each wing, about 60 feet below the surface, are large rotors whose movement is dictated by the waves.

"The energy itself of tidal streams is familiar to people, it's kinetic energy, so it's not too dissimilar to something like wind," Andrew Scott, Orbital's CEO, told CNN Business. "The bits of technology that generate power look not too different to a wind turbine."

But there are some key differences to wind energy, primarily that waves are far more predictable than winds. The ebb and flow of tides rarely differs significantly and can be timed far more precisely.

Orbital Marine Power's floating turbines off the Scottish coast produce enough energy to power 2,000 homes a year, while another Scottish tidal project recently produced enough for nearly 4,000 homes.

Orbital Marine Power's floating turbines off the Scottish coast produce enough energy to power 2,000 homes a year.

"You can predict those motions years and decades [in] advance," Scott said. "But also from a direction perspective, they only really come from two directions and they're almost 180 degrees," he added, unlike wind turbines that must account for wind from several different directions at once.

Tidal waves are also capable of generating more energy than wind, Scott says.

"Seawater is 800 times the density of wind," he said. "So the flow speeds are far slower, but they generate far more energy."

The Orbital turbine, which is connected to the electricity grid in Scotland's Orkney, can produce up to two megawatts — enough to power 2,000 homes a year — according to the company.

Scott acknowledges that the technology isn't fully mainstream yet and some challenges remain including the high cost of the technology, but the reliability and potential of tidal energy could make it a useful tool in the fight against climate change, as projects like Sustainable Marine in Nova Scotia begin delivering power to the grid.

"It is becoming increasingly apparent that ... climate change is not going to be solved with one silver bullet," he said.


'Could be 24/7 power'
Around 3,000 miles away from Orbital's turbines, Verdant Power is using similar technology to generate power near Roosevelt Island in New York City's East River. Although not on the market yet, Verdant's turbines set up as part of a pilot project help supply electricity to New York's grid. But rather than float near the surface, they're mounted on a frame that's lowered to the bottom of the river.

"The best way to envision what Verdant Power's technology is, is to think of wind turbines underwater," the company's founder, Trey Taylor, told CNN Business. And river currents tend to provide the same advantages for energy generation as ocean currents, he explained (though the East River is also connected to the Atlantic).

"What's nice about our rivers and systems is that could be 24/7 power," he said, even as U.S. offshore wind aims to compete with gas. "Not to ding wind or solar, but the wind doesn't always blow and the sun doesn't always shine. But river currents, depending on the river, could be 24/7."

Verdant Power helps supply electricity to New York City
Over the course of eight months, Verdant has generated enough electricity to power roughly 60 homes — though Taylor says a full-fledged power plant built on its technology could generate enough for 6,000 homes. And by his estimate, the global capacity for tidal energy is enormous, with regions like the Bay of Fundy pursuing new attempts around Nova Scotia.


A costly technology
The biggest obstacle to reaching that goal at the moment is how expensive it is to set up and scale up tidal power systems.

"Generating electricity from ocean waves is not the challenge, the challenge is doing it in a cost-effective way that people are willing to pay for that competes with ... other sources of energy," said Jesse Roberts, Environmental Analysis Lead at the US government-affiliated Sandia National Laboratories. "The added cost of going out into the ocean and deploying in the ocean... that's very expensive to do," he added. According to 2019 figures from the US Department of Energy, the average commercial tidal energy project costs as much as $280 per megawatt hour. Wind energy, by comparison, currently costs roughly $20 per megawatt hour and is "one of the lowest-priced energy sources available today," with major additions like the UK's biggest offshore wind farm starting to supply the grid, according to the agency.

When operational, the Orbital turbine's wing blades drop below the surface of the water and generate power from ocean currents.

When operational, the Orbital turbine's wing blades drop below the surface of the water and generate power from ocean currents.

Roberts estimates that tidal energy is two or three decades behind wind energy in terms of adoption and scale.

The costs and challenges of operating underwater are something both Scott and Taylor acknowledge.
"Solar and wind are above ground. It's easy to work with stuff that you can see," Taylor said. "We're underwater, and it's probably easier to get a rocket to the moon than to get these to work underwater."
But the goal of tidal power is not so much to compete with those two energy sources as it is to grow the overall pie, alongside innovations such as gravity power that can help decarbonize grids.

"The low hanging fruit of solar and wind were quite obvious," Scott said. "But do they have to be the only solution? Is there room for other solutions? I think when the energy source is there, and you can develop technologies that can harness it, then absolutely."
 

 

Related News

View more

UK sets new record for wind power generation

Britain Wind Generation Record underscores onshore and offshore wind momentum, as National Grid ESO reported 20.91 GW, boosting zero-carbon electricity, renewables share, and grid stability amid milder weather, falling gas prices, and net zero goals.

 

Key Points

The Britain wind generation record is 20.91 GW, set on 30 Dec, driven by onshore and offshore turbines.

✅ Set on 30 Dec 2022 with peak output of 20.91 GW.

✅ Zero-carbon sources hit 87.2% of grid supply.

✅ Driven by onshore and offshore wind; ESO reported stability.

 

Britain has set a new record for wind generation as power from onshore and offshore turbines helped boost clean energy supplies late last year.

National Grid’s electricity system operator (ESO), which handles Great Britain’s grid operations, said that a new record for wind generation was set on 30 December, when 20.91 gigawatts (GW) were produced by turbines.

This represented the third time Britain’s fleet of wind turbines set new generation records in 2022. In May, National Grid had to ask some turbines in the west of Scotland to shut down, as the network was unable to store such a large amount of electricity when a then record 19.9GW of power was produced – enough to boil 3.5m kettles.

The ESO said a new record was also set for the share of electricity on the grid coming from zero-carbon sources – renewables and nuclear – which supplied 87.2% of total power. These sources have accounted for about 55% to 59% of power over the past couple of years.

The surge in wind generation represents a remarkable reversal in fortunes as a cold snap that enveloped Britain and Europe quickly turned to milder weather.

Power prices had soared as the freezing weather forced Britons to increase their heating use, pushing up demand for energy despite high bills.

The cold weather came with a period of low wind, reducing the production of Britain’s windfarms to close to zero.

Emergency coal-fired power units at Drax in North Yorkshire were put on standby but ultimately not used, while gas-fired generation accounted for nearly 60% of the UK’s power output at times.

However, milder weather in the UK and Europe in recent days has led to a reduction in demand from consumers and a fall in wholesale gas prices. It has also reduced the risk of power cuts this winter, which National Grid had warned could be a possibility.

Wind generation is increasingly leading the power mix in Britain and is seen as a crucial part of Britain’s move towards net zero. The prime minister, Rishi Sunak, is expected to overturn a moratorium on new onshore wind projects with a consultation on the matter due to run until March.

 

Related News

View more

Ukraine sees new virtue in wind power: It's harder to destroy

Ukraine Wind Energy Resilience shields the grid with wind power along the Black Sea, dispersing turbines to withstand missile attacks, accelerate clean energy transition, aid EU integration, and strengthen energy security and rapid recovery.

 

Key Points

A strategy in Ukraine using wind farms to harden the grid, ensure clean power, and speed recovery from missile strikes.

✅ Distributed turbines reduce single-point-of-failure risk

✅ Faster repair of substations and lines than power plants

✅ Supports EU-aligned clean energy and grid security goals

 

The giants catch the wind with their huge arms, helping to keep the lights on in Ukraine — newly built windmills, on plains along the Black Sea.

In 15 months of war, Russia has launched countless missiles and exploding drones at power plants, hydroelectric dams and substations, trying to black out as much of Ukraine as it can, as often as it can, even amid talk of limiting attacks on energy sites that has surfaced, in its campaign to pound the country into submission.

The new Tyligulska wind farm stands only a few dozen miles from Russian artillery, but Ukrainians say it has a crucial advantage over most of the country’s grid, helping stabilize the system even as electricity exports have occasionally resumed under fire.

A single, well-placed missile can damage a power plant severely enough to take it out of action, but Ukrainian officials say that doing the same to a set of windmills — each one tens of meters apart from any other — would require dozens of missiles. A wind farm can be temporarily disabled by striking a transformer substation or transmission lines, but these are much easier to repair than power plants.

“It is our response to Russians,” said Maksym Timchenko, CEO of DTEK Group, the company that built the turbines in the southern Mykolaiv region — the first phase of what is planned as Eastern Europe’s largest wind farm. “It is the most profitable and, as we know now, most secure form of energy.”

Ukraine has had laws in place since 2014 to promote a transition to renewable energy, both to lower dependence on Russian energy imports, with periods when electricity exports resumed to neighbors, and because it was profitable. But that transition still has a long way to go, and the war makes its prospects, like everything else about Ukraine’s future, murky.

In 2020, 12% of Ukraine’s electricity came from renewable sources — barely half the percentage for the European Union. Plans for the Tyligulska project call for 85 turbines producing up to 500 megawatts of electricity. That’s enough for 500,000 apartments — an impressive output for a wind farm, but less than 1% of the country’s prewar generating capacity.

After the Kremlin began its full-scale invasion of Ukraine in February 2022, the need for new power sources became acute, prompting deliveries such as a mobile gas turbine power plant to bolster capacity. Russia has bombarded Ukraine’s power plants and cut off delivery of the natural gas that fueled some of them.

Russian occupation forces have seized a large part of the country’s power supply, and Russia has built power lines to reactivate the Zaporizhzhia plant in occupied territory, ensuring that its output does not reach territory still held by Ukraine. They hold the single largest generator, the 5,700-megawatt Zaporizhzhia Nuclear Power Plant, which has been damaged repeatedly in fighting and has stopped transmitting energy to the grid, with UN inspectors warning of mines at the site during recent visits. They also control 90% of Ukraine’s renewable energy plants, which are concentrated in the southeast.

The postwar recovery plans Ukraine has presented to supporters including the European Union, which it hopes to join, feature a major new commitment to clean energy, even as a controversial proposal on Ukraine’s nuclear plants continues to stir debate.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified