Biofuels could increase environmental problems, gas prices

By National Post


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The Harper government was warned by its own experts at Environment Canada two years ago that a multibillion-dollar plan to boost production of green fuels could cause more problems than benefits, Canwest News Service has learned.

The warnings, in briefing notes sent to former environment minister Rona Ambrose, suggested there were too many risks involved from increasing production of ethanol which, in Canada, is largely produced from corn and wheat crops.

"Feedstocks and biofuel production consume large amounts of water, natural gas, biomass, electricity and fertilizers," stated one of the briefing notes, drafted on May 16, 2006, by a technology strategies and climate change division at Environment Canada.

The documents were released to Canwest News Service under the Access to Information Act.

"Based on global Life Cycle Assessments (LCA) of biofuel production, impacts on acidification, land degradation, waste generation, water use and human and environmental impacts were found more often to be unfavourable than favourable."

The government adopted legislation to regulate new targets last spring. It requires that gasoline contain an average renewable fuel content of 5% and that diesel contain an average renewable fuel content of 2% by 2010.

The government has also offered $1.5-billion in subsidies mainly to support farmers, agricultural and energy companies which produce ethanol from corn or wheat.

Environment Canada's research suggested that ethanol produced from waste products is much more sustainable, but the government created a smaller fund of $500-million, specifically to support this type of "next generation" ethanol.

Subsequent material prepared for the minister said that consumption of gasoline with a 10% ethanol content could reduce greenhouse gas emissions and some air pollutants, but generate other problems, such as increased fuel consumption, higher prices at the pumps, and a 100% increase in emissions of acetaldehyde, which has been listed as a toxic substance under the Canadian Environmental Protection Act.

While one document estimated the increased costs for producing ethanol could result in a one- or two-cent increase in the price of gasoline at the pumps, another estimated that the overall greenhouse gas emissions reductions would cost as much as $200 per tonne of CO2.

"If all Canadian gasoline were E-10 (containing 10% ethanol), GHG emissions would be reduced by about three megatonnes of carbon dioxide per year," stated a briefing note prepared for Ms. Ambrose in May 2006.

An industry spokesman said that the warnings from Environment Canada were misleading since they focused on assessing production from outdated technologies in foreign countries.

"Today in Canada we're building new plants," Gordon Quaiattini, president of the Canadian Renewable Fuels Association, said. "This is state-of-the-art technology."

He said the government is also using a new modelling analysis program developed by Natural Resources Canada called GHGenius. He said it bases its analysis on the best practices used in Canada.

"None of the corn, for example, in Canada, that finds its way into ethanol production is irrigated," he said. "So the issues with respect to water usage are minimal here."

While he acknowledged that some tailpipe pollution increases as a result of burning ethanol-blended gasoline, Mr. Quaiattini said the research suggests there is an overall reduction in harmful emissions.

But NDP environment critic Nathan Cullen said his party opposed the legislation adopted last spring since there were no guarantees it would be good for the environment.

"They tried to make this more about a farm subsidy than about dealing with climate change and helping the environment," Mr. Cullen said. "To hold it up as part of their environmental initiative is a bit of a farce."

Environment Minister Jim Prentice's office referred questions to his department which did not dispute the warnings from the briefing notes.

"It should be noted that the production and use of any fuel has environmental impacts," an Environment Canada spokesperson wrote in an e-mail. "What is important to consider is the change in these impacts, particularly when biofuels are substituted for more traditional fuels such as gasoline and diesel."

Related News

Six key trends that shaped Europe's electricity markets in 2020

European Electricity Market Trends 2020 highlight decarbonisation, rising renewables, EV adoption, shifting energy mix, COVID-19 impacts, fuel switching, hydro, wind and solar growth, gas price dynamics, and wholesale electricity price increases.

 

Key Points

EU power in 2020 saw lower emissions, more renewables, EV growth, demand shifts, and higher wholesale prices.

✅ Power sector CO2 down 14% on higher renewables, lower coal

✅ Renewables 39% vs fossil 36%; hydro, wind, solar expanded

✅ EV share hit 17%; wholesale prices rose with gas, ETS costs

 

According to the Market Observatory for Energy DG Energy report, the COVID-19 pandemic and favorable weather conditions are the two key drivers of the trends experienced within the European electricity market in 2020. However, the two drivers were exceptional or seasonal.

The key trends within Europe’s electricity market include:


1. Decrease in power sector’s carbon emissions

As a result of the increase in renewables generation and decrease in fossil-fueled power generation in 2020, the power sector was able to reduce its carbon footprint by 14% in 2020. The decrease in the sector’s carbon footprint in 2020 is similar to trends witnessed in 2019 when fuel switching was the main factor behind the decarbonisation trend.

However, most of the drivers in 2020 were exceptional or seasonal (the pandemic, warm winter, high
hydro generation). However, the opposite is expected in 2021, with the first months of 2021 having relatively cold weather, lower wind speeds and higher gas prices, with stunted hydro and nuclear output also cited, developments which suggest that the carbon emissions and intensity of the power sector could rise.

The European Union is targeting to completely decarbonise its power sector by 2050 through the introduction of supporting policies such as the EU Emissions Trading Scheme, the Renewable Energy Directive and legislation addressing air pollutant emissions from industrial installations, with expectations that low-emissions sources will cover most demand growth in the coming years.

According to the European Environment Agency, Europe halved its power sector’s carbon emissions in 2019 from 1990 levels.


2. Changes in energy consumption

EU consumption of electricity fell by -4% as majority of industries did not operate at full level during the first half of 2020. Although majority of EU residents stayed at home, meaning an increase in residential energy use, rising demand by households could not reverse falls in other sectors of the economy.

However, as countries renewed COVID-19 restrictions, energy consumption during the 4th quarter was closer to the “normal levels” than in the first three quarters of 2020. 

The increase in energy consumption in the fourth quarter of 2020 was also partly due to colder temperatures compared to 2019 and signs of surging electricity demand in global markets.


3. Increase in demand for EVs

As the electrification of the transport system intensifies, the demand for electric vehicles increased in 2020 with almost half a million new registrations in the fourth quarter of 2020. This was the highest figure on record and translated into an unprecedented 17% market share, more than two times higher than in China and six times higher than in the United States.

However, the European Environment Agency (EEA)argues that the EV registrations were lower in 2020 compared to 2019. EEA states that in 2019, electric car registrations were close to 550 000 units, having reached 300 000 units in 2018.


4. Changes in the region’s energy mix and increase in renewable energy generation

The structure of the region’s energy mix changed in 2020, according to the report.

Owing to favorable weather conditions, hydro energy generation was very high and Europe was able to expand its portfolio of renewable energy generation such that renewables (39%) exceeded the share of fossil fuels (36%) for the first time ever in the EU energy mix.

Rising renewable generation was greatly assisted by 29 GW of wind and solar capacity additions in 2020, which is comparable to 2019 levels. Despite disrupting the supply chains of wind and solar resulting in project delays, the pandemic did not significantly slow down renewables’ expansion.

In fact, coal and lignite energy generation fell by 22% (-87 TWh) and nuclear output dropped by 11% (-79 TWh). On the other hand, gas energy generation was not significantly impacted owing to favorable prices which intensified coal-to-gas and lignite-to-gas switching, even as renewables crowd out gas in parts of the market.


5. Retirement of coal energy generation intensify

 As the outlook for emission-intensive technologies worsens and carbon prices rise, more and more early coal retirements have been announced. Utilities in Europe are expected to continue transitioning from coal energy generation under efforts to meet stringent carbon emissions reduction targets and as they try to prepare themselves for future business models that they anticipate to be entirely low-carbon reliant.

6. Increase in wholesale electricity prices

In recent months, more expensive emission allowances, along with rising gas prices, have driven up wholesale electricity prices on many European markets to levels last seen at the beginning of 2019. The effect was most pronounced in countries that are dependent on coal and lignite. The wholesale electricity prices dynamic is expected to filter through to retail prices.

The rapid sales growth in the EVs sector was accompanied by expanding charging infrastructure. The number of high-power charging points per 100 km of highways rose from 12 to 20 in 2020.

 

Related News

View more

IEA: Electricity investment surpasses oil and gas for the first time

Electricity Investment Surpasses Oil and Gas 2016, driven by renewable energy, power grids, and energy efficiency, as IEA reports lower oil and gas spending, rising solar and wind capacity, and declining coal power plant approvals.

 

Key Points

A 2016 milestone where electricity topped global energy investment, led by renewables, grids, and efficiency, per the IEA.

✅ IEA: electricity investment hit $718b; oil and gas fell to $650b.

✅ Renewables led with $297b; solar and wind unit costs declined.

✅ Coal plant approvals plunged; networks and storage spending rose.

 

Investments in electricity surpassed those in oil and gas for the first time ever in 2016 on a spending splurge on renewable energy and power grids as the fall in crude prices led to deep cuts, the International Energy Agency (IEA) said.

Total energy investment fell for the second straight year by 12 per cent to US$1.7 trillion compared with 2015, the IEA said. Oil and gas investments plunged 26 per cent to US$650 billion, down by over a quarter in 2016, and electricity generation slipped 5 per cent.

"This decline (in energy investment) is attributed to two reasons," IEA chief economist Laszlo Varro told journalists.

"The reaction of the oil and gas industry to the prolonged period of low oil prices which was a period of harsh investment cuts; and technological progress which is reducing investment costs in both renewable power and in oil and gas," he said.

Oil and gas investment is expected to rebound modestly by 3 per cent in 2017, driven by a 53 per cent upswing in U.S. shale, and spending in Russia and the Middle East, the IEA said in a report.

"The rapid ramp up of U.S. shale activities has triggered an increase of U.S. shale costs of 16 per cent in 2017 after having almost halved from 2014-16," the report said.

The global electricity sector, however, was the largest recipient of energy investment in 2016 for the first time ever, overtaking oil, gas and coal combined, the report said.

"Robust investments in renewable energy and increased spending in electricity networks, which supports the outlook that low-emissions sources will cover most demand growth, made electricity the biggest area of capital investments," Varro said.

Electricity investment worldwide was US$718 billion, lifted by higher spending in power grids which offset the fall in power generation investments.

"Investment in new renewables-based power capacity, at US$297 billion, remained the largest area of electricity spending, despite falling back by 3 per cent as clean energy investment in developing nations slipped, the report said."

Although renewables investments was 3 per cent lower than five years ago, capacity additions were 50 per cent higher and expected output from this capacity about 35 per cent higher, thanks to the fall in unit costs and technology improvements in solar PV and wind generation, the IEA said.

 

COAL INVESTMENT IS COMING TO AN END

Investments in coal-fired electricity plants fell sharply. Sanctioning of new coal power plants fell to the lowest level in nearly 15 years, reflecting concerns about local air pollution, and emergence of overcapacity and competition from renewables, with renewables poised to eclipse coal in global power generation, notably in China. Coal investments, however, grew in India.

"Coal investment is coming to an end. At the very least, it is coming to a pause," Varro said.

The IEA report said energy efficiency investments continued to expand in 2016, reaching US$231 billion, with most of it going to the building sector globally.

Electric vehicles sales rose 38 per cent in 2016 to 750,000 vehicles at $6 billion, and represented 10 per cent of all transport efficiency spending. Some US$6 billion was spent globally on electronic vehicle charging stations, the IEA said.

Spending on electricity networks and storage continued the steady rise of the past five years, as surging electricity demand puts power systems under strain, reaching an all-time high of US$277 billion in 2016, with 30 per cent of the expansion driven by China’s spending in its distribution system, the report said.

China led the world in energy investments with 21 per cent of global total share, the report said, driven by low-carbon electricity supply and networks projects.

Although oil and gas investments fell in the United States in 2016, its total energy investments rose 16 per cent, even as Americans use less electricity in recent years, on the back of spending in renewables projects, the IEA report said.

 

Related News

View more

Share of coal in UK's electricity system falls to record lows

UK Coal Phase-Out marks record-low coal generation as the UK grid shifts to renewable power, wind farms, and a net zero trajectory, slashing carbon emissions and supporting cleaner EV charging across the electricity system.

 

Key Points

UK Coal Phase-Out ends coal-fired electricity nationwide, powered by renewables and net zero policy to cut grid carbon.

✅ Coal's Q2 share fell to 0.7%, a record low

✅ Renewables up 12% with Beatrice wind farm

✅ EV charging grows cleaner as grid decarbonizes

 

The share of coal in the UK’s electricity system has fallen to record lows in recent months, alongside a coal-free power record, according to government data.

The figures show electricity generated by the UK’s most polluting power plants made up an average of 0.7% of the total in the second quarter of this year, a shift underway since wind first outpaced coal in 2016 across the UK. The amount of coal used to power the electricity grid fell by almost two-thirds compared with the same months last year.

A government spokesperson said coal-generated energy “will soon be a distant memory” as the UK moves towards becoming a net zero emissions economy, despite signs that low-carbon generation stalled in 2019 in some analyses.

“This new record low is a result of our world-leading low-carbon energy industry, which provided more than half of our energy last year and continues to go from strength to strength as we aim to end our contribution to climate change entirely by 2050,” the spokesperson said.

The UK electricity market is on track to end coal power after 142 years by the government’s target date of 2025.

This year three major energy companies have announced plans to close coal-fired power plants in the UK, which would leave only four remaining after the coming winter, ahead of the last coal power station going offline nationwide.

RWE said this month it would close the Aberthaw B power station in south Wales, its last UK coal plant, after the winter. SSE will close the Fiddler’s Ferry plant near Warrington, Cheshire, in March 2020, and EDF Energy will shutter the Cottam coal plant in September.

So far this year the UK has gone more than 3,000 hours without using coal for power, including a full week without coal earlier in the year – nearly five times more than the whole of 2017.

Meanwhile, the government’s data shows that renewable energy climbed by 12% from the second quarter of last year, boosted by the startup of the Beatrice windfarm in the Moray Firth in Scotland, and the UK leading the G20 in wind power share in recent assessments.

The cleaner power system could accelerate carbon savings from the UK’s roads, too, as more drivers opt for electric vehicles. A study by Imperial College London for the energy company Drax found that the UK’s increasingly low-carbon energy system meant electric cars were a greener option even when taking into account the carbon emissions produced by making car batteries.

Dr Iain Staffell, of Imperial College London, said: “An electric vehicle in the UK simply cannot be more polluting than its petrol or diesel equivalent – even when taking into account the upfront carbon cost of manufacturing their batteries. Any EV bought today could be emitting just a tenth of what a petrol car would in as little as five years’ time, as the electricity it uses to charge comes from an increasingly low-carbon mix.”

 

Related News

View more

Crossrail will generate electricity using the wind created by trains

Urban Piezoelectric Energy Textiles capture wind-driven motion on tunnels, bridges, and facades, enabling renewable microgeneration for smart cities with decentralized power, resilient infrastructure, and flexible lamellae sheets that harvest airflow vibrations.

 

Key Points

Flexible piezoelectric sheets that convert urban wind and vibration into electricity on tunnels, bridges, and facades.

✅ Installed on London Crossrail to test airflow energy capture

✅ Flexible lamellae panels retrofit tunnels, bridges, facades

✅ Supports decentralized, resilient urban microgrids

 

Charlotte Slingsby and her startup Moya Power are researching piezo-electric textiles that gain energy from movement, similar to advances like a carbon nanotube energy harvester being explored by materials researchers. It seems logical that Slingsby originally came from a city with a reputation for being windy: “In Cape Town, wind is an energy source that you cannot ignore,” says the 27-year-old, who now lives in London.

Thanks to her home city, she also knows about power failures. That’s why she came up with the idea of not only harnessing wind as an alternative energy source by setting up wind farms in the countryside or at sea, but also for capturing it in cities using existing infrastructure.

 

The problem

The United Nations estimates that by 2050, two thirds of the world’s population will live in cities. As a result, the demand for energy in urban areas will increase dramatically, spurring interest in nighttime renewable technology that can operate when solar and wind are variable. Can the old infrastructure grow fast enough to meet demand? How might we decentralise power generation, moving it closer to the residents who need it?

For a pilot project, she has already installed grids of lamellae-covered plastic sheets in tunnels on London Crossrail routes; the draft in the tube causes the protrusions to flutter, which then generates electricity.

“If we all live in cities that need electricity, we need to look for new, creative ways to generate it, including nighttime solar cells that harvest radiative cooling,” says Slingsby, who studied design and engineering at Imperial College and the Royal College of Art. “I wanted to create something that works in different situations and that can be flexibly adapted, whether you live in an urban hut or a high-rise.”

The yield is low compared to traditional wind power plants and is not able to power whole cities, but Slingsby sees Moya Power as just a single element in a mixture of urban energy sources, alongside approaches like gravity power that aid grid decarbonization.

In the future, Slingsby’s invention could hang on skyscrapers, in tunnels or on bridges – capturing power in the windiest parts of the city, alongside emerging air-powered generators that draw energy from humidity. The grey concrete of tunnels and urban railway cuttings could become our cities’ most visually appealing surfaces...

 

Related News

View more

Energy minister unveils Ontario's plan to address growing energy needs

Powering Ontario's Growth accelerates clean electricity, pairing solar, wind, and hydro with energy storage, efficiency investments, and new nuclear, including SMRs, to meet rising demand and net-zero goals while addressing supply planning across the province.

 

Key Points

Ontario's clean energy plan adds renewables, storage, efficiency, and nuclear to meet rising electricity demand.

✅ Over $1B for energy-efficiency programs through 2030+

✅ Largest clean power procurement in Canadian history

✅ Mix of solar, wind, hydro, storage, nuclear, and SMRs

 

Energy Minister Todd Smith has announced a new plan that outlines the actions the government is taking to address the province's growing demand for electricity.

The government is investing over a billion dollars in "energy-efficiency programs" through 2030 and beyond, Smith said in Windsor.

Experts at Ontario's Independent Electricity System recommended the planning start early to meet demand they predict will require the province to be able to generate 88,000 megawatts (MW) in 20 years.

"That means all of our current supply ... would need to double to meet the anticipated demand by 2050," he said during the announcement.

"While we may not need to start building today, government and those in the energy sector need to start planning immediately, so we have new clean, zero emissions projects ready to go when we need them."

The project is called Powering Ontario's Growth and will advance new clean energy generation from a number of sources, including solar, hydroelectric and wind.

He said this would be the biggest acquisition of clean energy in Canada's history.

Smith made the announcement at Hydro One's Keith Transmission Station.

He said the new planned procurement of green power will pair well with recent energy storage procurements, so that power generated by solar panels, for example, can be stored and injected into the system when needed.

NDP Opposition Leader Marit Stiles said Monday's announcement lacks specifics.

"It's light on details, including key questions of cost, climate impact, waste management and financial risk," said Stiles.

"Ford's Conservatives should be playing catch-up after undermining clean energy in their first term. Instead, they're offering generalities and a vague sense of what they might do."

The Green Party criticized the move Monday afternoon, noting that clean, affordable electricity remains a key Ontario election issue today.

"Ontario is facing an energy crunch – and the Ford government is making it worse by choosing more expensive, dirtier options," said MPP for Guelph Mike Schreiner in the statement.

He said Premier Doug Ford has "grossly" mismanaged the province's energy supply by cancelling 750 renewable energy projects and slashing efficiency programs.

"Now, faced with an opportunity to become a leader in a world that's rapidly embracing renewable energy, this government has chosen to funnel taxpayer dollars into polluting fossil gas plants and expensive new nuclear that will take decades to come online," said Schreiner.

Smith announced last week the plan for three more small modular reactors at the site of the Darlington nuclear power plant. The province also shared its intention to add a third nuclear generating station to Bruce Power near Kincardine. 

"With this backwards approach, the Ford government is squandering a once-in-a-generation opportunity to make Ontario a global leader in attracting investment dollars and creating better jobs in the trillion-dollar clean energy sector," said Schreiner.

 

Related News

View more

Ontario prepares to extend disconnect moratoriums for residential electricity customers

Ontario Electricity Relief outlines an extended disconnect moratorium, potential time-of-use price changes, and Ontario Energy Board oversight to support residential customers facing COVID-19 hardship and bill payment challenges during the emergency in Ontario.

 

Key Points

Plan to extend disconnect moratorium and weigh time-of-use price relief for residential customers during COVID-19.

✅ Extends winter disconnect ban by 3 months

✅ Considers time-of-use price adjustments

✅ Requires Ontario Energy Board approval

 

The Ontario government is preparing to announce electricity relief for residential electricity users struggling because of the COVID-19 emergency, according to sources.

Sources close to those discussions say a decision has been made to lengthen the existing five-month disconnect moratorium by an additional three months.

Separately, Hydro One's relief fund has offered support to its customers during the pandemic.

News releases about the moratorium extension are currently being drafted and are expected to be released shortly, as the pandemic has reduced electricity usage across Ontario.

Electricity utilities in Ontario are currently prohibited from disconnecting residential customers for non-payment during the winter ban period from November 15 to April 30.

The province is also looking at providing further relief by adjusting time-of-use prices, such as off-peak electricity rates, which are designed to encourage shifting of energy use away from periods of high total consumption to periods of low demand.

For businesses, the province has provided stable electricity pricing to support industrial and commercial operations.

But that would require Ontario Energy Board approval and no decision has been finalized, our sources advise.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.