Coal ash a toxic problem for China

By United Press International


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The amount of toxic coal ash dumped from China's coal-fired power plants is so massive it could fill an Olympic-sized swimming pool every two-and-a-half minutes, says a Greenpeace report.

The world's largest coal user, China relies on coal for about 70 percent of its energy supply.

That dependence means China produces at least 375 million tons of coal ash annually, which is more than 2.5 times the amount the country produced in 2002 when its coal power sector began to rapidly expand, says the report, "The True Cost of Coal: An Investigation into Coal Ash in China". Coal ash is the solid particulate matter produced when coal is burned in power stations.

"There are over 1,400 coal-fired power plants scattered across China and all of them are discharging coal ash every day," said Yang Ailun, head climate campaigner at Greenpeace China in a statement.

"This substantially erodes China's already-scarce land and water resources, while damaging public health and the environment."

Many coal-fired plants don't follow existing, albeit vague, regulations that cover the disposal of coal ash.

In its investigation of 14 power plants around the country, Greenpeace said it discovered a large number of ash disposal sites located alarmingly close to villages and residential areas.

Tests of the coal ash from those plants, conducted by Greenpeace, found that it contained more than 20 kinds of heavy metals and chemical compounds.

Also, an analysis of samples of surface and well water near disposal sites found concentrations of a number of harmful substances that exceeded acceptable standards for drinking and irrigation water.

"Many of the coal ash disposal sites we visited had poor safeguards to prevent coal ash contamination via wind dispersal or leakage into water," said Yang.

"This affects nearby villages most directly but it also poses huge threats to all of China, as contaminants enter the food chain or are scattered by the winds far and wide," he said.

Yang called for reform of the country's energy structure, an improvement in energy efficiency and the development of renewable energy.

China, the world's top emitter of greenhouse gases, aims to reduce its carbon intensity rate - the amount of carbon dioxide produced per unit of gross domestic product - by 40 to 45 percent by the end of 2020.

But the International Energy Agency estimates that by 2020, China's emissions of energy-related greenhouse gases would increase more than the rest of the world's combined increase.

Related News

German official says nuclear would do little to solve gas issue

Germany Nuclear Phase-Out drives policy amid gas supply risks, Nord Stream 1 shutdown fears, Russia dependency, and energy security planning, as Robert Habeck rejects extending reactors, favoring coal backup, storage, and EU diversification strategies.

 

Key Points

Ending Germany's last reactors by year end despite gas risks, prioritizing storage, coal backup, and EU diversification.

✅ Reactors' legal certification expires at year end

✅ Minimal gas savings from extending nuclear capacity

✅ Nord Stream 1 cuts amplify energy security risks

 

Germany’s vice-chancellor has defended the government’s commitment to ending the use of nuclear power at the end of this year, amid fears that Russia may halt natural gas supplies entirely.

Vice-Chancellor Robert Habeck, who is also the economy and climate minister and is responsible for energy, argued that keeping the few remaining reactors running would do little to address the problems caused by a possible natural gas shortfall.

“Nuclear power doesn’t help us there at all,” Habeck, said at a news conference in Vienna on Tuesday. “We have a heating problem or an industry problem, but not an electricity problem – at least not generally throughout the country.”

The main gas pipeline from Russia to Germany shut down for annual maintenance on Monday, as Berlin grew concerned that Moscow may not resume the flow of gas as scheduled.

The Nord Stream 1 pipeline, Germany’s main source of Russian gas, is scheduled to be out of action until July 21 for routine work that the operator says includes “testing of mechanical elements and automation systems”.

But German officials are suspicious of Russia’s intentions, particularly after Russia’s Gazprom last month reduced the gas flow through Nord Stream 1 by 60 percent.

Gazprom cited technical problems involving a gas turbine powering a compressor station that partner Siemens Energy sent to Canada for overhaul.

Germany’s main opposition party has called repeatedly to extend nuclear power by keeping the country’s last three nuclear reactors online after the end of December. There is some sympathy for that position in the ranks of the pro-business Free Democrats, the smallest party in Chancellor Olaf Scholz’s governing coalition.

In this year’s first quarter, nuclear energy accounted for 6 percent of Germany’s electricity generation and natural gas for 13 percent, both significantly lower than a year earlier. Germany has been getting about 35 percent of its gas from Russia.

Habeck said the legal certification for the remaining reactors expires at the end of the year and they would have to be treated thereafter as effectively new nuclear plants, complete with safety considerations and the likely “very small advantage” in terms of saving gas would not outweigh the complications.

Fuel for the reactors also would have to be procured and Scholz has said that the fuel rods are generally imported from Russia.

Opposition politicians have argued that Habeck’s environmentalist Green party, which has long strongly supported the nuclear phase-out, is opposing keeping reactors online for ideological reasons, even as some float a U-turn on the nuclear phaseout in response to the energy crisis.

Reducing dependency on Russia
Germany and the rest of Europe are scrambling to fill the gas storage in time for the northern hemisphere winter, even as Europe is losing nuclear power at a critical moment and reduce their dependence on Russian energy imports.

Prior to the Russian invasion of Ukraine, Berlin had said it considered nuclear energy dangerous and in January objected to European Union proposals that would let the technology remain part of the bloc’s plans for a climate-friendly future that includes a nuclear option for climate change pathway.

“We consider nuclear technology to be dangerous,” government spokesman Steffen Hebestreit told reporters in Berlin, noting that the question of what to do with radioactive waste that will last for thousands of generations remains unresolved.

While neighbouring France aimed to modernise existing reactors, Germany stayed on course to switch off its remaining three nuclear power plants at the end of this year and phase out coal by 2030.

Last month, Germany’s economy minister said the country would limit the use of natural gas for electricity production and make a temporary recourse to coal generation to conserve gas.

“It’s bitter but indispensable for reducing gas consumption,” Robert Habeck said.

 

Related News

View more

Electricity users in Newfoundland have started paying for Muskrat Falls

Muskrat Falls rate mitigation offsets Newfoundland Power's rate stabilization decrease as NL Hydro begins cost recovery; Public Utilities Board approval enables collections while Labrador-Island Link nears commissioning, stabilizing electricity rates despite megaproject delays, overruns.

 

Key Points

Muskrat Falls rate mitigation is NL Hydro's cost recovery via power rates to stabilize bills as commissioning nears.

✅ Offsets 6.4% decrease with a 6.1% rate increase

✅ About 6% now funds NL Hydro's rate mitigation

✅ Collections begin as Labrador-Island Link nears commissioning

 

With their July electricity bill, Newfoundland Power customers have begun paying for Muskrat Falls, though a lump-sum credit was also announced to offset costs and bills haven't significantly increased — yet.

In a July newsletter, Newfoundland Power said electricity bills were set to decrease by 6.4 per cent as part of the annual rate stabilization adjustment, which reflects the cost of electricity generation.

Instead, that decrease has been offset by a 6.1 increase in electricity rates so Newfoundland and Labrador Hydro can begin recovering the cost of Muskrat Falls, with a $5.2-billion federal package also underpinning the project, the $13-billion hydroelectric megaproject that is billions over budget and years behind schedule.

That means for residential customers, electricity rates will decrease to 12.346 cents per kilowatt, though the basic customer charge will go up slightly from $15.81 to $15.83. According to an N.L. Hydro spokesperson, about six per cent of electricity bills will now go toward what it calls a "rate mitigation fund." 

N.L. Hydro claims victory in Muskrat Falls arbitration dispute with Astaldi
Software troubles blamed for $260M Muskrat Falls cost increase, with N.L. power rates stable for now
The spokesperson said N.L. Hydro is expecting the rate increase to result in $43 million this year, according to a recent financial update from the energy corporation — a tiny fraction of the project's cost. 

N.L. Hydro asked the Public Utilities Board to approve the rate increase, a process similar to Nova Scotia's recent 14% approval by its regulator, in May. In a letter, Energy, Industry and Technology Minister Andrew Parsons supported the increase, though he asked N.L. Hydro to keep electricity rates "as close to current levels as possible. 

Province modifies order in council
Muskrat Falls is not yet fully online — largely due to software problems with the Labrador-Island Link transmission line — and an order in council dictated that ratepayers on the island of Newfoundland would not begin paying for the project until the project was fully commissioned. 

The provincial government modified that order in council so N.L. Hydro can begin collecting costs associated with Muskrat Falls once the project is "nearing" commissioning.

In June, N.L. Hydro said the project was expected to finally be completed by the end of the year.

In an interview with CBC News, Progressive Conservative interim leader David Brazil said the decision to begin recovering the cost of Muskrat Falls from consumers should have been delayed.

"There was an opportunity here for people to get some reprieve when it came to their electricity bills and this administration chose not to do that, not to help the people while they're struggling," he said.

In a statement, Parsons said reducing the rate was not an option, and would have resulted in increased borrowing costs for Muskrat Falls.

"Reducing the rate for one year to have it increase significantly the following year is not consistent with rate mitigation and also places an increased financial burden on taxpayers one year from now," Parsons said.

Decision 'reasonable': Consumer advocate
Brazil said his party didn't know the payments from Muskrat Falls would start in July, and criticized the government for not being more transparent.

A person wearing a blue shirt and black blazer stands outside on a lawn.
N.L. consumer advocate Dennis Browne says it makes sense to begin recouping the cost of Muskrat Falls. (Garrett Barry/CBC)
Newfoundland and Labrador consumer advocate Dennis Browne said the decision to begin collecting costs from consumers was "reasonable."

"We're into a financial hole due to Muskrat Falls, and what has happened is in order to stabilize rates, we have gone into rate stabilization efforts," he said.

In February, the provincial and federal governments signed a complex agreement to shield ratepayers aimed at softening the worst of the financial impact from Muskrat Falls. Browne noted even with the agreement, the provincial government will have to pay hundreds of millions in order to stabilize electricity rates.

"Muskrat Falls would cost us $0.23 a kilowatt, and that is out of the range of affordability for most people, and that's why we're into rate mitigation," he said. "This was part of a rate mitigation effort, and I accepted it as part of that."

 

Related News

View more

Net-Zero Emissions Might Not Be Possible Without Nuclear Power

Nuclear Power for Net-Zero Grids anchors reliable baseload, integrating renewables with grid stability as solar, wind, and battery storage scale. Advanced reactors complement hydropower, curb natural gas reliance, and accelerate deep decarbonization of electricity systems.

 

Key Points

Uses nuclear baseload and advanced reactors to stabilize power grids and integrate higher shares of variable renewables.

✅ Provides firm, zero-carbon baseload for renewable-heavy grids

✅ Reduces natural gas dependence and peaker emissions

✅ Advanced reactors enhance safety, flexibility, and cost

 

Declining solar, wind, and battery technology costs are helping to grow the share of renewables in the world’s power mix to the point that governments are pledging net-zero emission electricity generation in two to three decades to fight global warming.

Yet, electricity grids will continue to require stable baseload to incorporate growing shares of renewable energy sources and ensure lights are on even when the sun doesn’t shine, or the wind doesn’t blow. Until battery technology evolves enough—and costs fall far enough—to allow massive storage and deployment of net-zero electricity to the grid, the systems will continue to need power from sources other than solar and wind.

And these will be natural gas and nuclear power, regardless of concerns about emissions from the fossil fuel natural gas and potential disasters at nuclear power facilities such as the ones in Chernobyl or Fukushima.

As natural gas is increasingly considered as just another fossil fuel, nuclear power generation provides carbon-free electricity to the countries that have it, even as debates over nuclear power’s outlook continue worldwide, and could be the key to ensuring a stable power grid capable of taking in growing shares of solar and wind power generation.

The United States, where nuclear energy currently provides more than half of the carbon-free electricity, is supporting the development of advanced nuclear reactors as part of the clean energy strategy.

But Europe, which has set a goal to reach carbon neutrality by 2050, could find itself with growing emissions from the power sector in a decade, as many nuclear reactors are slated for decommissioning and questions remain over whether its aging reactors can bridge the gap. The gap left by lost nuclear power is most easily filled by natural gas-powered electricity generation—and this, if it happens, could undermine the net-zero goals of the European Union (EU) and the bloc’s ambition to be a world leader in the fight against climate change.

 

U.S. Power Grid Will Need Nuclear For Net-Zero Emissions

A 2020 report from the University of California, Berkeley, said that rapidly declining solar, wind, and storage prices make it entirely feasible for the U.S. to meet 90 percent of its power needs from zero-emission energy sources by 2035 with zero increases in customer costs from today’s levels.

Still, natural gas-fired generation will be needed for 10 percent of America’s power needs. According to the report, in 2035 it would be possible that “during normal periods of generation and demand, wind, solar, and batteries provide 70% of annual generation, while hydropower and nuclear provide 20%.” Even with an exponential rise in renewable power generation, the U.S. grid will need nuclear power and hydropower to be stable with such a large share of solar and wind.

The U.S. Backs Advanced Nuclear Reactor Technology

The U.S. Department of Energy is funding programs of private companies under DOE’s new Advanced Reactor Demonstration Program (ARDP) to showcase next-gen nuclear designs for U.S. deployment.

“Taking leadership in advanced technology is so important to the country’s future because nuclear energy plays such a key role in our clean energy strategy,” U.S. Secretary of Energy Dan Brouillette said at the end of December when DOE announced it was financially backing five teams to develop and demonstrate advanced nuclear reactors in the United States.

“All of these projects will put the U.S. on an accelerated timeline to domestically and globally deploy advanced nuclear reactors that will enhance safety and be affordable to construct and operate,” Secretary Brouillette said.

According to Washington DC-based Nuclear Energy Institute (NEI), a policy organization of the nuclear technologies industry, nuclear energy provides nearly 55 percent of America’s carbon-free electricity. That is more than 2.5 times the amount generated by hydropower, nearly 3 times the amount generated by wind, and more than 12 times the amount generated by solar. Nuclear energy can help the United States to get to the deep carbonization needed to hit climate goals.

 

Europe Could See Rising Emissions Without Nuclear Power

While the United States is doubling down on efforts to develop advanced and cheaper nuclear reactors, including microreactors and such with new types of technology, Europe could be headed to growing emissions from the electricity sector as nuclear power facilities are scheduled to be decommissioned over the next decade and Europe is losing nuclear power just when it really needs energy, according to a Reuters analysis from last month.

In many cases, it will be natural gas that will come to the rescue to power grids to ensure grid stability and enough capacity during peak demand because solar and wind generation is variable and dependent on the weather.

For example, Germany, the biggest economy in Europe, is boosting its renewables targets, but it is also phasing out nuclear by next year, amid a nuclear option debate over climate strategy, while its deadline to phase out coal-fired generation is 2038—more than a decade later compared to phase-out plans in the UK and Italy, for example, where the deadline is the mid-2020s.

The UK, which left the EU last year, included support for nuclear power generation as one of the ten pillars in ‘The Ten Point Plan for a Green Industrial Revolution’ unveiled in November.

The UK’s National Grid has issued several warnings about tight supply since the fall of 2020, due to low renewable output amid high demand.

“National Grid’s announcement underscores the urgency of investing in new nuclear capacity, to secure reliable, always-on, emissions-free power, alongside other zero-carbon sources. Otherwise, we will continue to burn gas and coal as a fallback and fall short of our net zero ambitions,” Tom Greatrex, Chief Executive of the Nuclear Industry Association, said in response to one of those warnings.

But it’s in the UK that one major nuclear power plant project has notoriously seen a delay of nearly a decade—Hinkley Point C, originally planned in 2007 to help UK households to “cook their 2017 Christmas turkeys”, is now set for start-up in the middle of the 2020s.

Nuclear power development and plant construction is expensive, but it could save the plans for low-carbon emission power generation in many developed economies, including in the United States.

 

Related News

View more

Avista Commissions Largest Solar Array in Washington

Adams Nielson Solar Array, a 28 MW DC utility-scale project in Lind, WA, spans 200 acres with 81,700 panels, powering about 4,000 homes, supporting Avista’s Solar Select program and renewable energy, sustainability, and carbon reduction.

 

Key Points

Adams Nielson Solar Array is a 28 MW DC facility in Lind, WA, powering ~4,000 homes via Avista’s Solar Select.

✅ 81,700 panels across 200 acres in Eastern Washington

✅ Offsets emissions equal to removing 7,300 cars annually

✅ Collaboration by Avista, Strata Solar, WUTC, WSU Energy

 

Official commissioning of the Adams Nielson solar array located in Lind, WA occurred today. The 28 Megawatt DC array is comprised of 81,700 panels that span 200 acres and generates enough electricity to supply the equivalent of approximately 4,000 homes annually, similar to a new co-op solar project serving South Metro members.

“Avista’s interest in the development of Solar Select, a voluntary commercial solar program reflecting broader corporate adoption such as a corporate solar power plant commissioned by Arvato, is consistent with the Company’s ongoing commitment to provide customers with renewable energy choices at reasonable cost,” said Dennis Vermillion, president, Avista Corporation. “In recent years, an increasing number of Avista customers have expressed their expectations and challenges in acquiring renewable energy. Avista is pleased to lead this effort and develop renewable energy products that meet our customers’ needs today and into the future.” This interest is being generated by a mix of local and national customers across a variety of industries, including Huckleberry’s, Gonzaga University, Community Colleges of Spokane, Hotstart, Central Pre-Mix Concrete, a CRH Co., independently owned McDonald's franchise locations, Spokane City, Main Market and Community Building and VA Medical Center.

Jim Simon, director of sustainability at Gonzaga University said, “The Solar Select program helps Gonzaga University move even closer to achieving its goal of climate neutrality by 2050 by continuing to prioritize renewables in our energy portfolio, as other communities add projects like a municipal solar project to boost local supply. We are grateful for Avista’s leadership in this project and look forward to other opportunities to reduce our greenhouse gas emissions.”

Spokane Mayor David Condon said, “The City of Spokane is pleased to partner with Avista through the Solar Select Program, as we continue to seek out opportunities that are both environmentally and financially responsible. The City already is a net producer of energy, generating more clean, green energy than our use of electricity, natural gas, and fuel, a milestone also seen with North Carolina's first wind farm now fully operational. We are excited to add even more clean energy to power City Hall.”

The Solar Select program created a cost-effective structure to bring solar energy to large business customers in Eastern Washington, allowing them to advance their desired sustainability goals and benefiting from industry service innovations led by companies like Omnidian expanding their global reach. The array is projected to deliver the environmental benefit equivalent of more than 7,300 cars removed from the road each year. This renewable energy program was made possible through a collaboration of Avista, Strata Solar, the Washington Utilities and Transportation Commission, and the WSU Energy Program. 

 

Related News

View more

Integrating AI Data Centers into Canada's Electricity Grids

Canada AI Data Center Grid Integration aligns AI demand with renewable energy, energy storage, and grid reliability. It emphasizes transmission upgrades, liquid cooling efficiency, and policy incentives to balance economic growth with sustainable power.

 

Key Points

Linking AI data centers to Canada's grid with renewables, storage, and efficiency to ensure reliable, sustainable power.

✅ Diversify supply with wind, solar, hydro, and firm low-carbon resources

✅ Deploy grid-scale batteries to balance peaks and enhance reliability

✅ Upgrade transmission, distribution, and adopt liquid cooling efficiency

 

Artificial intelligence (AI) is revolutionizing various sectors, driving demand for data centers that support AI applications. In Canada, this surge in data center development presents both economic opportunities and challenges for the electricity grid, where utilities using AI to adapt to evolving demand dynamics. Integrating AI-focused data centers into Canada's electricity infrastructure requires strategic planning to balance economic growth with sustainable energy practices.​

Economic and Technological Incentives

Canada has been at the forefront of AI research for over three decades, establishing itself as a global leader in the field. The federal government has invested significantly in AI initiatives, with over $2 billion allocated in 2024 to maintain Canada's competitive edge and to align with a net-zero grid by 2050 target nationwide. Provincial governments are also actively courting data center investments, recognizing the economic and technological benefits these facilities bring. Data centers not only create jobs and stimulate local economies but also enhance technological infrastructure, supporting advancements in AI and related fields.​

Challenges to the Electricity Grid

However, the energy demands of AI data centers pose significant challenges to Canada's electricity grid, mirroring the power challenge for utilities seen in the U.S., as demand rises. The North American Electric Reliability Corporation (NERC) has raised concerns about the growing electricity consumption driven by AI, noting that the current power generation capacity may struggle to meet this increasing demand, while grids are increasingly exposed to harsh weather conditions that threaten reliability as well. This situation could lead to reliability issues, including potential blackouts during peak demand periods, jeopardizing both economic activities and the progress of AI initiatives.​

Strategic Integration Approaches

To effectively integrate AI data centers into Canada's electricity grids, a multifaceted approach is essential:

  1. Diversifying Energy Sources: Relying solely on traditional energy sources may not suffice to meet the heightened demands of AI data centers. Incorporating renewable energy sources, such as wind, solar, and hydroelectric power, can provide sustainable alternatives. For instance, Alberta has emerged as a proactive player in supporting AI-enabled data centers, with the TransAlta data centre agreement expected to advance this momentum, leveraging its renewable energy potential to attract such investments.
     

  2. Implementing Energy Storage Solutions: Integrating large-scale battery storage systems can help manage the intermittent nature of renewable energy. These systems store excess energy generated during low-demand periods, releasing it during peak times to stabilize the grid. In some communities, AI-driven grid upgrades complement storage deployments to optimize operations, which supports data center needs and community reliability.
     

  3. Enhancing Grid Infrastructure: Upgrading transmission and distribution networks is crucial to handle the increased load from AI data centers. Strategic investments in grid infrastructure can prevent bottlenecks and ensure efficient energy delivery, including exploration of macrogrids in Canada to improve regional transfers, supporting both existing and new data center operations.​
     

  4. Adopting Energy-Efficient Data Center Designs: Designing data centers with energy efficiency in mind can significantly reduce their power consumption. Innovations such as liquid cooling systems are being explored to manage the heat generated by high-density AI workloads, offering more efficient alternatives to traditional air cooling methods.

  5. Establishing Collaborative Policies: Collaboration among government entities, utility providers, and data center operators is vital to align energy policies with technological advancements. Developing regulatory frameworks that incentivize sustainable practices can guide the growth of AI data centers in harmony with grid capabilities.​
     

Integrating AI data centers into Canada's electricity grids presents both significant opportunities and challenges. By adopting a comprehensive strategy that includes diversifying energy sources, implementing advanced energy storage, enhancing grid infrastructure, promoting energy-efficient designs, and fostering collaborative policies, Canada can harness the benefits of AI while ensuring a reliable and sustainable energy future. This balanced approach will position Canada as a leader in both AI innovation and sustainable energy practices.

 

Related News

View more

Cyprus can’t delay joining the electricity highway

Cyprus Electricity Interconnectors link the island to the EU grid via EuroAsia and EuroAfrica projects, enabling renewable energy trade, subsea transmission, market liberalization, and stronger energy security and diplomacy across the region.

 

Key Points

Subsea links connecting Cyprus to Greece, Israel and Egypt for EU grid integration, renewable trade and energy security.

✅ Connects EU, Israel, Egypt via EuroAsia and EuroAfrica

✅ Enables renewables integration and market liberalization

✅ Strengthens energy security, investment, and diplomacy

 

Electricity interconnectors bridging Cyprus with the broader geographical region, mirroring projects like the Ireland-France grid link already underway in Europe, are crucial for its diplomacy while improving its game to become a clean energy hub.

In an interview with Phileleftheros daily, Andreas Poullikkas, chairman of the Cyprus Energy Regulatory Authority (CERA), said electricity cables such as the EuroAsia Interconnector and the EuroAfrica Interconnector, could turn the island into an energy hub, creating investment opportunities.

“Cyprus, with proper planning, can make the most of its energy potential, turning Cyprus into an electricity producer-state and hub by establishing electrical interconnections, such as the EuroAsia Interconnector and the EuroAfrica Interconnector,” said Poullikkas.

He said these electricity interconnectors, “will enable the island to become a hub for electricity transmission between the European Union, Israel and Egypt, with developments such as the Israel Electric Corporation settlement highlighting regional dynamics, while increasing our energy security”.

Poullikkas argued it will have beneficial consequences in shaping healthy conditions for liberalising the country’s electricity market and economy, facilitating the production of electricity with Renewable Energy Sources and supporting broader efforts like the UK grid transformation toward net zero.

“Electricity interconnections are an excellent opportunity for greater business flexibility in Cyprus, ushering new investment opportunities, as seen with the Lake Erie Connector investment across North America, either in electricity generation or other sectors. Especially at a time when any investment or financial opportunity is welcomed.”

He said Cyprus’ energy resources are a combination of hydrocarbon deposits and renewable energy sources, such as solar.

This combination offers the country a comparative advantage in the energy sector.

Cyprus can take advantage of the development of alternative supply routes of the EU, as more links such as new UK interconnectors come online.

Poullikkas argued that as energy networks are developing rapidly throughout the bloc, serving the ever-increasing needs for electricity, and aligning with the global energy interconnection vision highlighted in recent assessments, the need to connect Cyprus with its wider geographical area is a matter of urgency.

He argues the development of important energy infrastructure, especially electricity interconnections, is an important catalyst in the implementation of Cyprus goals, while recognising how rule changes like Australia's big battery market shift can affect storage strategies.

“It should also be a national political priority, as this will help strengthen diplomatic relations,” added Poullikkas.

Implementing the electricity interconnectors between Israel, Cyprus and Greece through Crete and Attica (EuroAsia Interconnector) has been delayed by two years.

He said the delay was brought about after Greece decided to separate the Crete-Attica section of the interconnection and treat as a national project.

Poullikkas stressed the Greek authorities are committed to ensuring the connection of Cyprus with the electricity market of the EU.

“All the required permits have been obtained from the competent authorities in Cyprus and upon the completion of the procedures with the preferred manufacturers, construction of the Cyprus-Crete electrical interconnection will begin before the end of this year. Based on current data, the entire interconnection is expected to be implemented in 2023”.

“The EuroAfrica Interconnector is in the pre-works stage, all project implementation studies have already been completed and submitted to the competent authorities, including cost and benefit studies”.

EuroAsia Interconnector is a leading EU project of common interest (PCI), also labelled as an “electricity highway” by the European Commission.

It connects the national grids of Israel, Cyprus and Greece, creating a reliable energy bridge between the continents of Asia and Europe allowing bi-directional transmission of electricity.

The cost of the entire subsea cable system, at 1,208km, the longest in the world and the deepest at 3,000m below sea level, is estimated at €2.5 bln.

Construction costs for the first phase of the Egypt-Cyprus interconnection (EuroAfrica) with a Stage 1 transmission capacity of 1,000MW is estimated at €1bln.

The Cyprus-Greece (Crete) interconnection, as well as the Egypt-Cyprus electricity interconnector, will both be commissioned by December 2023.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified