Grid needs major upgrades now

By Kennebec Journal


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The Maine Power Reliability Program (MPRP) is an essential investment in our state's electricity transmission grid, which brings power from generation plants to cities and towns.

Central Maine Power's proposal for this reliability program follows an exhaustive study of the company's grid and its links to systems in Canada and the other New England states. That work showed the need for immediate, major investments to improve grid reliability based on the loads that flow across the system today. CMP's plan will bring Maine into compliance with mandatory federal standards for grid reliability and reduce economic and social risks of grid failures in the future.

Maine's bulk power grid dates from the late 1960s when coal, nuclear, oil and large hydro plants supplied most of the region's electricity. The grid has served us well, but 40 years forward, Maine is a different place.

Our electricity usage has doubled. Population has increased by nearly one-third, and people and jobs have moved south and toward the coast.

Our sources of electricity have changed as well, and the technology of energy generation is evolving in ways that will make us more dependent on the next grid we build.

Today's emerging renewable resources, such as wind, wave, tidal and solar power, depend on highly variable weather conditions, and they often require sites in remote mountains or where the ocean's energy can be tapped.

That these resources are so variable and scattered does not make them less vital to our future, but it does require a transmission network capable of matching rapid and major variations in production with sometimes-distant customers. A stronger, modern grid is an essential investment for the renewable energy development that Maine seeks.

Maine is not an electrical island. Our grid is linked with neighboring systems on all sides for access to electricity markets and system reliability. For example, Maine actually imports electricity from other New England states and Canada about 30 percent of the time.

Also, the reliability of our grid affects all the other New England states, so electricity customers in all six states will share the cost of the MPRP in proportion to their share of the regional load. The MPRP will cost $1.5 billion, but Maine's share will be only 8 percent of that because we use just 8 percent of the electricity carried on the New England grid. The other five New England states will pay the other 92 percent, or about $1.38 billion.

The MPRP will also provide a needed boost for Maine's economy. It will create over 3,300 jobs during the peak years of construction and bring nearly $289 million into our state's economy by the time it is built.

A reliable supply of electricity is a necessity and expectation in a modern economy. Looking back, Maine has benefited immensely from the investments that were made 40 years ago, and many of our hopes for a stronger economy, cleaner environment, and more secure energy future will depend on the investments we are about to make. The MPRP is the right choice for Maine.

GridSolar partners were invited to state their case for their project. Instead, they attacked the Maine Power Reliability Program (MPRP). GridSolar's public filings are already light on facts. Their unwillingness to provide substantive information to readers betrays their own lack of confidence in the merits of their proposal.

GridSolar is hugely more expensive to Maine customers because they will pay 100 percent of the costs. For the MPRP, customers will only pay 8 percent of the costs, and residents in other New England states will pay the rest. GridSolar claims that it would sell energy at 3 cents per kWh for 20 years but neglects to mention that it would do so only if CMP's customers pay more than a billion dollars of the project's capital costs.

GridSolar will require 10,000 acres of land to build the solar plantations that it proposes. GridSolar criticizes CMP for use of eminent domain authority, but this attack is simply another example of GridSolar's indifference to the facts.

Central Maine Power has not used its eminent domain authority a single time to secure more than 400 parcels to date. In fact, GridSolar has requested eminent domain authority from the Maine PUC because it knows that it can't guarantee acquisition of 10,000 acres without it. CMP welcomes the addition of renewable resources to Maine. MPRP is vital to make that happen.

To suggest, as GridSolar does, that solar power can serve as a replacement for MPRP is a little like saying that once you have hybrid cars you don't need roads. Maine needs a realistic plan to meet our goals for reliable power, renewable resources and energy security.

Related News

Opinion: Fossil-fuel workers ready to support energy transition

Canada Net-Zero Transition unites energy workers, R&D, and clean tech to decarbonize steel and cement with hydrogen, scale renewables, and build hybrid storage, delivering a just transition that strengthens communities and the economy.

 

Key Points

A national plan to reach net-zero by 2050 via renewables, hydrogen, decarbonization, and a just transition for workers.

✅ Hydrogen for steel and cement decarbonization

✅ Hybrid energy storage and clean tech R&D

✅ Just transition pathways for energy workers

 

Except for an isolated pocket of skeptics, there is now an almost universal acceptance that climate change is a global emergency that demands immediate and far-reaching action to defend our home and future generations. Yet in Canada we remain largely focused on how the crisis divides us rather than on the potential for it to unite us, despite nationwide progress in electricity decarbonization efforts.

It’s not a case of fossil-fuel industry workers versus the rest, or Alberta versus British Columbia where bridging the electricity gap could strengthen cooperation. We are all in this together. The challenge now is how to move forward in a way that leaves no one behind.

The fossil fuel industry has been — and continues to be — a key driver of Canada’s economy. Both of us had successful careers in the energy sector, but realized, along with an increasing number of energy workers, that the transition we need to cope with climate change could not be accomplished solely from within the industry.

Even as resource companies innovate to significantly reduce the carbon burden of each barrel, the total emission of greenhouse gases from all sources continues to rise. We must seize the opportunity to harness this innovative potential in alternative and complementary ways, mobilizing research and development, for example, to power carbon-intensive steelmaking and cement manufacture from hydrogen or to advance hybrid energy storage systems and decarbonizing Canada's electricity grid strategies — the potential for cross-over technology is immense.

The bottom line is inescapable: we must reach net-zero emissions by 2050 in order to prevent runaway global warming, which is why we launched Iron & Earth in 2016. Led by oilsands workers committed to increasingly incorporating renewable energy projects into our work scope, our non-partisan membership now includes a range of industrial trades and professions who share a vision for a sustainable energy future for Canada — one that would ensure the health and equity of workers, our families, communities, the economy, and the environment.

Except for an isolated pocket of skeptics, there is now an almost universal acceptance that climate change is a global emergency that demands immediate and far-reaching action, including cleaning up Canada's electricity to meet climate pledges, to defend our home and future generations. Yet in Canada we remain largely focused on how the crisis divides us rather than on the potential for it to unite us.

It’s not a case of fossil-fuel industry workers versus the rest, or Alberta versus British Columbia. We are all in this together. The challenge now is how to move forward in a way that leaves no one behind.

The fossil fuel industry has been — and continues to be — a key driver of Canada’s economy. Both of us had successful careers in the energy sector, but realized, along with an increasing number of energy workers, that the transition we need to cope with climate change could not be accomplished solely from within the industry.

Even as resource companies innovate to significantly reduce the carbon burden of each barrel, the total emission of greenhouse gases from all sources continues to rise, underscoring that Canada will need more electricity to hit net-zero, according to the IEA. We must seize the opportunity to harness this innovative potential in alternative and complementary ways, mobilizing research and development, for example, to power carbon-intensive steelmaking and cement manufacture from hydrogen or to advance hybrid energy storage systems — the potential for cross-over technology is immense.

The bottom line is inescapable: we must reach net-zero emissions by 2050 in order to prevent runaway global warming, which is why we launched Iron & Earth in 2016. Led by oilsands workers committed to increasingly incorporating renewable energy projects into our work scope, as calls for a fully renewable electricity grid by 2030 gain attention, our non-partisan membership now includes a range of industrial trades and professions who share a vision for a sustainable energy future for Canada — one that would ensure the health and equity of workers, our families, communities, the economy, and the environment.

 

Related News

View more

FPL stages massive response to Irma but power may not be back for days or weeks

FPL Power Restoration mobilizes Florida linemen and mutual-aid utility crews to repair the grid, track outages with smart meters, prioritize hospitals and essential services, and accelerate hurricane recovery across the state.

 

Key Points

FPL Power Restoration is the utility's hurricane effort to rebuild the grid and quickly restore service across Florida.

✅ 18,000 mutual-aid utility workers deployed from 28 states

✅ Smart meters pinpoint outages and accelerate repairs

✅ Critical facilities prioritized before neighborhood restorations

 

Teams of Florida Power & Light linemen, assisted by thousands of out-of-state utility workers and 200 Ontario workers who joined the effort, scrambled across Florida Monday to tackle the Herculean task of turning the lights back on in the Sunshine State.

The job is quite simply mind-boggling as Irma caused extensive damages to the power grid and the outages have broken previous records, and in other storms Louisiana's grid needed a complete rebuild after Hurricane Laura to restore service.

By 3 p.m. Monday, some 3.47 million of the company's 4.9 million customers in Florida were without power. This breaks the record of 3.24 million knocked off the grid during Hurricane Wilma in 2005, according to FPL spokesman Bill Orlove.

Prepared to face massive outages, FPL brought some 18,000 utility workers from 28 states here to join FPL crews, including Canadian power crews arriving to help restore service, to enable them to act more quickly.

“That’s the thing about the utility industry,” said  Alys Daly, an FPL spokeswoman. “It’s truly a family.”

Even with what is believed to be the largest assembly of utility workers ever assembled for a single storm in the United States, power restoration is expected to take weeks, not days in some areas.

FPL vowed to work as quickly as possible as they assess the damage and send out crews to restore power.

"We understand that people need to have power right away to get their lives back to normal," Daly said.

The priority, she said, were medical and emergency management facilities and then essential service providers like gas stations and grocery stores.

After that, FPL will endeavor to repair the problems that will restore power to the maximum number of people possible. Then it's individual neighborhoods.

As of 3 p.m. Monday, 219,040 of FPL's 307,600 customers on the Space Coast had no power. That's an improvement over the 260,600 earlier in the day.

Daly was unable to say Monday how many crews FPL had working in Brevard County. In some areas, power came back relatively swiftly, much quicker than expected.

" I was definitely surprised at how quickly they got our power back on here in NE Palm Bay," said Kelli Coats. "We lost power last night around 9 p.m Sunday and regained power around 8:30 a.m. today."

Others, many of them beachside, were looking at a full 24 hours without power and it's possible it could extend into Tuesday or longer.

One reason for improved response times since 2005, Daly said, is the installation of nearly 5 million "Smart Meters" at residences. These new devices, which replaced older analog models, allows FPL crews to track a neighborhood's power status via handheld computers, pinpointing the cause of an outage so it can be repaired.

Quick restoration is key as stores and restaurants struggle to re-open, and Gulf Power crews restored power in the early push. Without electricity many of them just can't re-start operations and get goods and services to consumers.

At the Atlanta-based Waffle House, which Federal Emergency Management Administration use to gauge the severity of damage and service to an area, restaurant executives are reviewing its operations in Florida and should have a better handle Monday afternoon how quickly restaurants will re-open.

"Right now, we're in an assessment phase," said Pat Warner, spokesman for Waffle House. "We're looking at which stores have power and which ones have damage."

FEMA's color-coded Waffle House Index started after the hurricanes in the early 2000s. It works like this: When an official phones a Waffle House to see if it is open,  the next stop is to assess it's level of service. If it's open and serving a full menu, the index is green. When the restaurant is open but serving a limited menu, it's yellow. When it's closed, it's red.

 

Related News

View more

Biden's Announcement of a 100% Tariff on Chinese-Made Electric Vehicles

U.S. 100% Tariff on Chinese EVs aims to protect domestic manufacturing, counter subsidies, and reshape the EV market, but could raise prices, disrupt supply chains, invite retaliation, and complicate climate policy and trade relations.

 

Key Points

A 100% import duty on Chinese EVs to boost U.S. manufacturing, counter subsidies, and address supply chain risks.

✅ Protects domestic EV manufacturing and jobs

✅ Counters alleged subsidies and IP concerns

✅ May raise prices, limit choice, trigger retaliation

 

President Joe Biden's administration recently made headlines with its announcement of a 100% tariff on Chinese electric vehicles (EVs), marking a significant escalation in trade tensions between the two economic powerhouses. The decision, framed as a measure to protect American industries and promote domestic manufacturing, has sparked debates over its potential impact on the EV market, global supply chains, and bilateral relations between the United States and China.

The imposition of a 100% tariff on Chinese-made EVs reflects the Biden administration's broader efforts to revitalize the American automotive industry and promote the transition to electric vehicles as part of its climate agenda and tighter EPA emissions rules that could accelerate adoption. By imposing tariffs on imported EVs, particularly those from China, the administration aims to incentivize domestic production and create jobs in the growing green economy, and to secure critical EV metals through allied supply efforts. Additionally, the tariff is seen as a response to concerns about unfair trade practices, including intellectual property theft and market distortions, allegedly perpetuated by Chinese companies.

However, the announcement has triggered a range of reactions from various stakeholders, with both proponents and critics offering contrasting perspectives on the potential consequences of such a policy. Proponents argue that the tariff will help level the playing field for American automakers, who face stiff competition from Chinese companies benefiting from government subsidies and lower production costs. They contend that promoting domestic manufacturing of EVs will not only create high-quality jobs but also enhance national security by reducing dependence on foreign supply chains at a time when an EV inflection point is approaching.

On the other hand, critics warn that the 100% tariff on Chinese-made EVs could have unintended consequences, including higher prices for consumers, as seen in the UK EV prices and Brexit debate, disruptions to global supply chains, and retaliatory measures from China. Chinese EV manufacturers, such as NIO, BYD, and XPeng, have been gaining momentum in the global market, offering competitive products at relatively affordable prices. The tariff could limit consumer choice at a time when U.S. EV market share dipped in Q1 2024, potentially slowing the adoption of electric vehicles and undermining efforts to combat climate change and reduce greenhouse gas emissions.

Moreover, the tariff announcement comes at a sensitive time for U.S.-China relations, which have been strained by various issues, including trade disputes, human rights concerns, and geopolitical tensions. The imposition of tariffs on Chinese-made EVs could further exacerbate bilateral tensions, potentially leading to retaliatory measures from China and escalating trade frictions. As the world's two largest economies, the United States and China have significant economic interdependencies, and any escalation in trade tensions could have far-reaching implications for global trade and economic stability.

In response to the Biden administration's announcement, Chinese officials have expressed concerns and called for dialogue to resolve trade disputes through negotiation and mutual cooperation. China has also emphasized its commitment to fair trade practices and compliance with international rules and regulations governing trade.

Moving forward, the Biden administration faces the challenge of balancing its domestic priorities with the need to maintain constructive engagement with China and other trading partners, even as EV charging networks scale under its electrification push. While promoting domestic manufacturing and protecting American industries are legitimate policy goals, achieving them without disrupting global trade and undermining diplomatic relations requires careful deliberation and strategic foresight.

In conclusion, President Biden's announcement of a 100% tariff on Chinese-made electric vehicles reflects his administration's commitment to revitalizing American industries and promoting domestic manufacturing. However, the decision has raised concerns about its potential impact on the EV market, global supply chains, and U.S.-China relations. As policymakers navigate these complexities, finding a balance between protecting domestic interests and fostering international cooperation will be crucial to achieving sustainable economic growth and addressing global challenges such as climate change.

 

Related News

View more

New York Finalizes Contracts for 23 Renewable Projects Totaling 2.3 GW

New York Renewable Energy Contracts secure 23 projects totaling 2.3 GW, spanning offshore wind, solar, and battery storage under CLCPA goals, advancing 70% by 2030, a carbon-free 2040 grid, grid reliability, and green jobs.

 

Key Points

State agreements securing 23 wind, solar, and storage projects (2.3 GW) to meet CLCPA clean power targets.

✅ 2.3 GW across 23 wind, solar, and storage projects statewide

✅ Supports 70% renewables by 2030; carbon-free grid by 2040

✅ Drives emissions cuts, grid reliability, and green jobs

 

In a significant milestone for the state’s clean energy ambitions, New York has finalized contracts with 23 renewable energy projects, as part of large-scale energy projects underway in New York, totaling a combined capacity of 2.3 gigawatts (GW). This move is part of the state’s ongoing efforts to accelerate its transition to renewable energy, reduce carbon emissions, and meet the ambitious targets set under the Climate Leadership and Community Protection Act (CLCPA), which aims to achieve a carbon-free electricity grid by 2040.

A Strong Commitment to Renewable Energy

The 23 projects secured under these contracts represent a diverse range of renewable energy sources, including wind, solar, and battery storage. Together, these projects are expected to contribute significantly to New York’s energy grid, generating enough clean electricity to power millions of homes. The deal is a key component of New York’s broader strategy to achieve a 70% renewable energy share in the state’s electricity mix by 2030 and to reduce greenhouse gas emissions by 85% by 2050.

Governor Kathy Hochul celebrated the agreements as a major step forward in the state’s commitment to combating climate change while creating green jobs and economic opportunities. “New York is leading the nation in its clean energy goals, and these projects will help us meet our bold climate targets while delivering reliable and affordable energy to New Yorkers,” Hochul said in a statement.

The Details of the Contracts

The 23 projects span across various regions of the state, with an emphasis on areas that are well-suited for renewable energy development, such as upstate New York, which boasts vast open spaces ideal for large-scale solar and wind installations and the state is investigating sites for offshore wind projects along the coast. The contracts finalized by the state will ensure a steady supply of clean power from these renewable sources, helping to stabilize the grid and reduce reliance on fossil fuels.

A significant portion of the new renewable capacity will come from offshore wind projects, which have become a cornerstone of New York’s renewable energy strategy. Offshore wind has the potential to provide large amounts of electricity, and the state recently greenlighted the country's biggest offshore wind farm to date, taking advantage of the state's proximity to the Atlantic Ocean. Several of the contracts finalized include offshore wind farm projects, which are expected to be operational within the next few years.

In addition to wind energy, solar power continues to be a critical component of the state’s renewable energy strategy. The state has already made substantial investments in solar energy, having achieved solar energy goals ahead of schedule recently, and these new contracts will further expand the state’s solar capacity. The inclusion of battery storage projects is another important element, as energy storage solutions are vital to ensuring that renewable energy can be effectively utilized, even when the sun isn’t shining or the wind isn’t blowing.

Economic and Job Creation Benefits

The finalization of these 23 contracts will not only bring significant environmental benefits but also create thousands of jobs in the renewable energy sector. Construction, maintenance, and operational jobs will be generated throughout the life of the projects, benefiting communities across the state, including areas near Long Island's South Shore wind proposals that stand to gain from new investment. The investment in renewable energy is expected to support New York’s recovery from the economic impacts of the COVID-19 pandemic, contributing to the state’s clean energy economy and providing long-term economic stability.

The state's focus on clean energy also provides opportunities for local businesses, highlighted by the first Clean Energy Community designation in the state, as many of these projects will require services and materials from within New York State. Additionally, Governor Hochul’s administration has made efforts to ensure that disadvantaged communities and workers from underrepresented backgrounds will have access to job training and employment opportunities within the renewable energy sector.

The Path Forward: A Clean Energy Future

New York’s aggressive move toward renewable energy is indicative of the state’s commitment to addressing climate change and leading the nation in clean energy innovation. By locking in contracts for these renewable energy projects, the state is not only securing a cleaner future but also ensuring that the transition is fair and just for all communities, particularly those that have been historically impacted by pollution and environmental degradation.

While the finalized contracts mark a major achievement, the state’s work is far from over. The completion of these 23 projects is just one piece of the puzzle in New York’s broader strategy to decarbonize its energy system. To meet its ambitious targets under the CLCPA, New York will need to continue investing in renewable energy, energy storage, grid modernization, and energy efficiency programs.

As New York moves forward with its clean energy transition, and as BOEM receives wind power lease requests in the Northeast, the state will likely continue to explore new technologies and innovative solutions to meet the growing demand for renewable energy. The success of the 23 finalized contracts serves as a reminder of the state’s leadership in the clean energy space and its ongoing efforts to create a sustainable, low-carbon future for all New Yorkers.

New York’s decision to finalize contracts with 23 renewable energy projects totaling 2.3 gigawatts represents a bold step toward meeting the state’s clean energy and climate goals. These projects, which include a mix of wind, solar, and energy storage, will contribute significantly to reducing the state’s reliance on fossil fuels and lowering greenhouse gas emissions. With the additional benefits of job creation and economic growth, this move positions New York as a leader in the nation’s transition to renewable energy and a sustainable future.

 

Related News

View more

Electricity prices spike in Alberta

Alberta electricity price spike drives 25% CPI surge amid heatwave demand, coal-to-gas conversions, hydro shortfalls, and outages; consumers weigh fixed-rate plans, solar panels, home retrofits, and variable rates to manage bills and grid volatility.

 

Key Points

A recent 25% monthly rise in Alberta power prices driven by heatwave demand, constraints, outages, and fuel shifts.

✅ Heatwave pushed summer peak demand near record

✅ Coal-to-gas conversions and outages tightened supply

✅ Fixed-rate plans, solar, retrofits can reduce bill risk

 

Albertans might notice they are paying more when the next electricity bill comes in as bills on the rise in Calgary alongside provincial trends.

According to the consumer price index, Alberta saw its largest monthly increase since July 2015 as the price of electricity in Alberta rose 25 per cent amid rising electricity prices across the province.

“So I paid negative $70 last month. I actually made money. To supply power to the grid,” said Conrad Nobert, with Climate Action Edmonton.

Norbert is an environmental activist who favours solar power and is warning that prices will continue to go up along with the rising effects from climate change.

“My thoughts are that we can mitigate the price of power going up by taking climate action.”

Alberta experienced one of the hottest summers on record and many people were left scrambling to buy air conditioners.

That demand, along with a number of other factors, drove up prices, prompting some households to lock in rates for protection, says an assistant professor at the University of Calgary who teaches electricity systems.

“At the end of June, during the heatwave, we were a couple megawatts shy of setting an all-time record demand for electricity in the province. That would have been the first time that record for demand in the summer. Traditionally Alberta is a winter peaking province, as shown by an electricity usage record during a deep freeze not long ago,” explained Sara Hastings Simon, an assistant professor at the University of Calgary.

Other reasons for the spike: Alberta’s continuing shift from coal to natural-gas-fired power and changes to electricity production and pricing across the market.

There are a few ways consumers can save money on their power bill; installing solar panels and retrofitting your home to opting for a fixed-rate plan, or considering protections like a consumer price cap where applicable.

“So by default, people are put into a variable rate plan, that changes month to month and that helps to manage prices so you don’t get that big surprise at where prices might be. I think we will get a lot more people looking at that option.”

A statement provided by Dale Nally, Alberta’s Associate Minister of natural gas and electricity, noted recent policy changes including the carbon tax repeal and price cap now in place that affect consumers, says in part:

“This period of high market prices is driven by low supplies of hydro-generated electricity from British Columbia and the pacific northwest, scheduled outages for coal-gas-conversions, unplanned infrastructure outages and unprecedented, and record-breaking high demand due to hot weather. We expect some of the factors that have caused recent increases in prices will be short-term.”

 

Related News

View more

LNG powered with electricity could be boon for B.C.'s independent power producers

B.C. LNG Electrification embeds clean hydro and wind power into low-emission liquefied natural gas, cutting carbon intensity, enabling coal displacement in Asia, and opening grid-scale demand for independent power producers and ITMO-based climate accounting.

 

Key Points

Powering LNG with clean electricity cuts carbon intensity, displaces coal, and grows demand for B.C.'s clean power.

✅ Electric-drive LNG cuts emissions intensity by up to 80%.

✅ Creates major grid load, boosting B.C. independent power producers.

✅ Enables ITMO crediting when coal displacement is verified.

 

B.C. has abundant clean power – if only there was a way to ship those electrons across the sea to help coal-dependent countries reduce their emissions, and even regionally, Alberta–B.C. grid link benefits could help move surplus power domestically.

Natural gas that is liquefied using clean hydro and wind power and then exported would be, in a sense, a way of embedding B.C.’s low emission electricity in another form of energy, and, alongside the Canada–Germany clean energy pact, part of a broader export strategy.

Given the increased demand that could come from an LNG industry – especially one that moves towards greater electrification and, as the IEA net-zero electricity report notes, broader system demand – poses some potentially big opportunities for B.C.’s clean energy independent power sector, as those attending the Clean Energy Association of BC's annual at the Generate conference heard recently.

At a session on LNG electrification, delegates were told that LNG produced in B.C. with electricity could have some significant environmental benefits.

Given how much power an LNG plant that uses electric drive consumes, an electrified LNG industry could also pose some significant opportunities for independent power producers – a sector that had the wind taken out of its sails with the sanctioning of the Site C dam project.

Only one LNG plant being built in B.C. – Woodfibre LNG – will use electric drive to produce LNG, although the companies behind Kitimat LNG have changed their original design plans, and now plan to use electric drive drive as well.

Even small LNG plants that use electric drive require a lot of power.

“We’re talking about a lot of power, since it’s one of the biggest consumers you can connect to a grid,” said Sven Demmig, head of project development for Siemens.

Most LNG plants still burn natural gas to drive the liquefaction process – a choice that intersects with climate policy and electricity grids in Canada. They typically generate 0.35 tonnes of CO2e per tonne of LNG produced.

Because it will use electric drive, LNG produced by Woodfibre LNG will have an emissions intensity that is 80% less than LNG produced in the Gulf of Mexico, said Woodfibre president David Keane.

In B.C., the benchmark for GHG intensities for LNG plants has been set at 0.16 tonnes of CO2e per tonne of LNG. Above that, LNG producers would need to pay higher carbon taxes than those that are below the benchmark.

The LNG Canada plant has an intensity of 0.15 tonnes og CO2e per tonne of LNG. Woodfibre LNG will have an emissions intensity of just 0.059, thanks to electric drive.

“So we will be significantly less than any operating facility in the world,” Keane said.

Keane said Sinopec has recently estimated that it expects China’s demand for natural gas to grow by 82% by 2030.

“So China will, in fact, get its gas supply,” Keane said. “The question is: where will that supply come from?

“For every tonne of LNG that’s being produced today in the United States -- and tonne of LNG that we’re not producing in Canada -- we’re seeing about 10 million tonnes of carbon leakage every single year.”

The first Canadian company to produce LNG that ended up in China is FortisBC. Small independent operators have been buying LNG from FortisBC’s Tilbury Island plant and shipping to China in ISO containers on container ships.

David Bennett, director of communications for FortisBC, said those shipments are traced to industries in China that are, indeed, using LNG instead of coal power now.

“We know where those shipping containers are going,” he said. “They’re actually going to displace coal in factories in China.”

Verifying what the LNG is used for is important, if Canadian producers want to claim any kind of climate credit. LNG shipped to Japan or South Korea to displace nuclear power, for example, would actually result in a net increase in GHGs. But used to displace coal, the emissions reductions can be significant, since natural gas produces about half the CO2 that coal does.

The problem for LNG producers here is B.C.’s emissions reduction targets as they stand today. Even LNG produced with electricity will produce some GHGs. The fact that LNG that could dramatically reduce GHGs in other countries, if it displaces coal power, does not count in B.C.’s carbon accounting.

Under the Paris Agreement, countries agree to set their own reduction targets, and, for Canada, cleaning up Canada’s electricity remains critical to meeting climate pledges, but don’t typically get to claim any reductions that might result outside their own country.

Canada is exploring the use of Internationally Transferred Mitigation Outcomes (ITMO) under the Under the Paris Agreement to allow Canada to claim some of the GHG reductions that result in other countries, like China, through the export of Canadian LNG.

“For example, if I were producing 4 million tonnes of greenhouse gas emissions in B.C. and I was selling 100% of my LNG to China, and I can verify that they’re replacing coal…they would have a reduction of about 60 or million tonnes of greenhouse gas emissions,” Keane said.

“So if they’re buying 4 million tonnes of emissions from us, under these ITMOs, then they have net reduction of 56 million tonnes, we’d have a net increase of zero.”

But even if China and Canada agreed to such a trading arrangement, the United Nations still hasn’t decided just how the rules around ITMOs will work.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified