TVA urges conservation to limit rate impact

By McClatchy Tribune News


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The average Tennessee household uses 41 percent more electricity than the typical American household, but Joe Hoagland is determined to lessen that disparity.

As senior vice president of energy conservation for the Tennessee Valley Authority, Dr. Hoagland heads a $99 million program this year to help convince Tennessee Valley power users to buy less of what TVA sells. With today's increase in power rates of 2 percent, his job has gotten a little easier.

"Certainly, higher rates make everyone more conscious of how they use electricity," he said. "We think there are some real opportunities to promote more energy efficiency and to help lessen the amount of expensive power that we have to generate or buy during peak periods."

By 2012, TVA officials want to promote efficiency programs to cut the growth in its peak demand by at least 1,400 megawatts — or more than the power generated by a typical nuclear reactor.

TVA is more than quadrupling its budget for energy conservation in the next fiscal year to fund more consumer education, energy audits and pilot programs for new technologies and pricing incentives. But a former TVA energy advisor insists the federal utility could do far more to promote efficiency and reduce power consumption.

Arjun Makhijani, president of the Institute for Energy and Environmental Research, claims TVA eventually could wean itself of needing any power from either coal or nuclear power over the next three decades by promoting efficiency and alternative energy sources. Today, nearly 90 percent of the power generated by TVA comes either from one of the utility's 59 coal-fired units or one of TVA's six operating nuclear reactors.

"I think with the technology we see in the near future, we can get rid of fossil fuels and nuclear power at reasonable costs," said Dr. Makhijani, an electrical engineer. "Building efficiency has to be at the core of such efforts."

Most of TVA's conservation programs were abandoned in the 1980s and today Tennessee, Alabama and Mississippi in the TVA service territory are among the top states in per-capita electricity consumption. TVA customers rely more upon electricity than other energy sources, agency spokesman John Moulton said.

Dr. Hoagland said TVA is working to restore more energy audits and information for customers similar to what it offered in the 1970s and early 1980s.

But with a $25.2 billion debt, TVA isn't planning to bring back the loans for conservation assistance it promoted three decades ago, he said.

By fiscal 2010, TVA plans to implement time-of-day pricing to offer financial incentives for customers to reduce energy use during peak demand periods when electricity must be generated by more expensive sources, Dr. Hoagland said.

Alex Tapia, a program manager for the Southeast Energy Efficiency Alliance, said rate increases today and over the past couple of years are encouraging consumers to turn to more energy-efficient homes and appliances. By 2025, Mr. Tapia said, at least half of the new growth in electricity demand easily could be met by conservation and efficiency measures.

"I definitely see a change on the horizon on how we view efficiency," he said. "But TVA, the state, businesses and individuals all still need to do more."

Related News

Opinion: Nuclear Beyond Electricity

Nuclear decarbonization leverages low-carbon electricity, process heat, and hydrogen from advanced reactors and SMRs to electrify industry, buildings, and transport, supporting net-zero strategies and grid flexibility alongside renewables with dispatchable baseload capacity.

 

Key Points

Nuclear decarbonization uses reactors to supply low-carbon power, heat, and hydrogen, cutting emissions across industry.

✅ Advanced reactors and SMRs enable high-temperature process heat

✅ Nuclear-powered electrolysis and HTSE produce low-carbon hydrogen

✅ District heating from reactors reduces pollution and coal use

 

By Dr Henri Paillere, Head of the Planning and Economics Studies Section of the IAEA

Decarbonising the power sector will not be sufficient to achieving net-zero emissions, with assessments indicating nuclear may be essential across sectors. We also need to decarbonise the non-power sectors - transport, buildings and industry - which represent 60% of emissions from the energy sector today. The way to do that is: electrification with low-carbon electricity as much as possible; using low-carbon heat sources; and using low-carbon fuels, including hydrogen, produced from clean electricity.
The International Energy Agency (IEA) says that: 'Almost half of the emissions reductions needed to reach net zero by 2050 will need to come from technologies that have not reached the market today.' So there is a need to innovate and push the research, development and deployment of technologies. That includes nuclear beyond electricity.

Today, most of the scenario projections see nuclear's role ONLY in the power sector, despite ongoing debates over whether nuclear power is in decline globally, but increased electrification will require more low-carbon electricity, so potentially more nuclear. Nuclear energy is also a source of low-carbon heat, and could also be used to produce low-carbon fuels such as hydrogen. This is a virtually untapped potential.

There is an opportunity for the nuclear energy sector - from advanced reactors, next-gen nuclear small modular reactors, and non-power applications - but it requires a level playing field, not only in terms of financing today's technologies, but also in terms of promoting innovation and supporting research up to market deployment. And of course technology readiness and economics will be key to their success.

On process heat and district heating, I would draw attention to the fact there have been decades of experience in nuclear district heating. Not well spread, but experience nonetheless, in Russia, Hungary and Switzerland. Last year, we had two new projects. One floating nuclear power plant in Russia (Akademik Lomonosov), which provides not only electricity but district heating to the region of Pevek where it is connected. And in China, the Haiyang nuclear power plant (AP1000 technology) has started delivering commercial district heating. In China, there is an additional motivation to reducing emissions, namely to cut air pollution because in northern China a lot of the heating in winter is provided by coal-fired boilers. By going nuclear with district heating they are therefore cutting down on this pollution and helping with reducing carbon emissions as well. And Poland is looking at high-temperature reactors to replace its fleet of coal-fired boilers and so that's a technology that could also be a game-changer on the industry side.

There have also been decades of research into the production of hydrogen using nuclear energy, but no real deployment. Now, from a climate point of view, there is a clear drive to find substitute fuels for the hydrocarbon fuels that we use today, and multiple new nuclear stations are seen by industry leaders as necessary to meet net-zero targets. In the near term, we will be able to produce hydrogen with electrolysis using low-carbon electricity, from renewables and nuclear. But the cheapest source of low-carbon power is from the long-term operation of existing nuclear power plants which, combined with their high capacity factors, can give the cheapest low-carbon hydrogen of all.

In the mid to long term, there is research on-going with processes that are more efficient than low-temperature electrolysis, which is high temperature steam electrolysis or thermal splitting of water. These may offer higher efficiencies and effectiveness but they also require advanced reactors that are still under development. Demonstration projects are being considered in several countries and we at the IAEA are developing a publication that looks into the business opportunities for nuclear production of hydrogen from existing reactors. In some countries, there is a need to boost the economics of the existing fleet, especially in the electricity systems where you have low or even negative market prices for electricity. So, we are looking at other products that have higher values to improve the competitiveness of existing nuclear power plants.

The future means not only looking at electricity, but also at industry and transport, and so integrated energy systems. Electricity will be the main workhorse of our global decarbonisation effort, but through heat and hydrogen. How you model this is the object of a lot of research work being done by different institutes and we at the IAEA are developing some modelling capabilities with the objective of optimising low-carbon emissions and overall costs.

This is just a picture of what the future might look like: a low-carbon power system with nuclear lightwater reactors (large reactors, small modular reactors and fast reactors) drawing on the green industrial revolution reactor waves in planning; solar, wind, anything that produces low-carbon electricity that can be used to electrify industry, transport, and the heating and cooling of buildings. But we know there is a need for high-temperature process steam that electricity cannot bring but which can be delivered directly by high-temperature reactors. And there are a number of ways of producing low-carbon hydrogen. The beauty of hydrogen is that it can be stored and it could possibly be injected into gas networks that could be run in the future on 100% hydrogen, and this could be converted back into electricity.

So, for decarbonising power, there are many options - nuclear, hydro, variable renewables, with renewables poised to surpass coal in global generation, and fossil with carbon capture and storage - and it's up to countries and industries to invest in the ones they prefer. We find that nuclear can actually reduce the overall cost of systems due to its dispatchability and the fact that variable renewables have a cost because of their intermittency. There is a need for appropriate market designs and the role of governments to encourage investments in nuclear.

Decarbonising other sectors will be as important as decarbonising electricity, from ways to produce low-carbon heat and low-carbon hydrogen. It's not so obvious who will be the clear winners, but I would say that since nuclear can produce all three low-carbon vectors - electricity, heat and hydrogen - it should have the advantage.
We at the IAEA will be organising a webinar next month with the IEA looking at long-term nuclear projections in a net-zero world, building on IAEA analysis on COVID-19 and low-carbon electricity insights. That will be our contribution from the point of view of nuclear to the IEA's special report on roadmaps to net zero that it will publish in May.

 

Related News

View more

EIA expects solar and wind to be larger sources of U.S. electricity generation this summer

US Summer Electricity Outlook 2022 projects rising renewable energy generation as utility-scale solar and wind capacity additions surge, while coal declines and natural gas shifts amid higher fuel prices and regional supply constraints.

 

Key Points

An EIA forecast of summer 2022 power: more solar and wind, less coal, and shifting gas use amid higher fuel prices.

✅ Solar +10 million MWh; wind +8 million MWh vs last summer

✅ Coal generation -20 million MWh amid supply constraints, retirements

✅ Gas prices near $9/MMBtu; slight national gen decline

 

In our Summer Electricity Outlook, a supplement to our May 2022 Short-Term Energy Outlook, we expect the largest increases in U.S. electric power sector generation this summer will come from renewable energy sources such as wind and solar generation. These increases are the result of new capacity additions. We forecast utility-scale solar generation between June and August 2022 will grow by 10 million megawatthours (MWh) compared with the same period last summer, and wind generation will grow by 8 million MWh. Forecast generation from coal and natural gas declines by 26 million MWh this summer, although natural gas generation could increase in some electricity markets where coal supplies are constrained.

For recent context, overall U.S. power generation in January rose 9.3% year over year, the EIA reports.

Wind and solar power electric-generating capacity has been growing steadily in recent years. By the start of June, we estimate the U.S. electric power sector will have 65 gigawatts (GW) of utility-scale solar-generating capacity, a 31% increase in solar capacity since June 2021. Almost one-third of this new solar capacity will be built in the Texas electricity market. The electric power sector will also have an estimated 138 GW of wind capacity online this June, which is a 12% increase from last June.

Along with growth in renewables capacity, we expect that an additional 6 GW of new natural gas combined-cycle generating capacity will come online by June 2022, an increase of 2% from last summer. Despite this increase in capacity, we expect natural gas-fired electricity generation at the national level will be slightly (1.3%) lower than last summer.

We forecast the price of natural gas delivered to electric generators will average nearly $9 per million British thermal units between June and August 2022, which would be more than double the average price last summer. The higher expected natural gas prices and growth in renewable generation will likely lead to less natural gas-fired generation in some regions of the country.

In contrast to renewables and natural gas, the electricity industry has been steadily retiring coal-fired power plants over the past decade. Between June 2021 and June 2022, the electric power sector will have retired 6 GW (2%) of U.S. coal-fired generating capacity.

In previous years, higher natural gas prices would have resulted in more coal-fired electricity generation across the fleet. However, coal-fired power plants have been limited in their ability to replenish their historically low inventories in recent months as a result of mine closures, rail capacity constraints, and labor market tightness. These coal supply constraints, along with continued retirement of generating capacity, contribute to our forecast that U.S. coal-fired generation will decline by 20 million MWh (7%) this summer. In some regions of the country, these coal supply constraints may lead to increased natural gas-fired electricity generation despite higher natural gas prices.
 

 

Related News

View more

US Automakers Will Build 30,000 Electric Vehicle Chargers

Automaker EV Fast-Charging Network will deploy 30,000 DC fast chargers across US and Canada, supporting CCS and NACS, integrating Tesla compatibility, easing range anxiety, and expanding highway and urban charging infrastructure with amenities and uptime.

 

Key Points

A $1B joint venture by seven automakers to build 30,000 DC fast chargers with CCS and NACS across the US and Canada.

✅ 30,000 DC fast chargers by 2030 across US and Canada

✅ Supports CCS and NACS; Tesla compatibility planned

✅ Launching mid-2024; focus on highways, urban hubs, amenities

 

Seven major automakers announced a plan on Wednesday to nearly double the number of fast chargers in the United States in an effort to address one of the main reasons that people hesitate to buy electric cars, even as the age of electric cars accelerates.

The carmakers — BMW Group, General Motors, Honda, Hyundai, Kia, Mercedes-Benz Group and Stellantis — will initially invest at least $1 billion in a joint venture that will build 30,000 charging ports on major highways and other locations in the United States and Canada.

The United States and Canada have about 36,000 fast chargers — those that can replenish a drained battery in 30 minutes or less. In some sparsely populated areas, such chargers can be hundreds of miles apart. Surveys show that fear about not being able to find a charger during longer journeys is a major reason that some car buyers are reluctant to buy electric vehicles.

Sales of electric vehicles have risen quickly in the United States as the market hits an inflection point, but there are signs that demand is softening. As a result, Tesla, Ford and other carmakers have cut prices in recent months and are offering incentives. Popular models that had long waiting lists last year are now available in a few days or weeks.

Major carmakers are investing billions of dollars to manufacture electric vehicles and batteries and to establish supplier networks. Having staked their futures on the technology, they have a strong incentive to ensure that electric vehicles catch on with car buyers, even as gas-electric hybrids help bridge the transition.

The chargers installed by the joint venture will have plugs designed for the connections used by most carmakers other than Tesla, as well as the standard developed by Tesla, amid fights for control over charging, that Ford, G.M. and other companies have said they intend to switch to in 2025.

“The better experience people have, the faster E.V. adoption will grow,” Mary T. Barra, the chief executive of General Motors, said in a statement.

The seven automakers plan to formalize the joint venture and announce its name by the end of the year, Chris Martin, a Honda spokesman, said. The first chargers will begin operating around the middle of 2024, he said, with all 30,000 in place by the end of the decade.

The joint venture is open to adding other partners, he said. Among major automakers, Ford was a notable absence from the announcement on Wednesday. The company said in a statement on Wednesday that it would continue to iThe partnership also does not include Volkswagen. The company is a majority shareholder of Electrify America, one of the largest fast-charging providers.

Tesla accounts for more than half the fast chargers in the United States and has said it will open its networks to other car brands, though, so far, it has only made fewer than 100 ports available. Owners of Ford and G.M. vehicles, among others, will be able to connect to 12,000 Tesla fast chargers using an adapter beginning next year. In 2025, Ford and G.M. plan to make models designed to take the Tesla plug without an adapter.

The decision by the seven carmakers to form the joint venture is an indication that they do not intend to rely solely on Tesla, which dominates sales of electric vehicles, for charging.

The chargers being built by the joint venture will be concentrated in urban areas and along major highways, especially those used most heavily by vacationers and other travelers, the companies said in a joint statement. Charging stations will be close to restrooms, restaurants and other amenities. The partners said they would try to take advantage of federal and state funds available for charging infrastructure amid questions about whether the U.S. has the power to charge it at scale.

Most electric vehicle owners charge at home and rarely need to use public chargers. Home chargers typically replenish batteries overnight. Most public chargers, about 125,000 in the United States and Canada, also operate relatively slowly — taking four to 10 hours to do the job.nvest in its own network, which allows Ford owners to charge from a variety of providers with one mobile phone app.

 

Related News

View more

Why rolling back European electricity prices is tougher than appears

EU Energy Price Crisis drives soaring electricity bills as natural gas sets pay-as-clear power prices; leaders debate price caps, common gas purchasing, market reform, renewables, and ETS changes amid Ukraine war supply shocks.

 

Key Points

A surge in gas-driven power costs linked to pay-as-clear pricing, supply shocks, and policy rifts across the EU market.

✅ Gas sets marginal power price via pay-as-clear mechanism

✅ Spain pushes decoupling and temporary price caps

✅ EU weighs joint gas buying, efficiency, more renewables

 

Nothing grabs politicians' attention faster than angry voters, and they've had plenty to be furious about as natural gas and electricity bills have soared to stomach-churning levels in recent months, as this UK natural gas analysis illustrates across markets.

That's led to a scramble to figure out ways to get those costs down, with emergency price-limiting measures under discussion — but that's turning out to be very difficult, so the likeliest result is that EU leaders meeting later this week won't come up with any solutions.

“There is no single easy answer to tackle the high electricity prices given the diversity of situations among Member States. Some options are only suitable for specific national contexts,” the European Commission said on Wednesday. “They all carry costs and drawbacks.” 

The initial problem was a surge in gas demand in Asia last year coupled with lower-than-normal Russian gas deliveries that left European gas storage at unusually low levels. Now the war in Ukraine is making matters even worse, as pressure grows for the bloc to rapidly cut its imports of Russian oil, coal and natural gas — although some national leaders reject the economic costs that would entail.

"We will end this dependence as quickly as we can, but to do that from one day to the next would mean plunging our country and all of Europe into a recession," German Chancellor Olaf Scholz warned on Wednesday.

The problem for the bloc is that its liberalized electricity market is tightly tied to the price of natural gas; power prices are set by the final input needed to balance demand — called pay-as-clear — which in most cases is set by natural gas. That's led to countries with large amounts of cheaper renewable or nuclear energy seeing sharp spikes in power prices thanks to the cost of that final bit of gas-fired electricity.

A Spanish-led coalition that includes Portugal, Belgium and Italy wants deep reforms to the EU price model, fueling a broader electricity market revamp debate in Brussels.

Others, such as the Netherlands and Germany, strongly oppose such an approach, echoing how nine countries oppose reforms at the EU level, and want to focus on cushioning the effects of the high prices on consumers and businesses, while letting the market operate. 

A third group, largely in Central Europe, wants to use the price spike to revamp or scrap the bloc's Emissions Trading System and to rethink its Fit for 55 climate legislation.

The European Commission has been holding the middle ground — arguing that the current market model makes sense, but encouraging countries to boost the amount of renewable electricity, in a wake-up call to ditch fossil fuels for Europe, to cut energy use and increase efficiency.

In draft conclusions of this week's European Council summit, seen by POLITICO, EU leaders, amid a France-Germany tussle over reform, call for things like a common approach to buying gas, aimed at preventing countries from competing against each other. But there's no big movement on electricity prices.

“It does not seem realistic to expect a result on the energy discussion at this European Council,” one diplomat said, stressing that the governments will need to see more analysis before committing to any more steps.

Looking for action
Spain wanted a much more robust response. Madrid has been arguing since last summer for “decoupling” gas from the electricity market; together with Portugal, it also mulled limiting the wholesale price of electricity to €180 per megawatt-hour — a proposal that Spain abandoned under fire from industry and consumer groups. 

Now Madrid is pushing to get a specific permission in the summit's final conclusions that would allow countries to voluntarily apply certain short-term solutions such as gas price cap strategies, according to a draft with track changes seen by POLITICO.

The issue with a cap is if gas prices are higher than the cap, Spain might not be able to buy any gas.

 

Related News

View more

Alberta's electricity rebate program extended until December

Alberta Electricity Rebate Extension provides $50 monthly credits, utility bill relief, and an natural gas rebate, supporting homes, farms, and small businesses with energy costs through December 2022, capped at 250 MWh per year.

 

Key Points

A provincial program extending $50 credits and energy relief, with a natural gas rebate for eligible consumers in 2022.

✅ Up to $300 in bill credits; auto-applied to eligible accounts

✅ Applies to whole bill; limit 250 MWh/year consumption

✅ Natural gas rebate triggers above $6.50/GJ Oct-Mar 2023

 

Alberta's electricity rebate program has been extended by three months amid an electricity price spike in Alberta, and will now be in effect until the end of December, the government said.

The program was originally to provide more than 1.9 million homes, farms and small businesses with $50 monthly credits on their electricity bills, complementing a consumer price cap on power bills, for July, August and September. It will now also cover the final three months of 2022.

Those eligible for the rebate could receive up to $300 in credits until the end of December, a relief for Alberta ratepayers facing deferral costs.

The program, designed to provide relief to Albertans hit hard by high utility bills and soaring energy prices, will cost the Alberta government $600 million.

Albertans who have consumed electricity within the past calendar year, up to a maximum of 250 megawatt hours per year, are eligible for the rebates, which will be automatically applied to consumer bills, as seen in Ontario electricity bill support initiatives.

The rebates will apply to the entire bill, similar to a lump-sum credit in Newfoundland and Labrador, not just the energy portion, the government said. The rebates will be automatic and no application will be needed.

Starting October, the government will enact a natural gas rebate program until March 2023 that will kick in when prices exceed $6.50 per gigajoule, and Alberta's consumer price cap on electricity will remain in place.

 

Related News

View more

Judge: Texas Power Plants Exempt from Providing Electricity in Emergencies

Texas Blackout Liability Ruling clarifies appellate court findings in Houston, citing deregulated energy markets, ERCOT immunity, wholesale generators, retail providers, and 2021 winter storm lawsuits over grid failures and wrongful deaths.

 

Key Points

Houston judges held wholesale generators owe no duty to retail customers, limiting liability for 2021 blackout lawsuits.

✅ Court cites deregulated market and lack of privity to consumers

✅ Ruling shields generators from 2021 winter storm civil suits

✅ Plaintiffs plan appeals; legislature may address liability

 

Nearly three years after the devastating Texas blackout of 2021, a panel of judges from the First Court of Appeals in Houston has determined that major power companies cannot be held accountable for their failure to deliver electricity during the power grid crisis that unfolded, citing Texas' deregulated energy market as the reason.

This ruling appears likely to shield these companies from lawsuits that were filed against them in the aftermath of the blackout, leaving the families of those affected uncertain about where to seek justice.

In February 2021, a severe cold front swept over Texas, bringing extended periods of ice and snow. The extreme weather conditions increased energy demand while simultaneously reducing supply by causing power generators and the state's natural gas supply chain to freeze. This led to a blackout that left millions of Texans without power and water for nearly a week.

The state officially reported that almost 250 people lost their lives during the winter storm and subsequent blackout, although some analysts argue that this is a significant undercount and warn of blackout risks across the U.S. during severe heat as well.

In the wake of the storm, Texans affected by the energy system's failure began filing lawsuits, and lawmakers proposed a market bailout as political debate intensified. Some of these legal actions were directed against power generators whose plants either ceased to function during the storm or ran out of fuel for electricity generation.

After several years of legal proceedings, a three-judge panel was convened to evaluate the merits of these lawsuits.

This week, Chief Justice Terry Adams issued a unanimous opinion on behalf of the panel, stating, "Texas does not currently recognize a legal duty owed by wholesale power generators to retail customers to provide continuous electricity to the electric grid, and ultimately to the retail customers."

The opinion further clarified that major power generators "are now statutorily precluded by the legislature from having any direct relationship with retail customers of electricity."

This separation of power generation from transmission and retail electric sales in many parts of Texas resulted from energy market deregulation in the early 2000s, with the goal of reducing energy costs, and prompted electricity market reforms aimed at avoiding future blackouts.

Under the previous system, power companies were "vertically integrated," controlling generators, transmission lines, and selling the energy they produced directly to regional customers. However, in deregulated areas of Texas, competition was introduced, creating competing energy-generating companies and retail electric providers that purchase power wholesale and then sell it to residential consumers; meanwhile, electric cooperatives in other parts of the state remained member-owned providers.

Tré Fischer, a partner at the Jackson Walker law firm representing the power companies, explained, "One consequence of that was, because of the unbundling and the separation, you also don't have the same duties and obligations [to consumers]. The structure just doesn't allow for that direct relationship and correspondingly a direct obligation to continually supply the electricity even if there's a natural disaster or catastrophic event."

In the opinion, Justice Adams noted that when designing the Texas energy market, amid renewed interest in ways to improve electricity reliability across the grid, state lawmakers "could have codified the retail customers' asserted duty of continuous electricity on the part of wholesale power generators into law."

The recent ruling applies to five representative cases chosen by the panel out of hundreds filed after the blackout. Due to this decision, it is improbable that any of the lawsuits against power companies will succeed, according to the court's interpretation.

However, plaintiffs' attorneys have indicated their intention to appeal. They may request a review of the panel's opinion by the entire First Court of Appeals or appeal directly to the state supreme court.

The state Supreme Court had previously ruled that the Electric Reliability Council of Texas (ERCOT), the state's power grid operator, enjoys sovereign immunity and cannot be sued over the blackout.

This latest opinion raises the question of who, if anyone, can be held responsible for deaths and losses resulting from the blackout, a question left unaddressed by the court. Fischer commented, "If anything [the judges] were saying that is a question for the Texas legislature."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified