Constellation NewEnergy to supply power to U.S. GSA

By Business Wire


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Constellation Energy announced that its subsidiary, Constellation NewEnergy, Inc., has signed the U.S. General Services Administration (GSA) to an electricity and renewable energy supply contract that will serve more than 150 federal agency and institutional customer accounts in Washington, D.C.

Under the two-year contract Constellation NewEnergy will supply 1.8 million megawatt hours of electricity per year to sites that include the U.S. Capitol, Kennedy Center, Smithsonian Institution, FBI and the Federal Reserve, among others. This includes meeting the GSA requirement to serve 5 percent of the total load with renewable energy or renewable energy certificates (RECs). Constellation NewEnergy will supply more than 90,000 RECs annually to these federal customers.

“Constellation NewEnergy will apply its considerable public sector energy management experience to help the GSA and other federal agencies control energy costs and maintain budget certainty,” said Michael Kagan, president of Constellation NewEnergy. “This also marks the single largest annual REC purchase by a Constellation NewEnergy customer, and we are proud to be assisting the U.S. General Services Administration and the federal agencies it serves in supporting renewables and becoming more sustainable.”

Constellation NewEnergy is also a federally approved provider of demand response services for both military and civilian government agencies, enabling federal sites to shed load during times of peak energy demand. Constellation Energy subsidiaries are also helping to improve the efficiency of federal buildings through energy retrofit projects, energy saving performance contracts and deployment of renewable energy systems.

Related News

Australian operator warns of reduced power reserves

Australia Electricity Supply Shortfall highlights AEMO's warning of reduced reserves as coal retirements outpace capacity, risking load shedding. Calls for 1GW strategic reserves and investment in renewables, storage, and dispatchable power in Victoria.

 

Key Points

It is AEMO's forecast of reduced reserves, higher outage risk, and a need for 1GW strategic backup capacity.

✅ Coal retirements outpacing firm, dispatchable capacity

✅ AEMO urges 1GW strategic reserves in Victoria and South Australia

✅ Investment needed: renewables, storage, grid and reliability services

 

Australia’s electricity operator has warned of threats to electricity supply including a shortfall in generation and reduced power reserves on the horizon.

The Australian Energy Market Operator (AEMO) has called for further investment in the country’s energy portfolio as retiring coal plants are replaced by intermittent renewables poised to eclipse coal, leaving the grid with less back-up capacity.

AEMO has said this increases the chances of supply interruption and load shedding.

It added the federal government should target 1GW of strategic reserves in the states most at risk – Victoria and South Australia, even as the Prime Minister has ruled out taxpayer-funded power plants in the current energy battle.

CEO of the Clean Energy Council, Kane Thornton, said the shortfall in generation, reflected in a short supply of electricity, was due a decade of indecisiveness and debate leading to a “policy vacuum”.

He added: “The AEMO report revealed that the new projects added to the system under the renewable energy target will help to improve reliability over the next few years.

“We need to accept that the energy system is in transition, with lessons from dispatchable power shortages in Europe, and long term policy is now essential to ensure private investment in the most efficient new energy technology and solutions.”

 

Related News

View more

Garbage Truck Crash Knocks Down Power Poles in Little Haiti

Little Haiti Garbage Truck Power Outage in Miami after mechanical arms snagged power lines, snapping power poles; FPL crews, police, and businesses faced traffic delays, safety risks, and rapid restoration efforts across the neighborhood.

 

Key Points

A Miami incident where a garbage truck snagged power lines, toppling poles and causing outages and traffic delays.

✅ Mechanical arms caught overhead lines; three power poles snapped

✅ FPL dispatched, police directed traffic; restoration prioritized

✅ Dozens of businesses affected; afternoon rush hour congestion

 

On January 16, 2025, a significant incident unfolded in Miami's Little Haiti neighborhood when a garbage truck collided with power lines, causing three power poles to collapse and resulting in widespread power outages and traffic disruptions.

Incident Details

Around 1:30 p.m., a garbage truck traveling west on Northeast 82nd Street toward Interstate 95 became entangled with overhead power lines. The truck's mechanical arms caught the lines, leading to the snapping of three power poles and plunging the area into darkness, a scenario echoed by urban incidents like a manhole fire that left thousands without power. Witnesses reported a loud boom followed by an immediate power outage. One local business owner described the event, stating, "There was a loud boom, and suddenly the power went out."

Impact on the Community

The incident caused significant disruptions in the Little Haiti area. At least a dozen businesses were affected by the power outage, and in wider Florida events restoration can take weeks depending on damage, leading to operational halts and potential financial losses. The timing of the crash, during the afternoon rush hour, exacerbated traffic congestion as commuters were forced to navigate through the area, and similar disruptions occur when strong winds knock out power, further complicating the situation.

Response and Recovery Efforts

In response to the incident, Miami police directed traffic to alleviate congestion and ensure public safety. Florida Power & Light (FPL) crews, known for their major outage response, were promptly dispatched to the scene to assess the damage and begin restoration efforts. The priority was to safely remove the damaged power poles and restore electricity to the affected area. FPL's swift action was crucial in minimizing the duration of the power outage and restoring normalcy to the community.

Safety Considerations

This incident underscores the importance of safety protocols for vehicles operating in areas with overhead power lines. Garbage trucks, due to their design and operational mechanisms, are particularly susceptible to such accidents, and in broader disasters some regions require a power grid rebuild to recover, highlighting the stakes. It is imperative for operators to be vigilant and adhere to safety guidelines to prevent similar occurrences.

Community Resilience

Despite the challenges posed by the incident, the Little Haiti community demonstrated resilience. Local businesses and residents cooperated with authorities, while utilities elsewhere have restored power to thousands after major events, and the prompt response from emergency services highlighted the community's strength in the face of adversity.

 

Related News

View more

Toronto Power Outages Persist for Hundreds After Spring Storm

Toronto Hydro Storm Outages continue after strong winds and heavy rain, with crews restoring power, clearing debris and downed lines. Safety alerts and real-time updates guide affected neighborhoods via website and social media.

 

Key Points

Toronto Hydro Storm Outages are weather-related power cuts; crews restore service safely and share public updates.

✅ Crews prioritize areas with severe damage and limited access

✅ Report downed power lines; keep a safe distance

✅ Check website and social media for restoration updates

 

In the aftermath of a powerful spring storm that swept through Toronto on Tuesday, approximately 400 customers remain without power as of Sunday. The storm, which brought strong winds and heavy rain that caused severe flooding in some areas, led to significant damage across the city, including downed trees and power lines. Toronto Hydro crews have been working tirelessly to restore service, similar to efforts by Sudbury Hydro crews in Northern Ontario, focusing on areas with the most severe damage. While many customers have had their power restored, the remaining outages are concentrated in neighborhoods where access is challenging due to debris and fallen infrastructure.

Toronto Hydro has assured residents that restoration efforts are ongoing and that they are prioritizing safety and efficiency, in step with recovery from damaging storms in Ontario across the province. The utility company has urged residents to report any downed power lines and to avoid approaching them, as they may still be live and dangerous, and notes that utilities sometimes rely on mutual aid deployments to speed restoration in large-scale events. Additionally, Toronto Hydro has been providing updates through their website and social media channels, keeping the public informed about the status of power restoration in affected areas.

The storm's impact has also led to disruptions in other services, and power outages in London disrupted morning routines for thousands earlier in the week. Some public transportation routes experienced delays due to debris on tracks, and several schools in the affected areas were temporarily closed. City officials are coordinating with various agencies to address these issues and ensure that services return to normal as quickly as possible, even as Quebec contends with widespread power outages after severe windstorms.

Residents are advised to stay updated on the situation through official channels and to exercise caution when traveling in storm-affected areas. Toronto Hydro continues to work diligently to restore power to all customers and appreciates the public's patience during this challenging time, a challenge echoed when Texas utilities struggled to restore power during Hurricane Harvey.

 

Related News

View more

Adani Electricity's Power Supply Cuts in Mumbai

Adani Electricity Mumbai Power Cuts follow non-payment rules, reflecting billing disputes, regulatory compliance, consumer impact, and affordability concerns, while prompting mitigation measures like flexible payment plans, assistance programs, and clearer communication for residents.

 

Key Points

AEML cutoffs for unpaid bills per rules, raising affordability worries, billing issues, and calls for flexible aid.

✅ Triggered by unpaid bills under regulatory guidelines

✅ Affordability and billing transparency concerns raised

✅ Mitigation: flexible plans, aid for low-income users

 

Adani Electricity Mumbai Limited (AEML) recently made headlines by cutting power supply to around 100 homes in Mumbai, sparking discussions about the reasons behind this action and its implications for consumers, especially as reports like the Northeast D.C. outage continue to surface.

Background of the Incident

The power supply disconnections by AEML were reportedly due to non-payment of electricity bills by the affected households. This action, although necessary under AEML's policies and in accordance with regulatory guidelines, has raised concerns about the impact on residents, particularly during challenging economic times when pandemic electricity shut-offs highlighted energy insecurity.

Reasons for Non-Payment

Non-payment of electricity bills can stem from various reasons, including financial hardships, disputes over billing accuracy, or unforeseen circumstances affecting household finances. In Mumbai, where the cost of living is high, utility bills constitute a significant portion of monthly expenses for many households, mirroring trends of rising electricity bills seen elsewhere.

Regulatory and Legal Framework

AEML's decision to disconnect power supply aligns with regulatory provisions governing utility services, which may include emergency disconnection moratoriums in other jurisdictions. Utility companies are mandated to enforce bill payments to maintain operational sustainability and ensure fair distribution of resources among consumers.

Consumer Impact and Response

The power disconnections have prompted reactions from affected residents and consumer advocacy groups, highlighting issues related to affordability, transparency in billing practices, and the need for supportive measures during times of economic distress amid heat-related electricity struggles that pressure vulnerable households.

Mitigation Measures

In response to such incidents, utility companies and regulatory authorities often implement mitigation measures. These may include flexible payment options, financial assistance programs for low-income households, and enhanced communication about billing procedures and payment deadlines, along with policy scrutiny such as utility spending oversight to curb unnecessary costs.

Future Considerations

As cities like Mumbai continue to grow and face challenges related to urbanization and infrastructure development, ensuring reliable and affordable access to essential services like electricity, including efforts to prevent summer power outages, remains a priority. Balancing the operational needs of utility providers with consumer welfare concerns requires ongoing dialogue and proactive measures from all stakeholders.

Conclusion

The power supply cuts by Adani Electricity in Mumbai underscore the complexities of managing utility services in urban centers. While necessary for financial viability and regulatory compliance, such actions also highlight broader issues of affordability and consumer protection. Moving forward, collaborative efforts between utility companies, regulatory authorities, and community stakeholders are essential in addressing these challenges and ensuring equitable access to essential services for all residents.

 

Related News

View more

Blood Nickel and Canada's Role in Global Mining Sustainability

Blood Nickel spotlights ethical sourcing in the EV supply chain, linking nickel mining to human rights, environmental impact, ESG standards, and Canadian leadership in sustainable extraction, transparency, and community engagement across global battery materials markets.

 

Key Points

Blood Nickel is nickel mined under unethical or harmful conditions, raising ESG, human rights, and environmental risks.

✅ Links EV battery supply chains to social and environmental harm

✅ Calls for transparency, traceability, and ethical sourcing standards

✅ Highlights Canada's role in sustainable mining and community benefits

 

The rise of electric vehicles (EVs) has sparked a surge in demand for essential battery components, particularly nickel, and related cobalt market pressures essential for their batteries. This demand has ignited concerns about the environmental and social impacts of nickel mining, particularly in regions where standards may not meet global sustainability benchmarks. This article explores the concept of "blood nickel," its implications for the environment and communities, and Canada's potential role in promoting sustainable mining practices.

The Global Nickel Boom

As the automotive industry shifts towards electric vehicles, nickel has emerged as a critical component for lithium-ion batteries due to its ability to store energy efficiently. This surge in demand has led to a global scramble for nickel, with major producers ramping up extraction efforts to meet market needs amid EV shortages and wait times that underscore supply constraints. However, this rapid expansion has raised alarms about the environmental consequences of nickel mining, including deforestation, water pollution, and carbon emissions from energy-intensive extraction processes.

Social Impacts: The Issue of "Blood Nickel"

Beyond environmental concerns, the term "blood nickel" has emerged to describe nickel mined under conditions that exploit workers, disregard human rights, or fail to uphold ethical labor standards. In some regions, nickel mining has been linked to issues such as child labor, unsafe working conditions, and displacement of indigenous communities. This has prompted calls for greater transparency and accountability in global supply chains, with initiatives like U.S.-ally efforts to secure EV metals aiming to align sourcing standards, to ensure that the benefits of EV production do not come at the expense of vulnerable populations.

Canada's Position and Potential

Canada, home to significant nickel deposits, stands at a pivotal juncture in the global EV revolution, supported by EV assembly deals in Canada that strengthen domestic manufacturing. With its robust regulatory framework, commitment to environmental stewardship, and advanced mining technologies, Canada has the potential to lead by example in sustainable nickel mining practices. Canadian companies are already exploring innovations such as cleaner extraction methods, renewable energy integration, and community engagement initiatives to minimize the environmental footprint and enhance social benefits of nickel mining.

Challenges and Opportunities

Despite Canada's potential, the mining industry faces challenges in balancing economic growth with environmental and social responsibility and building integrated supply chains, including downstream investments like a battery plant in Niagara that can connect materials to markets. Achieving sustainable mining practices requires collaboration among governments, industry stakeholders, and local communities to establish clear guidelines, monitor compliance, and invest in responsible resource development. This approach not only mitigates environmental impacts but also fosters long-term economic stability and social well-being in mining regions.

Pathways to Sustainability

Moving forward, Canada can play a pivotal role in shaping the global nickel supply chain by promoting transparency, ethical sourcing, and environmental stewardship. This includes advocating for international standards that prioritize sustainable mining practices, supporting research and development of cleaner technologies, and leveraging adjacent resources such as Alberta lithium potential to diversify battery supply chains, while fostering partnerships with global stakeholders to ensure a fair and equitable transition to a low-carbon economy.

Conclusion

The rapid growth of electric vehicles has propelled nickel into the spotlight, highlighting both its strategic importance and the challenges associated with its extraction. As global demand for "green" metals intensifies, addressing the concept of "blood nickel" becomes increasingly urgent, even as trade measures like tariffs on Chinese EVs continue to reshape market incentives. Canada, with its rich nickel reserves and commitment to sustainability, has an opportunity to lead the charge towards ethical and responsible mining practices. By leveraging its strengths in innovation, regulation, and community engagement, Canada can help forge a path towards a more sustainable future where electric vehicles drive progress without compromising environmental integrity or social justice.

 

Related News

View more

Opinion: Nuclear Beyond Electricity

Nuclear decarbonization leverages low-carbon electricity, process heat, and hydrogen from advanced reactors and SMRs to electrify industry, buildings, and transport, supporting net-zero strategies and grid flexibility alongside renewables with dispatchable baseload capacity.

 

Key Points

Nuclear decarbonization uses reactors to supply low-carbon power, heat, and hydrogen, cutting emissions across industry.

✅ Advanced reactors and SMRs enable high-temperature process heat

✅ Nuclear-powered electrolysis and HTSE produce low-carbon hydrogen

✅ District heating from reactors reduces pollution and coal use

 

By Dr Henri Paillere, Head of the Planning and Economics Studies Section of the IAEA

Decarbonising the power sector will not be sufficient to achieving net-zero emissions, with assessments indicating nuclear may be essential across sectors. We also need to decarbonise the non-power sectors - transport, buildings and industry - which represent 60% of emissions from the energy sector today. The way to do that is: electrification with low-carbon electricity as much as possible; using low-carbon heat sources; and using low-carbon fuels, including hydrogen, produced from clean electricity.
The International Energy Agency (IEA) says that: 'Almost half of the emissions reductions needed to reach net zero by 2050 will need to come from technologies that have not reached the market today.' So there is a need to innovate and push the research, development and deployment of technologies. That includes nuclear beyond electricity.

Today, most of the scenario projections see nuclear's role ONLY in the power sector, despite ongoing debates over whether nuclear power is in decline globally, but increased electrification will require more low-carbon electricity, so potentially more nuclear. Nuclear energy is also a source of low-carbon heat, and could also be used to produce low-carbon fuels such as hydrogen. This is a virtually untapped potential.

There is an opportunity for the nuclear energy sector - from advanced reactors, next-gen nuclear small modular reactors, and non-power applications - but it requires a level playing field, not only in terms of financing today's technologies, but also in terms of promoting innovation and supporting research up to market deployment. And of course technology readiness and economics will be key to their success.

On process heat and district heating, I would draw attention to the fact there have been decades of experience in nuclear district heating. Not well spread, but experience nonetheless, in Russia, Hungary and Switzerland. Last year, we had two new projects. One floating nuclear power plant in Russia (Akademik Lomonosov), which provides not only electricity but district heating to the region of Pevek where it is connected. And in China, the Haiyang nuclear power plant (AP1000 technology) has started delivering commercial district heating. In China, there is an additional motivation to reducing emissions, namely to cut air pollution because in northern China a lot of the heating in winter is provided by coal-fired boilers. By going nuclear with district heating they are therefore cutting down on this pollution and helping with reducing carbon emissions as well. And Poland is looking at high-temperature reactors to replace its fleet of coal-fired boilers and so that's a technology that could also be a game-changer on the industry side.

There have also been decades of research into the production of hydrogen using nuclear energy, but no real deployment. Now, from a climate point of view, there is a clear drive to find substitute fuels for the hydrocarbon fuels that we use today, and multiple new nuclear stations are seen by industry leaders as necessary to meet net-zero targets. In the near term, we will be able to produce hydrogen with electrolysis using low-carbon electricity, from renewables and nuclear. But the cheapest source of low-carbon power is from the long-term operation of existing nuclear power plants which, combined with their high capacity factors, can give the cheapest low-carbon hydrogen of all.

In the mid to long term, there is research on-going with processes that are more efficient than low-temperature electrolysis, which is high temperature steam electrolysis or thermal splitting of water. These may offer higher efficiencies and effectiveness but they also require advanced reactors that are still under development. Demonstration projects are being considered in several countries and we at the IAEA are developing a publication that looks into the business opportunities for nuclear production of hydrogen from existing reactors. In some countries, there is a need to boost the economics of the existing fleet, especially in the electricity systems where you have low or even negative market prices for electricity. So, we are looking at other products that have higher values to improve the competitiveness of existing nuclear power plants.

The future means not only looking at electricity, but also at industry and transport, and so integrated energy systems. Electricity will be the main workhorse of our global decarbonisation effort, but through heat and hydrogen. How you model this is the object of a lot of research work being done by different institutes and we at the IAEA are developing some modelling capabilities with the objective of optimising low-carbon emissions and overall costs.

This is just a picture of what the future might look like: a low-carbon power system with nuclear lightwater reactors (large reactors, small modular reactors and fast reactors) drawing on the green industrial revolution reactor waves in planning; solar, wind, anything that produces low-carbon electricity that can be used to electrify industry, transport, and the heating and cooling of buildings. But we know there is a need for high-temperature process steam that electricity cannot bring but which can be delivered directly by high-temperature reactors. And there are a number of ways of producing low-carbon hydrogen. The beauty of hydrogen is that it can be stored and it could possibly be injected into gas networks that could be run in the future on 100% hydrogen, and this could be converted back into electricity.

So, for decarbonising power, there are many options - nuclear, hydro, variable renewables, with renewables poised to surpass coal in global generation, and fossil with carbon capture and storage - and it's up to countries and industries to invest in the ones they prefer. We find that nuclear can actually reduce the overall cost of systems due to its dispatchability and the fact that variable renewables have a cost because of their intermittency. There is a need for appropriate market designs and the role of governments to encourage investments in nuclear.

Decarbonising other sectors will be as important as decarbonising electricity, from ways to produce low-carbon heat and low-carbon hydrogen. It's not so obvious who will be the clear winners, but I would say that since nuclear can produce all three low-carbon vectors - electricity, heat and hydrogen - it should have the advantage.
We at the IAEA will be organising a webinar next month with the IEA looking at long-term nuclear projections in a net-zero world, building on IAEA analysis on COVID-19 and low-carbon electricity insights. That will be our contribution from the point of view of nuclear to the IEA's special report on roadmaps to net zero that it will publish in May.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified