Alternative Energy Sources – Clean Electric Power Options


Alternative Energy Sources - Environmental Choices

Alternative energy sources encompass solar PV, wind, hydroelectric, and geothermal generation, leveraging power electronics, inverters, HVDC, storage, and smart grid integration to deliver efficient, low-carbon electricity and resilient microgrids and stable operation.

 

What Are Alternative Energy Sources?

Technologies that convert renewables to electricity using power electronics, storage, and advanced grid control.

✅ Includes solar PV, wind turbines, hydroelectric, and geothermal

✅ Uses inverters, MPPT, converters, HVDC, and protection relays

✅ Integrates storage, microgrids, smart grid controls, and V2G

 

Are there other alternative energy sources besides renewables? There are other alternative energy sources that are used instead of conventional energy sources, such as oil and coal, that produce (or hardly produce) greenhouse gas emissions (GHG) that are harmful for the environment. For a broader definition of the term, see this overview at what is alternative energy to understand key concepts.

 

Alternative Energy Sources – Nuclear Energy

Nuclear energy is one of the few alternative energy sources that can generate a lot of electricity from very little fuel, which makes it a very abundant energy source. Nuclear energy is generated when atoms are either split (fission) or merged (fusion) to create energy from the reaction. It’s a clean energy because, unlike coal or oil, nuclear energy doesn’t introduce harmful gases, such as carbon dioxide, into the environment. However, nuclear energy becomes harmful during the production stage. The leftover waste is highly radioactive (unstable continuously decaying elements with high-energy particles or rays that penetrate and damage anything that it touches), which makes it hard to contain. Nuclear waste has to be stored in a secure location until alternative containing options are determined. Nuclear energy is used to generate electricity, launch space ships, and to power weapons. Comparative context across non-fossil options is outlined in forms of alternative energy for additional perspective.

For contrast with resources that naturally replenish, explore renewable energy sources to see how they differ in fuel cycles and emissions profiles.

 

Alternative Energy Sources – Natural Gas

Natural gas is considered a nonrenewable fossil fuel, but it’s considered clean because it doesn’t produce the greenhouse gas, carbon dioxide. Natural gas’s main ingredient is methane, with all other core elements filtered through an extensive filtering process. Advantages of natural gas include its global abundance, low cost and ease of use (natural gas plants can come online very quickly). However, isolating methane is quite a complex process, which makes it a disadvantage. And, even though natural gas doesn’t introduce carbons into the air, it still produces greenhouse gases. Natural gas can also be used to make electricity. Energy industry experts believe that natural gas will have a bigger role in electricity production as future demand for electricity increases. Within the broader mix of alternative energy fuels, natural gas is often positioned as a transitional option.

Grid planners evaluate flexible generation, storage, and demand-side measures among various alternative energy solutions to integrate resources efficiently.

 

Alternative Energy Sources – Hydrogen Fuel

Hydrogen hasn’t become a money-making venture, unlike other alternative energy sources, because the energy return on hydrogen isn’t very high. In other words, more energy is needed during the manufacturing process than the amount of hydrogen that is actually produced. At this point, hydrogen has proven to be an environment-friendly fuel source for vehicles. Hydrogen fuel is used mostly in batteries, by combining oxygen and hydrogen to produce power. The only waste factor is water vapor, which is a lot friendlier than the greenhouse gas, carbon dioxide. Ultimately, advancements in technology are required in hydrogen production in order for this form of alternative energy to become profitable. Renewable electricity from sources such as solar power can drive electrolysis to lower hydrogen's lifecycle emissions.

For a strategic view of how renewables complement low-carbon options, review renewable alternative energy to understand deployment pathways and tradeoffs.

 

 

Related Articles

Related News

Alternative Energy Grants - Sustainable Energy Development

Alternative energy grants fund renewable energy R&D, power systems upgrades, and grid modernization, supporting solar, wind, microgrids, battery storage, high-efficiency inverters, and electrification projects for utilities, manufacturers, and engineers, focused on decarbonization and smart grid.

 

What Are Alternative Energy Grants?

Grants that fund renewable power systems, grid upgrades, and storage for electrical engineering projects.

✅ Funds power electronics, inverters, and grid-integration R&D

✅ Supports microgrids, DERs, and smart grid reliability projects

✅ Covers feasibility studies, prototypes, and pilot deployments

 

Alternative energy grants - Wind, solar, geothermal and other alternative energy soures are the new "in" to replace forms of energy that harm the environment such as fossil fuels, so both Canadian and the U.S. governments are giving alternative energy grants (free conditional money) to individuals, businesses and local governments to promote the use and development of alternative energy sources. Here are three alternative energy grants currently offered by the U.S. government. For broader context on the field, the overview at what is alternative energy explains key terms and categories clearly.

 

Alternative Energy Grants - Energy Efficiency and Conservation Block Grant (EECBG) Program

These alternative energy grants help eligible entities in beginning their conservation and energy efficiency strategies. For those interested in applying for these alternative energy grants, they must have reduced their fossil fuel emissions, reduced total energy usage and improved energy efficiency within the company. Furthermore, those eligible must develop and implement an energy efficiency and conservation strategy with the assistance of a third-party technical consultant. Also, eligible entities must conduct regular residential and commercial building energy audits to monitor results and financial incentive programs (loan programs, rebate programs, waive permit fees) with the goal of improving energy efficiency must be in place. Other requirements are also required to be eligible for this alternative energy grant. To identify complementary rebates and policy tools, agencies can review alternative energy incentives relevant to their jurisdiction for alignment with EECBG goals.

 

Alternative Energy Grants - State Energy Program

Ultimately, provinces and states are expected to lower their overall fossil fuel carbon emissions so that the use of alternative energy sources can become more prevalent. Financial support, in whole or in part, may be provided for salaries, materials, and supplies, equipment, travel, publication costs, and services required for deployment of alternative energy activities and initiatives. The states energy program goes to competing states for funding to implement activities relating to a number of programmatic areas such as building codes and standards, alternative fuels, industrial efficiency, building efficiency, and alternative energy technologies. Many states layer alternative energy tax credits on top of SEP funds to catalyze private investment.

 

Alternative Energy Grants - Rural Energy for America Program (REAP)

The REAP program provides alternative energy grants to rural small businesses & agricultural producers for the purchase & installation of alternative energy systems in rural areas. Alternative energy grants are limited to 25 per cent of the project cost or $500,000 – whichever is less. Alternative energy grant applications of $20,000 or less are greatly favored in the competitive, selection process. Projects needing larger grants can improve their chances by simultaneously seeking a REAP guaranteed loan. For the loan seekers, the details are the same as the aforementioned alternative energy grant, but provides 60 to 85% per cent loan guarantees to commercial lenders financing such projects. Loans up to $25 million can be guaranteed. Combination grant and guaranteed loan assistance up to 75 per cent of total project cost; such “combo” proposals may improve a project’s access to grant assistance and speed approvals. Prospective applicants can benchmark typical capital and O&M figures using resources on alternative energy cost to prepare stronger pro formas.

Case studies of farm-scale solar, wind, and efficiency upgrades in the alternative energy projects library illustrate successful REAP financing structures.

 

Alternative Energy Grants - State Energy Special Projects

The State Energy Program aims to develop and deploy energy efficiency and alternative energy technologies and practices. The State Energy Program (SEP) makes it possible for states in the U.S. to design and carry out energy efficiency and alternative energy programs tailored to their State-specific needs, while contributing to national energy priorities. The State Energy Program enables the States to address both national energy initiatives and local energy priorities through two funding mechanisms: alterntive energy formula grants and Special Projects grants. States utilize these funds to design and implement energy projects tailored to meet community needs, economic conditions, individual energy situations, and climactic variations. SEP Special Projects funds are awarded on a competitive basis to States from each of the four end-use sectors (buildings, industrial, power technologies, and transportation) and the Federal Energy Management Program (FEMP) for cost-shared technology projects. Special Projects often accelerate alternative energy development by targeting pre-commercial demonstrations and regional testbeds.

For program designers seeking cross-sector approaches, curated alternative energy solutions can inform competitive proposals and stakeholder engagement plans.

 

Related Articles

View more

Alternative Energy Solar Power Explained

Alternative Energy Solar Power converts sunlight via photovoltaics into electricity using PV modules, inverters, MPPT, and battery storage for grid-tied systems, microgrids, and off-grid resilience, improving efficiency, reliability, and decarbonization.

 

What Is Alternative Energy Solar Power?

A renewable electrical system converting solar irradiance to AC via PV modules, MPPT inverters, and optional storage.

✅ PV arrays generate DC; power electronics regulate voltage and current.

✅ Inverters with MPPT perform DC–AC conversion, grid sync, and protection.

✅ Battery storage and EMS enable peak shaving, backup, and microgrid control.

 

Alternative energy solar power is, perhaps, the first energy source that comes to mind when most people think of alternative energy sources, but — unlike wind — alternative energy solar power is still a long way from being considered a mainstream source of electricity generation. In fact, it accounts for less than one per cent of the world’s electricity production. For readers new to the topic, what is alternative energy clarifies key definitions and the role solar plays among emerging options.

Two main ways to harness the sun's energy to generate alternative energy solar power include: photovoltaic (PV), where solar cells directly convert sunlight into electricity, and solar-thermal power. PV is a proven alternative energy solar power technology that is most appropriate for small-scale applications to provide heat and power to individual houses and businesses. Sunlight falls on a layer of semiconductors, which excites electrons. This, in turn, creates an electrical current that can be transmitted via electrical cables to serve useful applications. Alternative energy solar power solar PV cells are already cost effective for powering houses and businesses in some regions. As with alternative energy wind power, costs have reduced in the past few years thanks to technological developments. But, unlike alternative energy wind power, however, large scale electricity production using alternative energy solar power costs about 22 cents per kilowatt-hour, significantly more expensive than its fossil fuel generation competitors and nuclear power. Comparative cost and performance data across technologies are summarized in alternative energy power, which details where PV is most competitive.

Solar-thermal energy is a completely different technology. It collects and concentrates the sun's rays to heat up fuel such glycol or any other liquid that heats up easily. The heat trapped within this medium is then used transferred through a heat exchanger so that heated water can be used for regular hot water applications like bathing and space heating and heating swimming pools, etc. Fossil fuels are sometimes used as a back-up to heat the water in the boiler if the sun is not shining and cannot heat the system. There are three different methods for concentrating the sun’s rays:

  • Parabolic Trough — This method uses long, parallel rows of glass mirrors in the shape of a trough to concentrate the sun’s rays directly at the “absorber tube," which is often filled with oil, to achieve maximum effect.
  • Power Tower — Similar in principle to parabolic-trough technology, the mirrors are placed in a circular pattern. At the center of the circle is a tower, at the top of which is a receiver filled with water, air, liquid metal or molten salt that moves to a power block and is used to power a steam turbine.
  • Parabolic Disk System — In this system, dishes rather than troughs are used to concentrate the power of the sun.

To see how these concentrating approaches integrate with storage, controls, and grid interconnection, alternative energy systems offers design-level guidance for practitioners.

 

Advantages of Alternative Energy Solar Power

In spite of its cost versus other sources of energy, alternative energy solar power is attracting interest due to the following:

  • Alternative energy solar power makes use of a renewable natural resource that is readily available in many parts of the world.
  • The process used to generate alternative energy solar power is emission-free.
  • Costs have greatly reduced thanks to technological advances in solar power technlogy to a point that it can compete with fossil fuel alternatives in specific circumstances.
  • The technology is scalable in that it can be used for domestic heating purposes or on a larger scale for commercial electricity generation, as solar water heaters are an established technology, widely available and simple to install and maintain.

For a deeper dive into real-world performance benefits, case studies in advantages of solar power highlight emissions reductions and lifecycle savings.

 

Disadvantages of Alternative Energy Solar Power

The biggest barriers to increasing alternative energy solar power generation are the cost, the amount of land required for large-scale electricity production, and the intermittent nature of the energy source. In terms of the latter, thermal systems do not work at night or in inclement weather. Storage of hot water for commercial or domestic use is simple because only insulated tanks are needed, but further technology advancements are required to improve storage for the higher-temperature liquids required to generate electricity on a large scale and storage of the electricity itself. Emerging roadmaps in alternative energy solutions discuss thermal storage media and hybrid configurations that mitigate intermittency challenges.

 

Outlook for Alternative Energy Solar Power

Although alternative energy wind power is more economical and has been more widely adopted for large-scale power production than solar energy, solar energy is the most flexible in scale and application. It also is widely available and an environmentally benign source of alternative energy. Broader market drivers and renewable policy trends are tracked under renewable alternative energy, providing useful context for long-term solar adoption.

It is currently a $7 billion per year business that is growing at 40 per cent per annum. As part of the wider clean-energy portfolio, the taxonomy in forms of alternative energy situates solar alongside complementary technologies.

 

Related Articles

View more

Biomass Energy - Green Power Solutions

Biomass energy converts organic feedstocks into renewable power via combustion, gasification, and anaerobic digestion, enabling CHP systems, grid integration, carbon-neutral generation, improved thermal efficiency, and dispatchable biofuels for resilient electrical infrastructure.

 

What Is Biomass Energy?

Biomass energy produces electricity from feedstocks through combustion or digestion, enabling CHP and grid reliability.

✅ CHP raises electrical efficiency to 70% with heat recovery

✅ Gasification feeds syngas to turbines or SOFC for power

✅ Dispatchable output supports frequency and voltage stability

 

Biomass energy comes from biomass feedstock (crops and residues, farm animal wastes, industrial wood, etc.). The heat from this substantial renewable resource can generate electricity, fuel and other forms of energy. It has been estimated that just one eighth of the total biomass energy produced annually could provide all of humanity’s current demand for energy. For a deeper overview of how biomass fits within the clean energy landscape, see this guide on biomass renewable energy and its practical applications today.

Some forms of biomass fuels (or biofuels), derived from biomass feedstock, can be solid, liquid, or gas. Kitchen scraps, sewage, the leftovers of the food processing industries, paper, sawdust, and lawn clippings are some of the available biomass energy sources. Biomass energy has received a lot of attention because an opportunity to convert waste into something very valuable has presented itself. These pathways are often discussed alongside other forms of alternative energy that leverage different feedstocks and conversion methods.

 

Biomass Energy – How can we use it?

Biomass energy can be converted to generate electricity, fuel vehicles and heat buildings using biofuel technologies. At the moment, biomass energy sources used in power plants include agricultural and farm residues, food processing residues, wood residues and methane gas from land fills. Biomass energy producers hope to significantly expand the supply of biomass energy by using trees and grasses as well. In power markets, biomass can contribute to renewable electricity portfolios alongside wind and solar resources.

Currently, there are more than 350 biomass energy plants generating 7,000 megawatts of biomass power in the United States. The producers who own these plants are quite diverse; they range from the electrical utilities, independent power producers, the wood manufacturing industry, and the pulp and paper industry. Such facilities are part of broader trends in renewable power generation that emphasize reliability and grid integration.

Biomass energy is considered a renewable energy source because it can replenish itself (regrown), unlike fossil fuels such as coal and oil, which when used, are gone. And, unlike coal and oil, biomass energy is an alternative energy source because it doesn’t hurt the environment with harmful chemicals, such as carbon dioxide, which cause greenhouse gas emissions (GHG). Using renewable biomass resources not only reduce greenhouse gases, but they also reduce air pollutants and landfill wastes. This classification aligns with definitions of alternative energy that prioritize low emissions and resource sustainability.

As policies evolve, many jurisdictions frame biomass within broader renewable alternative energy strategies that support decarbonization goals.

 

Biomass Energy in Today’s Marketplace

Within the spectrum of renewable energy sources, biomass competes and collaborates with wind, solar, and hydro depending on local resource availability.

  • High costs in handling and transportation, as well as high moisture content, have long outweighed the low price of biomass energy feedstocks. Fuels that are filled with moisture are hard to burn properly and heat release is slow and hard to control. However, fuel upgrading options, such as pelletization and drying remedy this situation, thus making biomass energy more economically attractive.
  • Biomass energy can also make be useful in blending and co-firing applications with coal because of the low SO2, NOx, and metals emissions from biomass energy fuels, and their CO2 neutral status.

 

Biomass Energy – Benefits of Cogeneration

Cogeneration, the practice of producing both electricity and useful heat, is a great way of improving energy efficiency. Some sawmills, for example, use a lot of heat from boilers powered by biomass energy to supply energy to their kiln-drying operations. But any extra heat can help gasify biomass energy fuels so they can be used in a gas turbine, which is more efficient than a simple steam boiler. Additional savings can be produced by using combined cycle technology, which takes additional waste heat from the gas turbine to give power to a steam-driven turbine.

 

Related Articles

View more

Alternative Energy Incentives - Green Energy Derivatives

Alternative energy incentives accelerate grid decarbonization via tax credits, rebates, net metering, and grants for solar, wind, storage, power electronics, microgrids, and smart grid upgrades, reducing LCOE and supporting EV charging infrastructure.

 

What Are Alternative Energy Incentives?

Incentives—tax credits, rebates, net metering—finance clean electrification, grid upgrades, and storage to cut costs.

✅ Lowers LCOE for solar PV, wind, and battery storage projects

✅ Supports grid modernization, smart inverters, and microgrid controls

✅ Enables EV charging, demand response, and power electronics R&D

 

Alternative energy incentives encourage companies to pursue non-fossil-fuel energy as a way to consume power. Different countries have different alternative energy incentive programs available for businesses and residences through country, state/province, or municipality levels. However, in this article, alternative energy incentives for business take the center focus. For background on definitions and technologies, see this overview of what constitutes alternative energy and typical market drivers.

In the U.S., two alternative energy incentives available are the investment tax credit and the production tax credit (both can be claimed on a taxpayer’s federal income tax return). A third incentive is a grant program that gives businesses opportunities to receive cash payments from the government for purchasing alternative energy property. Detailed federal and state guidance on credits is summarized in this resource on renewable energy tax credits for common project types.

The investment tax credit, the energy production tax credit or the federal energy grant cannot be claimed in tandem, meaning that a taxpayer can only choose one of these alternative energy incentives. Obviously care will need to be taken in deciding which alternative energy incentive will be best for a specific taxpayer.

Many businesses model total installed cost and depreciation using these alternative energy cost references before selecting an incentive.

While incentives are available They are available for both businesses and individuals; and they can be found at the federal, state and local levels, as well as with utility companies and product manufacturers. A concise primer on renewable alternative energy helps stakeholders align technologies with applicable programs.

 

1. Alternative Energy Incentives - Investment Tax Credit

A taxpayer can claim a tax credit equal to thirty percent of the cost of qualified eligible energy property placed in service. For credit calculations and eligibility nuances, consult this guide to alternative energy tax credits and common compliance pitfalls.

Property eligible for this alternative energy incentive are:

  • Solar property,
  • Geothermal property,
  • Qualified fuel cell property,
  • Stationary micro turbine property,
  • Combined heat and power system property,
  • Qualified small wind energy property, and
  • Geothermal heat pump property

    The federal tax credit is not considered to be taxable income; however, the cost basis of the energy property will need to be reduced by one-half of energy credit claimed. The investment tax credit is also subject to an alternative minimum tax limitation. The credit cannot reduce a taxpayer’s regular tax below the taxpayer’s alternative minimum tax. Any unused credit can be carried back one year and forward twenty years. Case studies of successful deployments in solar, CHP, and wind are profiled among these alternative energy projects to illustrate basis and credit interactions.

    A percentage of the investment tax credit will have to be recaptured if the energy property is disposed of within five years of being placed in service.

 

 

2. Alternative Energy Incentives - Production Tax Credit

A taxpayer can claim a tax credit equal to a percentage (between .0075 cents and 2.1 cents per kilowatt hour) of energy generated from qualified energy resource property placed in service. The credit can be claimed for a ten year period starting with the date that the energy resource property is placed in service.

Eligible energy resources for this alternative energy incentive include:

  • Geothermal or solar energy,
  • Wind,
  • Open-loop biomass,
  • Closed-loop biomass,
  • Marine and hydrokinetic renewable energy

     

  • Small irrigation power,
  • Qualified hydropower production, and,
  • Municipal solid waste

    Unlike the investment tax credit, the cost basis of energy property does not have to be reduced by the production tax credit claimed. In addition, for facilities that generate electricity, there is no alternative minimum tax credit limitation for the first four years that a facility is placed in service.

    Similar to the investment tax credit, an unused energy credit can be carried back one year and forward twenty years.

 

 

3. Alternative Energy Incentives - Grant For Specific Energy Project Investments

This grant program offers cash payments to eligible taxpayers who place in service specific energy properties. Only taxpayers that are in a trade or business can qualify for this grant, which means that a residential energy-efficient property does not qualify. Application procedures and deadlines are outlined in these alternative energy grant resources for business applicants.

The grant is in lieu of the aforementioned alternative energy incentives, meaning that a taxpayer can apply for the grant or claim one of the business tax credits, but not both.

The following persons are not eligible to receive payment:

  • Federal, state or local governments,
  • Non-profit organizations,
  • Cooperative electric companies.

     

    Property eligible for this alternative energy incentive are:

  • Solar property,
  • Geothermal property,
  • Qualified fuel cell property,
  • Stationary micro turbine property,
  • Combined heat and power system property,
  • Qualified small wind energy property, and
  • Geothermal heat pump property

     

The cost basis on which the payment is based upon is its original cost and, which includes all costs. These costs, such as installation and cost of freight, are part of property’s depreciable basis.

The investment tax credit, which is similar to the above alternative energy incentive, the cost basis of the energy property has to be reduced by fifty percent of the grant received. In addition, to the extent that specified energy property is disposed of within five years of being placed in service a percentage of the grant will need to be recaptured.

 

Related Articles

View more

Renewable Alternative Energy Explained

Renewable alternative energy integrates solar PV, wind turbines, hydroelectric and biomass with power electronics, battery storage, smart grids, and grid-tied inverters to deliver sustainable electricity, demand response, and resilient microgrids.

 

What Is Renewable Alternative Energy?

Renewable alternative energy uses low-carbon sources with power electronics and storage to deliver reliable electricity.

✅ Power electronics: inverters, converters, MPPT for PV and wind

✅ Grid integration: synchronization, frequency control, protection

✅ Energy storage: batteries, BMS, supercapacitors, grid services

 

What are renewable alternative energy sources? Renewable energy sources, such as solar energy and wind energy, are alternative energy supplies that are refilled by natural processes when they're used. The ultimate source of all renewable energy is the sun. Electricity can be obtained from the sun directly (such as solar heating systems) or indirectly (as in hydro electricity, wind power, and biomass fuels). Renewable energy supplies can run out if they are used faster than they become replenished. For example, most of England's forests were cut down and used for fuel before the English started using coal. Renewable energy supplies have the chance to last forever if used wisely. For fundamentals and current trends, the Electricity Forum explains key renewable energy sources that complement these concepts.

There are other alternatives to our typical energy sources that are not renewable. Although these are "alternative energy" rather than "renewable energy", they use the energy we have more efficiently than older technologies. In doing this, they help us make our existing energy supplies last longer and give us more time before we run out of stored fossil and atomic fuels. However, parallels can be drawn between the two, which can make them interchangeable. Alternative energy sources don't threaten the environment even though they cannot necessarily be renewed. Renewable energy sources are, as we previously mentioned, renew them as fast as we use them. In this article, we focus on the energy sources that can be called both "alternative energy" and "renewable energy." We call them "renewable alternative energy sources." To clarify terminology, this overview of what is alternative energy outlines distinctions commonly used by educators and policymakers.

Using renewable alternative energy sources can save money, protect the environment, and assure future generations of people that efficient energy will be available.

Practical adoption is often driven by proven alternative energy solutions that reduce costs and emissions in real projects.

Here are a few renewable alternative energy sources that are in use today. Broader context on evolving technologies appears in this survey of forms of alternative energy relevant to the categories below.

 

Renewable Alternative Energy - Hydroelectric power

Hydropower represents one of the oldest and largest renewable power sources (this renewable alternative energy source has an existing capacity of over 80,000 MW). Hydropower plants convert the energy of flowing water into electricity. This is primarily done by damming rivers to create large reservoirs and then releasing water through turbines to produce electricity. Hydropower results in no emissions into the atmosphere but the process of damming a river can create significant ecological problems for water quality and for fish and wildlife habitat. Comparative evaluations with other alternative energy sources highlight trade-offs in capacity, siting, and ecological impacts.

 

Renewable Alternative Energy - Biomass Power

Biomass is second to hydropower as a leader in renewable alternative energy production and has an existing capacity of over 7,000 MW. As a renewable alternative energy source, biomass as a fuel consists of organic matter such as industrial waste, agricultural waste, wood, and bark. Biomass can be burned directly in specially designed power plants, or used to replace up to 15% of coal as a fuel in ordinary power plants. Biomass burns cleaner than coal because it has less sulfur, which equates to less sulfur dioxide being emitted into the atmosphere. Biomass can also be used indirectly, since it produces methane gas as it decays. Power can be produced from methane by burning in a boiler to produce steam to drive steam turbines. Steam can also be produce in gas turbines through internal combustion and reciprocating engines.

 

Renewable Alternative Energy - Geothermal Power

Geothermal power plants capitalize on high temperatures deep underground to make steam, which then powers turbines that produce renewable alternative energy. Geothermal power plants can draw from underground reservoirs of hot water or can heat water by pumping it into hot, dry rock. High underground high temperatures are accessed by drilling wells, sometimes more than a mile deep. In one sense, this geothermal energy is not renewable, since sometime in the future the core of the earth will cool. That time is so far off (hundreds of millions of years) that that we think of it as renewable. Geothermal heat pumps use compressors to pump heat out of the earth (for winter heating) or into the earth (when running as air conditioners in summer). The energy they pump into and out of the earth is renewable, since it is replaced by the cycle of the seasons. The energy that runs the compressor can either be renewable or conventional.

 

Renewable Alternative Energy - Solar Power

Solar power comes directly from the power of the sun and is used to produce renewable alternative energy, to produce heat, and for light. Solar represents a small share of the electric market in the United States – about one-half of one percent of electrical capacity. Solar power's contribution to heating and lighting is much larger because it can be produced either by power plants using the sun’s heat or by photovoltaic (PV) technology, which uses solar cells to convert sunlight directly to electricity. PV technology is more practical for residential use. Systems to use the heat of the sun directly can be either active or passive. In active systems, air or liquid circulate through solar collectors and bring heat to where it is used. In passive systems, buildings are built with heat-absorbing surfaces and windows set up to maximize solar heating in winter. Either renewable alternative energy solar technology is suitable for residential use. Systems to directly use the light of the sun are most common. The most usual device for using sunlight is the window, but skylights and skylight tubes are also used. Homeowners can explore design considerations in this primer on alternative energy solar power for residential applications.

 

Renewable Alternative Energy - Wind Power

Wind has been a fast growing energy source over the last decade mainly due to very significant improvements in wind power technology. Renewable alternative energy Wind power is produced by the wind's energy to turn aerodynamic blades that are mounted to a hub. The hub, which is connected to a shaft, turns a generator that produces electricity. Large utility-scale wind turbines range in size from 50 kilowatts to over four megawatts. Smaller wind towers (under 50 kW) are suitable for residential and agricultural use. Modern turbines are increasingly integrated into smart alternative energy systems that optimize output and grid reliability.

 

Renewable Alternative Energy - Fuel Cells

A fuel cell is an alternative energy device, but it is not necessarily a renewable energy device. It is only renewable if the source of the fuel used is renewable. A fuel cell is an electrochemical device, like a battery in that it converts the energy from a chemical reaction directly into electricity and heat. But unlike a battery, which is limited to the stored chemicals within, a fuel cell has the capability of generating energy as long as fuel is supplied. Modern fuel cells produce electricity by combining hydrogen and oxygen together without using combustion. The oxygen comes from the air, while the hydrogen can either be produced from water (using electricity) or extracted from fossil fuels. New fuel cells are being developed that can directly use fossil fuels. The 150-year-old fuel cell technology shows promise in providing energy for residential use and for powering vehicles.

 

Related Articles

View more

Alternative Energy Fuels - Future Fuel Choices

Alternative energy fuels drive renewable power systems, integrating hydrogen, biofuels, and electricity with power electronics, smart grids, and energy storage for efficient conversion, decarbonization, and resilient distribution across modern electrical networks.

 

What Are Alternative Energy Fuels?

Alternative energy fuels are renewables—hydrogen, biofuels, electricity—supporting conversion and smart grid integration

✅ Power electronics convert DC/AC and manage grid-tied renewables.

✅ Fuel cells and hydrogen storage integrate with microgrids.

✅ Battery systems and EMS stabilize variable solar and wind.

 

Alternative energy fuels can help reduce harmful greenhouse gas emissions produced from traditional gasoline or diesel fuels. Using alternative energy fuels means that you might have to change your conventional vehicle in for a more environmentally-friendly ride. Is this true? Let's find out. To start, a quick primer on what alternative energy is can clarify terms and set expectations in practical terms.

 

Alternative Energy Fuels - Battery-electric Vehicles

Your first option is battery-electric vehicles (BEVs), which powered by motors that draw electricity from on-board storage batteries. These batteries act as an engine to propel the motor. Using electric vehicles presents a great potential to reduce greenhouse gas (GHG) emissions and smog-forming pollutants because pollution isn't produced from the tailpipe or through fuel evaporation. The vehicles can also have low overall (life-cycle) GHG emissions depending on the electricity source used to recharge the batteries. This option would require you to say goodbye to your conventional vehicle. When charged from renewable energy sources, BEVs can further minimize lifecycle emissions and operating costs.

 

Alternative Energy Fuels - Hybrid-electric Vehicles

If you don't necessarily want to give up your conventional vehicle, but still want the environmental and energy benefits of electric vehicles, then hybrid electric vehicles (HEVs) are your best option. HEVs are made up of a battery powered electric motor with combined with a conventional internal combustion engine. Instead of paying outrageous gas prices every time your gas tank nears the empty mark, a rapid refueling option recharges your conventional vehicle. If this alternative energy fuel option appeals to you then you'll be glad to know that many hybrid vehicle models are already widely available on the market, with many more manufacturers planning on introducing new hybrid electric/gasoline vehicles in the next few years. Many buyers also view HEVs as pragmatic alternative energy solutions that ease the transition away from full reliance on gasoline.

 

Alternative Energy Fuels - Fuel Cells and Hydrogen

If you are using a portable or a stationary power device, then fuel cells might be the ideal option for you. Electricity is generated in fuel cells electrochemically when hydrogen and oxygen are combined. Fuel Cells can produce zero or very low emissions depending on the source of the hydrogen. These energy-conversion devices can also utilize hydrogen and other fuels and, in the future, might be used for transportation applications. This alternative energy fuel source is also an option for vehicles and prototypes for hydrogen fuel cell vehicles that are currently in the works. But, unfortunately, barriers exist. A lack of a hydrogen distribution infrastructure has made it difficult for this alternative energy fuel source to move ahead. Also, costs are high for fuel cells and hydrogen-production technologies and there are challenges related to hydrogen storage. However, fuel cells are a viable energy technology that can offer significant environmental, supply, economic and energy efficiency benefits because of the variety of fuels available for conversion to hydrogen. This pathway fits within the spectrum of alternative energy sources, each with distinct infrastructure and cost considerations.

For a broader perspective on where hydrogen, electricity, and fuels like bioenergy fit, explore the major forms of alternative energy and how they complement one another across sectors.

 

Alternative Energy Fuels - Ethanol

When scientist Dr. Emmett "Doc" Brown used food to add fuel to his gas tank in the famous ‘80s flick, Back To The Future 2, he must have been thinking of ethanol, a liquid alcohol made of oxygen, hydrogen and carbon obtained from the fermentation of sugar or converted starch contained in grains and other agricultural or agri-forest feedstocks. Using fuel ethanol (or gasohol, which means that the alternative energy fuel source is distilled and dehydrated to create a high-octane, water-free alcohol) might one day be a viable alternative energy fuel source. However, oral consumption is unadvised because this alternative energy fuel is made unfit for drinking when a small amount of a noxious substance such as gasoline is added. In order for fuel ethanol to work as an effective alternative energy fuel source, all traces of water must be removed because water and alcohol combined cannot dissolve in gasoline. Further research into technology to produce ethanol from non-food sources is quickly moving this alternative energy fuel source toward commercialization. Because many feedstocks derive from crops and residues, ethanol often intersects with biomass energy pathways and agricultural policy.

 

Alternative Energy Fuels - Biodiesel

Conventional diesel combustion harms the environment, but biodiesel combusts better with a higher cetane rating that produces fewer life cycle greenhouse gas emissions (GHG). This alternative energy fuel source is a non-toxic and biodegradable fuel that comes from vegetable oils, animal fats, waste cooking oil, or tall oil (a by-product from pulp and paper processing). Biodiesel is made from these feedstocks through transesterification, a process that reacts the oil with an alcohol (methanol is usually used, but so can ethanol) and a catalyst (eg. sodium hydroxide). Glycerine, an ester called biodiesel, is produced from this chemical reaction. Most biodiesel is generated using this method. In practice, successful biodiesel programs are often part of broader renewable alternative energy strategies that leverage regional feedstocks and local distribution.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.