Los Angeles mayor pitches solar power plan

By Los Angeles Times


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Mayor Antonio Villaraigosa proposed a plan to generate a tenth of Los Angeles' power through solar energy by 2020.

Villaraigosa, speaking at a solar panel manufacturing plant, said his plan would produce 1,280 megawatts of power — most from private generating plants in the Mojave Desert, but also from public facilities and smaller programs to encourage residents to install solar panels on their homes.

He touted the installation of 1,700 panels on the roof of the Staples Center this year as a step toward reducing consumption of fossil fuels.

"LA has everything it takes to make this work," Villaraigosa said. "We have the sun in abundancy. We have the space. We have the largest municipal utility in the country."

Los Angeles Department of Water and Power General Manager David Nahai said his agency will conduct a financial analysis of the plan and its effect on ratepayers over the next 90 days.

The mayor is also trying to use redevelopment funds to entice clean technology companies into the city and investing city pension money in environmentally responsible companies in a bid to make Los Angeles a player in the solar energy industry.

A DWP watchdog questioned the financial effects of the mayor's proposal.

"There is one huge assumption here — that they'll get these huge tax credits, volume discounts and economies of scale," said Jack Humphreville, a neighborhood council member who has been pressing the DWP to appoint a ratepayer advocate. "I have serious questions about whether that is pie-in-the-sky or not."

Related News

Brazil tax strategy to bring down fuel, electricity prices seen having limited effects

Brazil ICMS Tax Cap limits state VAT on fuels, natural gas, electricity, communications, and transit, promising short-term price relief amid inflation, with federal compensation to states and potential legal challenges affecting investments and ANP auctions.

 

Key Points

A policy capping state VAT at 17-18 percent on fuels, electricity, and services to temper prices and inflation.

✅ Caps VAT to 17-18% on fuels, power, telecom, transit

✅ Short-term relief; medium-long term impact uncertain

✅ Federal compensation; potential court challenges, investment risk

 

Brazil’s congress approved a bill that limits the ICMS tax rate that state governments can charge on fuels, natural gas, electricity, communications, and public transportation. 

Local lawyers told BNamericas that the measure may reduce fuel and power prices in the short term, similar to Brazil power sector relief loans seen during the pandemic, but it is unlikely to produce any major effects in the medium and long term. 

In most states the ceiling was set at 17% or 18% and the federal government will pay compensation to the states for lost tax revenue until December 31, via reduced payments on debts that states owe the federal government.

The bill will become law once signed by President Jair Bolsonaro, who pushed strongly for the proposal with an eye on his struggling reelection campaign for the October presidential election. Double-digit inflation has turned into a major election issue and fuel and electricity prices have been among the main inflation drivers, as seen in EU energy-driven inflation across the bloc this year. Congress’ approval of the bill is seen by analysts as political victory for the Brazilian leader.

How much difference will it make?

Marcus Francisco, tax specialist and partner at Villemor Amaral Advogados, said that in the formation of fuel and electricity prices there are other factors, including high natural gas prices, that drive increases.

“In the case of fuels, if the barrel of oil [price] increases, automatically the final price for the consumer will go up. For electricity, on the other hand, there are several subsidies and policy choices such as Florida rejecting federal solar incentives that are part of the price and that can increase the rate [paid],” he said. 

There is also a possibility that some states will take the issue to the supreme court since ICMS is a key source of revenue for them, Francisco added.

Tiago Severini, a partner at law firm Vieira Rezende, said the comparison between the revenue impact and the effective price reduction, based on the estimates made by the states and the federal government, seems disproportionate, and, as seen in Europe, rolling back European electricity prices is often tougher than it appears. 

“In other words, a large tax collection impact is generated, which is quite unequal among the different states, for a not so strong price reduction,” he said.

“Due to the lack of clarity regarding the precision of the calculations involved, it’s difficult even to assess the adequacy of the offsets the federal government has been considering, and international cases such as France's new electricity pricing scheme illustrate how complex it can be to align fiscal offsets with regulatory constraints, to cover the cost it would have with the compensation for the states” Severini added.

The compensation ideas that are known so far include hiking other taxes, such as the social contribution on net profits (CSLL) that is paid by oil and gas firms focused on exploration and production.

“This can generate severe adverse effects, such as legal disputes, reduced investments in the country, and reduced attractiveness of the new auctions by [sector regulator] ANP, and costly interventions like the Texas electricity market bailout after extreme weather events,” Severini said. 

 

Related News

View more

Minister approves 30-megawatt wind farm expansion in Eastern Kings

Eastern Kings Wind Farm Expansion advances P.E.I. renewable energy with seven new wind turbines, environmental assessment, wildlife monitoring of birds and bats, and community consultation to double output to 30 MW for domestic consumption.

 

Key Points

A P.E.I. project adding seven turbines for 30 MW, under 17 conditions, with wildlife monitoring and community oversight.

✅ Seven new turbines, larger than existing units

✅ 17 conditions, monthly compliance reporting

✅ Two-year wildlife study for birds and bats

 

A proposal to expand an existing wind farm in eastern P.E.I. has been given the go-ahead, according to P.E.I.’s Department of Environment, Water and Climate Change, as related grid work like a new transmission line progresses in the region.

Minister Natalie Jameson approved the P.E.I. Energy Corporation’s Eastern Kings Wind Farm expansion project, the province announced in a release Wednesday afternoon, as Atlantic Canada advances other renewable initiatives like tidal power to diversify supply.

The project will be subject to 17 conditions, which were drawn from a review of the 80 responses the province received from the public on the proposed Eastern Kings Wind Farm expansion.

The corporation must provide a summary on the status of each condition to the department on a monthly basis.

“This decision balances the needs of people, communities, wellness and the environment,” Jameson said in the release.

“It allows this renewable energy project to proceed and reduce greenhouse [gas] emissions that cause climate change while mitigating the project’s impact to the Island’s ecosystem.”

The P.E.I. Energy Corporation wants to double the output of its Eastern Kings Wind Farm with the installation of seven wind turbines between the communities of Elmira and East Point to develop 30 megawatts of wind power for domestic consumption, according to the minister’s impact assessment, aligning with regional moves to expand wind and solar projects across Atlantic Canada.

The new turbines are expected to be larger than the existing 10 at the site, even as regional utilities study major grid changes to integrate more renewables.

Project must comply with conditions

In February, the province said it would identify any specific questions or concerns it felt needed to be addressed in the submissions, according to Greg Wilson, manager of environmental land management for the province, while some advocate for independent electricity planning to guide such decisions.

Public feedback closed in January, after an earlier extension to wait for a supplemental report on birds and bats.

The corporation needs to comply with all conditions – such as monitoring environmental impact, setting up an environmental management plan and creating a committee to address concerns – listed in the release on Wednesday, amid calls from environmental advocates to reduce biomass use in electricity generation.

A condition in the release suggests representatives from L’nuey, the Souris and Area Wildlife Branch, the Rural Municipality of Eastern Kings and local residents to make up the committee.

The corporation will also need to conduct a study over two years after construction to look at the impact on bats and birds, and implement a protocol to report deaths of birds to federal and provincial authorities.

According to Canada Energy Regulator, roughly 98 per cent of power generated on P.E.I. comes from wind farms. It also said there were 203 megawatts installed on P.E.I. as of 2018, and the majority of energy consumed on the Island comes from New Brunswick from a mix of nuclear, fossil fuels and hydroelectricity, while in Nova Scotia, the utility has increased biomass generation as part of its supply mix.

 

Related News

View more

Ukraine has electricity reserves, no more outages planned if no new strikes

Ukraine Electricity Outages may pause as the grid stabilizes, with energy infrastructure repairs, generators, and reserves supporting supply; officials cite no rationing absent new Russian strikes, while Odesa networks recover and Ukrenergo completes restoration works.

 

Key Points

Planned power cuts in Ukraine paused as grid capacity, repairs, and reserves improve, barring new strikes.

✅ No rationing if Russia halts strikes on energy infrastructure

✅ Grid repairs and reserves meet demand for third straight week

✅ Odesa networks restored; Ukrenergo crews redeploy to repairs

 

Ukraine plans no more outages to ration electricity if there are no new strikes and has been able to amass some power reserves, the energy minister said on Saturday, as it continues to keep the lights on despite months of interruptions caused by Russian bombings.

"Electricity restrictions will not be introduced, provided there are no Russian strikes on infrastructure facilities," Energy Minister Herman Halushchenko said in remarks posted on the ministry's Telegram messaging platform.

"Outages will only be used for repairs."

After multiple battlefield setbacks and scaling down its troop operation to Ukraine's east and south, Russia in October began bombing the country's energy infrastructure, as winter loomed over the battlefront, leaving millions without power and heat for days on end.

The temperature in winter months often stays below freezing across most of Ukraine. Halushchenko said this heating season has been extremely difficult.

"But our power engineers managed to maintain the power system, and for the third week in a row, electricity generation has ensured consumption needs, we have reserves," Halushchenko said.

Ukraine, which does not produce power generators itself, has imported and received thousands of them over the past few years, with the U.S. pledging a further $10 billion on Friday to aid Kyiv's energy needs, despite ended grid restoration support reported earlier.

Separately, the chief executive of state grid operator Ukrenergo, Volodymyr Kudrytskyi, said that repair works on the damaged infrastructure in the city of Odesa suffered earlier this month, has been finished, highlighting how Ukraine has even helped Spain amid blackouts while managing its own network challenges.

"Starting this evening, there is more light in Odesa," Kudrytskyi wrote on his Facebook page. "The crews that worked on restoring networks are moving to other facilities."

A Feb. 4 fire that broke out at an overloaded power station left hundreds of thousands of residents without electricity, prompting many to adopt new energy solutions to cope with outages.

 

Related News

View more

UK Emergency energy plan not going ahead

National Grid Demand Flexibility Service helps stabilise the UK grid during tight supply, offering discounts for smart meter users who shift peak-time electricity use, reducing power cut risks amid low wind and import constraints.

 

Key Points

A National Grid scheme paying smart homes to cut peak-time use, easing supply pressure and avoiding power cuts.

✅ Pays volunteers with smart meters to reduce peak demand.

✅ Credits discounts for shifting use to off-peak windows.

✅ Manages tight margins and helps avert UK power cuts.

 

National Grid has decided not to activate a scheme on Tuesday to help the UK avoid power cuts after being poised to do so.

It would have seen some households offered discounts on their electricity bills if they cut peak-time use.

National Grid had been ready to trigger the scheme following a warning that Britain's energy supplies were looking tighter than usual this week.

However, it decided that the measure was not required.

Alerts are sent out automatically when expected supplies drop below a certain level. But they do not mean that blackouts are likely, or that the situation is critical.

National Grid said it was "confident" it would be able to manage margins and "demand is not at risk".

Discounts
Earlier on Monday, the grid operator said it was considering whether to pay households across Britain to reduce their energy use to help out on Tuesday evening.

Under the Demand Flexibility Service (DFS), announced earlier this month, customers that have signed up could get discounts on their bills if they use less electricity in a given window of time.

That could mean delaying the use of a tumble-dryer or washing machine, or cooking dinner in the microwave rather than the oven.

Major suppliers such as Octopus and British Gas are taking part, but only customers that have an electricity smart meter and that have volunteered are eligible. About 14 million UK homes have an electricity smart meter.

The DFS has already been tested twice but has not yet run live.

Octopus, the supplier with the most customers signed up, said that some households had earned more than £4 during the hour-long tests, while the average saving was "well over £1".

It came after forecasts projected a large drop in the amount of power that Britain will be able to import from French nuclear power stations on Monday and Tuesday evenings.

The lack of strong winds to power turbines has also affected how much power can be generated within the UK, and efforts to fast-track grid connections aim to ease constraints.

Such warnings are not unusual - around 12 have been issued and cancelled without issue in the last six years, and other regions such as Canada are seeing grids strained by harsh weather as well.

However, they have become more common this year due to the energy crisis, and the most recent notice was sent out last week.

The situation means that the UK will have to import electricity from other sources on Monday and Tuesday evening.

Supplies are also expected be tight in France, forecasters say.

France has been facing months of problems with its nuclear power plants, which generate around three-quarters of the country's electricity.

More than half of the nuclear reactors run by state energy company EDF have closed due to maintenance problems and technical issues.

It has added to a massive energy crisis in Europe which is facing a winter without gas supplies from Russia.

 

Related News

View more

Opinion: Nuclear Beyond Electricity

Nuclear decarbonization leverages low-carbon electricity, process heat, and hydrogen from advanced reactors and SMRs to electrify industry, buildings, and transport, supporting net-zero strategies and grid flexibility alongside renewables with dispatchable baseload capacity.

 

Key Points

Nuclear decarbonization uses reactors to supply low-carbon power, heat, and hydrogen, cutting emissions across industry.

✅ Advanced reactors and SMRs enable high-temperature process heat

✅ Nuclear-powered electrolysis and HTSE produce low-carbon hydrogen

✅ District heating from reactors reduces pollution and coal use

 

By Dr Henri Paillere, Head of the Planning and Economics Studies Section of the IAEA

Decarbonising the power sector will not be sufficient to achieving net-zero emissions, with assessments indicating nuclear may be essential across sectors. We also need to decarbonise the non-power sectors - transport, buildings and industry - which represent 60% of emissions from the energy sector today. The way to do that is: electrification with low-carbon electricity as much as possible; using low-carbon heat sources; and using low-carbon fuels, including hydrogen, produced from clean electricity.
The International Energy Agency (IEA) says that: 'Almost half of the emissions reductions needed to reach net zero by 2050 will need to come from technologies that have not reached the market today.' So there is a need to innovate and push the research, development and deployment of technologies. That includes nuclear beyond electricity.

Today, most of the scenario projections see nuclear's role ONLY in the power sector, despite ongoing debates over whether nuclear power is in decline globally, but increased electrification will require more low-carbon electricity, so potentially more nuclear. Nuclear energy is also a source of low-carbon heat, and could also be used to produce low-carbon fuels such as hydrogen. This is a virtually untapped potential.

There is an opportunity for the nuclear energy sector - from advanced reactors, next-gen nuclear small modular reactors, and non-power applications - but it requires a level playing field, not only in terms of financing today's technologies, but also in terms of promoting innovation and supporting research up to market deployment. And of course technology readiness and economics will be key to their success.

On process heat and district heating, I would draw attention to the fact there have been decades of experience in nuclear district heating. Not well spread, but experience nonetheless, in Russia, Hungary and Switzerland. Last year, we had two new projects. One floating nuclear power plant in Russia (Akademik Lomonosov), which provides not only electricity but district heating to the region of Pevek where it is connected. And in China, the Haiyang nuclear power plant (AP1000 technology) has started delivering commercial district heating. In China, there is an additional motivation to reducing emissions, namely to cut air pollution because in northern China a lot of the heating in winter is provided by coal-fired boilers. By going nuclear with district heating they are therefore cutting down on this pollution and helping with reducing carbon emissions as well. And Poland is looking at high-temperature reactors to replace its fleet of coal-fired boilers and so that's a technology that could also be a game-changer on the industry side.

There have also been decades of research into the production of hydrogen using nuclear energy, but no real deployment. Now, from a climate point of view, there is a clear drive to find substitute fuels for the hydrocarbon fuels that we use today, and multiple new nuclear stations are seen by industry leaders as necessary to meet net-zero targets. In the near term, we will be able to produce hydrogen with electrolysis using low-carbon electricity, from renewables and nuclear. But the cheapest source of low-carbon power is from the long-term operation of existing nuclear power plants which, combined with their high capacity factors, can give the cheapest low-carbon hydrogen of all.

In the mid to long term, there is research on-going with processes that are more efficient than low-temperature electrolysis, which is high temperature steam electrolysis or thermal splitting of water. These may offer higher efficiencies and effectiveness but they also require advanced reactors that are still under development. Demonstration projects are being considered in several countries and we at the IAEA are developing a publication that looks into the business opportunities for nuclear production of hydrogen from existing reactors. In some countries, there is a need to boost the economics of the existing fleet, especially in the electricity systems where you have low or even negative market prices for electricity. So, we are looking at other products that have higher values to improve the competitiveness of existing nuclear power plants.

The future means not only looking at electricity, but also at industry and transport, and so integrated energy systems. Electricity will be the main workhorse of our global decarbonisation effort, but through heat and hydrogen. How you model this is the object of a lot of research work being done by different institutes and we at the IAEA are developing some modelling capabilities with the objective of optimising low-carbon emissions and overall costs.

This is just a picture of what the future might look like: a low-carbon power system with nuclear lightwater reactors (large reactors, small modular reactors and fast reactors) drawing on the green industrial revolution reactor waves in planning; solar, wind, anything that produces low-carbon electricity that can be used to electrify industry, transport, and the heating and cooling of buildings. But we know there is a need for high-temperature process steam that electricity cannot bring but which can be delivered directly by high-temperature reactors. And there are a number of ways of producing low-carbon hydrogen. The beauty of hydrogen is that it can be stored and it could possibly be injected into gas networks that could be run in the future on 100% hydrogen, and this could be converted back into electricity.

So, for decarbonising power, there are many options - nuclear, hydro, variable renewables, with renewables poised to surpass coal in global generation, and fossil with carbon capture and storage - and it's up to countries and industries to invest in the ones they prefer. We find that nuclear can actually reduce the overall cost of systems due to its dispatchability and the fact that variable renewables have a cost because of their intermittency. There is a need for appropriate market designs and the role of governments to encourage investments in nuclear.

Decarbonising other sectors will be as important as decarbonising electricity, from ways to produce low-carbon heat and low-carbon hydrogen. It's not so obvious who will be the clear winners, but I would say that since nuclear can produce all three low-carbon vectors - electricity, heat and hydrogen - it should have the advantage.
We at the IAEA will be organising a webinar next month with the IEA looking at long-term nuclear projections in a net-zero world, building on IAEA analysis on COVID-19 and low-carbon electricity insights. That will be our contribution from the point of view of nuclear to the IEA's special report on roadmaps to net zero that it will publish in May.

 

Related News

View more

Octopus Energy and Ukraine's DTEK enter Energy Talks

Octopus Energy and DTEK Partnership explores licensing the Kraken platform to rebuild Ukraine's power grid, enabling real-time analytics, smart-home integration, renewable energy orchestration, and distributed resilience amid ongoing attacks on critical energy infrastructure.

 

Key Points

Collaboration to deploy Kraken and renewables to modernize Ukraine's grid with analytics, smart control, and resilience.

✅ Kraken licensing for grid operations and customer analytics

✅ Shift to distributed solar, wind, and smart-home devices

✅ Real-time monitoring to mitigate outages and cyber risks

 

Octopus Energy, a prominent UK energy firm, has begun preliminary conversations with Ukraine's DTEK regarding potential collaboration to refurbish Ukraine's heavily damaged electric infrastructure as ongoing strikes threaten the power grid across the country.

Persistent assaults by Russia on Ukraine's power network, including a five-hour attack on Kyiv's grid, have led to significant electricity shortages in numerous regions.

Octopus Energy, the largest electricity and second-largest gas supplier in the UK, collaborates with energy firms in 17 countries using its Kraken software platform, and Ukraine joined Europe's power grid with unprecedented speed to bolster resilience. This platform is currently being trialled by the Abu Dhabi National Energy Company (Taqa) for power and water customers in the UAE.

A spokesperson from Octopus revealed to The National that the company is "in the early stages of discussions with DTEK to explore potential collaborative opportunities.”

One of the possibilities being considered is licensing Octopus's Kraken technology platform to DTEK, a platform that presently serves 54 million customer accounts globally.

Russian drone and missile attacks, which initially targeted Ukrainian ports and export channels last summer, shifted focus to energy infrastructure by October, ahead of the winter season as authorities worked to protect electricity supply before winter across the country.

These initial talks between Octopus CEO Greg Jackson and DTEK CEO Maxim Timchenko took place at the World Economic Forum in Davos, set against the backdrop of these ongoing challenges.

DTEK, Ukraine's leading private energy provider, might integrate Octopus's advanced Kraken software to manage and optimize data systems ranging from large power plants to smart-home devices, with a growing focus on protecting the grid against emerging threats.

Kraken is described by Octopus as a comprehensive technology platform that supports the entire energy supply chain, from generation to billing. It enables detailed analytics, real-time monitoring, and control of energy devices like heat pumps and electric vehicles, underscoring the need to counter cyber weapons that can disrupt power grids as systems become more connected.

Octopus Energy, with its focus on renewable sources, can also assist Ukraine in transitioning its power infrastructure from centralized coal-fired power stations, which are vulnerable targets, to a more distributed network of smaller solar and wind projects.

DTEK, serving approximately 3.5 million customers in the Kyiv, Donetsk, and Dnipro regions, is already engaged in renewable initiatives. The company constructed a wind farm in southern Ukraine within nine months last year and has plans for additional projects in Italy and Croatia.

Emphasizing the importance of rebuilding Ukraine's economy, Timchenko recently expressed at Davos the need for Ukrainian and international companies to work together to create a sustainable future for Ukraine, noting that incidents such as Russian hackers accessed U.S. control rooms highlight the urgency.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified