Forms Of Alternative Energy Explored


Forms Of Alternative Energy

Forms of alternative energy span solar, wind, hydro, geothermal, and biomass, engineered with power electronics, inverters, and grid-tied systems for efficient generation, storage, and distribution across smart grids and microgrids.

 

What Are Forms of Alternative Energy?

They include solar PV, wind, hydro, geothermal, and biomass, converted via generators, inverters, and grid storage.

✅ Solar PV: MPPT inverters convert DC modules to AC for the grid.

✅ Wind: variable-speed turbines use converters to regulate frequency and voltage.

✅ Hydro, geothermal, biomass: dispatchable sources aid grid stability and storage.

 

Forms of Alternative Energy - Solar Energy

The sun is one gigantic star that constantly radiates an enormous amount of energy (solar energy). How much is "enormous?" Well, let's just say that the sun sends out more energy in one second than Earth has used since the beginning of time. Like most stars, the sun is a huge ball of gas made up mostly of helium gas and hydrogen. As a primer on solar technologies, the resource at solar power fundamentals offers context for how these systems scale.

The Earth, being the third planet from the sun, only receives a small portion of the sun's solar energy, however, that amount is more than enough to supply all our electric power needs. For comparisons across resources, see renewable energy sources to understand how solar's potential relates to wind, hydro, and more.

Two ways to make electricity from solar power are photovoltaic and solar thermal systems. Photovoltaic electric generation is produced using photovoltaic (PV) cells: the sunlight hits the solar cell and converts sunlight into electricity instantly and silently--without the hassle of wearing out any mechanical parts. These solar systems are mainly used to generate power in areas that are a long distance from electric power lines. For configurations and component choices, alternative energy systems guidance explains typical PV setups used off-grid and in hybrid applications.

Solar thermal systems (or concentrated solar power) use a solar collector with a mirrored surface to focus sunlight onto a receiver that heats a liquid into steam and then turned into electric power. The process is in the same vain as coal plants: coal is burned into steam, which is then turned into electricity. Deployment considerations are explored in alternative energy solutions that compare CSP with other utility-scale options.

Solar power is expected to be a global supplier of electricity between 2015 and 2020. Solar power's benefits are phenomenal: it's free, its supply can never deplete, it doesn't pollute, and it doesn't damage the environment. These benefits underpin broader renewable alternative energy strategies that accelerate decarbonization across sectors.

 

Forms Of Alternative Energy - Wind Energy

The sun’s heat reaching the planet earth creates winds, which makes wind a form of solar energy. How does it work? Well, as the sun's rays heat the Earth’s air is heated by the sun, it expands and regions of high and low pressure are formed, these high and low movements create wind energy. For context on definitions and categories, what is alternative energy clarifies how wind fits within the broader mix.

Harnessing wind energy is done using contraptions such as wind turbines. Large wind turbines are built close together to operate on wind farms to produce large amounts of power for electrical utilities. Smaller small wind turbines can be used by homeowners and remote villages who want to generate their own electricity.

Generated Wind power, like other forms of alternative energy, can also be used for charging batteries, pumping water, or grinding grain. All of this can be done without causing greenhouse gas emissions which damage the environment. This form of alternative energy also uses minimal land area, but intermittent wind patterns make it difficult for this form of alternative energy to be a constant and reliable energy source.

 

Forms of Alternative Energy - Biomass Energy

Biomass energy is a way to turn your food waste into electricity. Biomass is any kind of organic matter (anything that was once alive) that can be used as an energy source. Besides food waste, crops, wood, animal and yard waste are examples of biomass. People have used this form of alternative energy for thousands of years - longer than any other energy source.

Biomass feedstock (farm animal wastes, crops and residues, etc.) is the main ingredient of biomass energy. The heat in this form of alternative energy is used to generate power, fuels and other energy options. The biomass fuels (or biofuels), which comes from biomass feedstock, can be used in a solid, liquid, or gas state. Disposed food, paper, sewage, lawn clippings and sawdust, are some available biomass energy resources used for power production.

 

Forms of Alternative Energy - Geothermal Energy

Geothermal is a Greek word: geo (earth) and therme (heat). This form of alternative energy comes from the heat, which is from the earth's core (almost 4,000 miles beneath the earth’s surface). Earth's double-layered core is made from melted rock (hot magma), which surrounds a solid iron center. The heat comes from the slow decay of radioactive particles produce high temperatures that constantly rise to the earth's surface. Geothermal electricity is created by pumping a fluid (oil or water) into the Earth, allowing it to evaporate and using the hot gases vented from the earth's crust to run turbines linked to electrical generators. Further technical detail is summarized in geothermal energy basics for readers interested in plant designs and resource types.

In some areas on the planet (such as Iceland), there is very hot water or steam that is close enough to the surface where this alternative energy resource can be reached economically with a drill. When obtained, the steam, or hot water flashed to steam, turns a turbine, which then, turns a generator that produces electricity. Many experts believe that geothermal energy only be a minor contributor to the global energy supply because of the scarcity of geothermal sites in the world.

 

Related Articles

Related News

Alternative Energy Fuels - Future Fuel Choices

Alternative energy fuels drive renewable power systems, integrating hydrogen, biofuels, and electricity with power electronics, smart grids, and energy storage for efficient conversion, decarbonization, and resilient distribution across modern electrical networks.

 

What Are Alternative Energy Fuels?

Alternative energy fuels are renewables—hydrogen, biofuels, electricity—supporting conversion and smart grid integration

✅ Power electronics convert DC/AC and manage grid-tied renewables.

✅ Fuel cells and hydrogen storage integrate with microgrids.

✅ Battery systems and EMS stabilize variable solar and wind.

 

Alternative energy fuels can help reduce harmful greenhouse gas emissions produced from traditional gasoline or diesel fuels. Using alternative energy fuels means that you might have to change your conventional vehicle in for a more environmentally-friendly ride. Is this true? Let's find out. To start, a quick primer on what alternative energy is can clarify terms and set expectations in practical terms.

 

Alternative Energy Fuels - Battery-electric Vehicles

Your first option is battery-electric vehicles (BEVs), which powered by motors that draw electricity from on-board storage batteries. These batteries act as an engine to propel the motor. Using electric vehicles presents a great potential to reduce greenhouse gas (GHG) emissions and smog-forming pollutants because pollution isn't produced from the tailpipe or through fuel evaporation. The vehicles can also have low overall (life-cycle) GHG emissions depending on the electricity source used to recharge the batteries. This option would require you to say goodbye to your conventional vehicle. When charged from renewable energy sources, BEVs can further minimize lifecycle emissions and operating costs.

 

Alternative Energy Fuels - Hybrid-electric Vehicles

If you don't necessarily want to give up your conventional vehicle, but still want the environmental and energy benefits of electric vehicles, then hybrid electric vehicles (HEVs) are your best option. HEVs are made up of a battery powered electric motor with combined with a conventional internal combustion engine. Instead of paying outrageous gas prices every time your gas tank nears the empty mark, a rapid refueling option recharges your conventional vehicle. If this alternative energy fuel option appeals to you then you'll be glad to know that many hybrid vehicle models are already widely available on the market, with many more manufacturers planning on introducing new hybrid electric/gasoline vehicles in the next few years. Many buyers also view HEVs as pragmatic alternative energy solutions that ease the transition away from full reliance on gasoline.

 

Alternative Energy Fuels - Fuel Cells and Hydrogen

If you are using a portable or a stationary power device, then fuel cells might be the ideal option for you. Electricity is generated in fuel cells electrochemically when hydrogen and oxygen are combined. Fuel Cells can produce zero or very low emissions depending on the source of the hydrogen. These energy-conversion devices can also utilize hydrogen and other fuels and, in the future, might be used for transportation applications. This alternative energy fuel source is also an option for vehicles and prototypes for hydrogen fuel cell vehicles that are currently in the works. But, unfortunately, barriers exist. A lack of a hydrogen distribution infrastructure has made it difficult for this alternative energy fuel source to move ahead. Also, costs are high for fuel cells and hydrogen-production technologies and there are challenges related to hydrogen storage. However, fuel cells are a viable energy technology that can offer significant environmental, supply, economic and energy efficiency benefits because of the variety of fuels available for conversion to hydrogen. This pathway fits within the spectrum of alternative energy sources, each with distinct infrastructure and cost considerations.

For a broader perspective on where hydrogen, electricity, and fuels like bioenergy fit, explore the major forms of alternative energy and how they complement one another across sectors.

 

Alternative Energy Fuels - Ethanol

When scientist Dr. Emmett "Doc" Brown used food to add fuel to his gas tank in the famous ‘80s flick, Back To The Future 2, he must have been thinking of ethanol, a liquid alcohol made of oxygen, hydrogen and carbon obtained from the fermentation of sugar or converted starch contained in grains and other agricultural or agri-forest feedstocks. Using fuel ethanol (or gasohol, which means that the alternative energy fuel source is distilled and dehydrated to create a high-octane, water-free alcohol) might one day be a viable alternative energy fuel source. However, oral consumption is unadvised because this alternative energy fuel is made unfit for drinking when a small amount of a noxious substance such as gasoline is added. In order for fuel ethanol to work as an effective alternative energy fuel source, all traces of water must be removed because water and alcohol combined cannot dissolve in gasoline. Further research into technology to produce ethanol from non-food sources is quickly moving this alternative energy fuel source toward commercialization. Because many feedstocks derive from crops and residues, ethanol often intersects with biomass energy pathways and agricultural policy.

 

Alternative Energy Fuels - Biodiesel

Conventional diesel combustion harms the environment, but biodiesel combusts better with a higher cetane rating that produces fewer life cycle greenhouse gas emissions (GHG). This alternative energy fuel source is a non-toxic and biodegradable fuel that comes from vegetable oils, animal fats, waste cooking oil, or tall oil (a by-product from pulp and paper processing). Biodiesel is made from these feedstocks through transesterification, a process that reacts the oil with an alcohol (methanol is usually used, but so can ethanol) and a catalyst (eg. sodium hydroxide). Glycerine, an ester called biodiesel, is produced from this chemical reaction. Most biodiesel is generated using this method. In practice, successful biodiesel programs are often part of broader renewable alternative energy strategies that leverage regional feedstocks and local distribution.

 

Related Articles

View more

Alternative Energy Sources – Clean Electric Power Options

Alternative energy sources encompass solar PV, wind, hydroelectric, and geothermal generation, leveraging power electronics, inverters, HVDC, storage, and smart grid integration to deliver efficient, low-carbon electricity and resilient microgrids and stable operation.

 

What Are Alternative Energy Sources?

Technologies that convert renewables to electricity using power electronics, storage, and advanced grid control.

✅ Includes solar PV, wind turbines, hydroelectric, and geothermal

✅ Uses inverters, MPPT, converters, HVDC, and protection relays

✅ Integrates storage, microgrids, smart grid controls, and V2G

 

Are there other alternative energy sources besides renewables? There are other alternative energy sources that are used instead of conventional energy sources, such as oil and coal, that produce (or hardly produce) greenhouse gas emissions (GHG) that are harmful for the environment. For a broader definition of the term, see this overview at what is alternative energy to understand key concepts.

 

Alternative Energy Sources – Nuclear Energy

Nuclear energy is one of the few alternative energy sources that can generate a lot of electricity from very little fuel, which makes it a very abundant energy source. Nuclear energy is generated when atoms are either split (fission) or merged (fusion) to create energy from the reaction. It’s a clean energy because, unlike coal or oil, nuclear energy doesn’t introduce harmful gases, such as carbon dioxide, into the environment. However, nuclear energy becomes harmful during the production stage. The leftover waste is highly radioactive (unstable continuously decaying elements with high-energy particles or rays that penetrate and damage anything that it touches), which makes it hard to contain. Nuclear waste has to be stored in a secure location until alternative containing options are determined. Nuclear energy is used to generate electricity, launch space ships, and to power weapons. Comparative context across non-fossil options is outlined in forms of alternative energy for additional perspective.

For contrast with resources that naturally replenish, explore renewable energy sources to see how they differ in fuel cycles and emissions profiles.

 

Alternative Energy Sources – Natural Gas

Natural gas is considered a nonrenewable fossil fuel, but it’s considered clean because it doesn’t produce the greenhouse gas, carbon dioxide. Natural gas’s main ingredient is methane, with all other core elements filtered through an extensive filtering process. Advantages of natural gas include its global abundance, low cost and ease of use (natural gas plants can come online very quickly). However, isolating methane is quite a complex process, which makes it a disadvantage. And, even though natural gas doesn’t introduce carbons into the air, it still produces greenhouse gases. Natural gas can also be used to make electricity. Energy industry experts believe that natural gas will have a bigger role in electricity production as future demand for electricity increases. Within the broader mix of alternative energy fuels, natural gas is often positioned as a transitional option.

Grid planners evaluate flexible generation, storage, and demand-side measures among various alternative energy solutions to integrate resources efficiently.

 

Alternative Energy Sources – Hydrogen Fuel

Hydrogen hasn’t become a money-making venture, unlike other alternative energy sources, because the energy return on hydrogen isn’t very high. In other words, more energy is needed during the manufacturing process than the amount of hydrogen that is actually produced. At this point, hydrogen has proven to be an environment-friendly fuel source for vehicles. Hydrogen fuel is used mostly in batteries, by combining oxygen and hydrogen to produce power. The only waste factor is water vapor, which is a lot friendlier than the greenhouse gas, carbon dioxide. Ultimately, advancements in technology are required in hydrogen production in order for this form of alternative energy to become profitable. Renewable electricity from sources such as solar power can drive electrolysis to lower hydrogen's lifecycle emissions.

For a strategic view of how renewables complement low-carbon options, review renewable alternative energy to understand deployment pathways and tradeoffs.

 

 

Related Articles

View more

Alternative Energy Geothermal - Green Energy Alternatives

Alternative energy geothermal delivers baseload renewable electricity via hydrothermal reservoirs, binary-cycle ORC turbines, and EGS, using heat exchangers, generators, and power electronics for efficient grid integration, low emissions, and stable capacity.

 

What Is Alternative Energy Geothermal?

It converts subsurface heat to electricity via steam or ORC cycles, generators, and grid-tied power electronics.

✅ ORC and flash steam cycles drive turbines and synchronous generators

✅ Power electronics, inverters, and transformers enable grid integration

✅ EGS, drilling, and heat exchangers expand capacity with low emissions

 

Geothermal energy comes from heat stored beneath the Earth's surface. Also known as thermal energy, geothermal is considered to be an alternative energy because it produces very little greenhouse gas emissions (GHG), which harm the Earth once it's generated into electricity. Geothermal wells release these greenhouse gases, but not nearly as much as its fossil fuel counterparts oil and coal. For context on how this resource fits within energy policy, see our overview of what is alternative energy to understand key definitions.

Alternative energy geothermal is a product from Earth's original formation: radioactive decay of minerals thanks to volcanic eruptions and solar energy digested and stored from the Earth's surface. Thermal energy is produced from the continuous conduction of heat that emanates from the Earth's core that moves upward to the surface. This process is known as the geothermal gradient. If you've ever had the opportunity to bathe in hot springs, you'll be glad to know that the thermal heat comes from beneath the Earth. When comparing technologies, placing geothermal alongside other alternative energy sources highlights its base-load role and unique subsurface dependence.

 

Alternative Energy Geothermal - How can we use it?

In practice, many integrated alternative energy systems combine geothermal with insulation and smart controls to maximize year-round efficiency.

Energy producers have been able to convert alternative energy geothermal into electricity. These same producers have high hopes for geothermal energy because power can be generated 24 hours a day, unlike other intermittent renewable energies, like wind energy and solar energy. This contrasts with the variability seen in resources such as solar power during cloudy periods or at night.

Geothermal energy can also be used to heat pumps or for other direct uses such as cooling and heating buildings. The Earth's crust temperature a few feet below is buffered to a constant seven to 14 °C (45 to 58 °F), so a liquid can be pre-heated or pre-cooled in underground pipelines, providing no-cost cooling during the summer, and with a heat pump, heating during the winter months. Other direct uses include aquaculture, agriculture (greenhouses), and industry. Project planners often consult practical alternative energy solutions to evaluate lifecycle costs and integration pathways.

 

Alternative Energy Geothermal - How is geothermal electricity produced?

Within the broader family of forms of alternative energy, geothermal distinguishes itself through high capacity factors and minimal fuel risk.

Geothermal energy uses Earth's natural heat to generate electricity. Geothermal plants are built on or near reservoirs that contain Earth's hydrothermal resources (underground steam and heated water). The heat mining process begins when drills penetrate these reservoirs to obtain the steam and water to power electricity-generating turbines.

There are different ways to produce alternative energy geothermal. Two popular processes include:

  • Flash Steam Geothermal water with temperatures exceeding 350°F is extracted under extremely high pressure by flash steam plants. When the heated water surfaces, a sudden pressure reduction causes some of the hot water to flash off as steam. This flashed steam operates a generator, at which time, the extracted steam and water are reintroduced into the geothermal reservoir.
  • Dry Steam Dry steam is extracted directly from under the earth’s surface by dry steam plants to operate a generator. When the steam condenses into water, it is then reintroduced into the alternative energy geothermal reservoir.

     

    Alternative Energy Geothermal - Is Geothermal Energy a Sustainable Energy Source?

    Alternative Energy Geothermal is considered to be sustainable, cost-effective, great for the environment and reliable. Recent advances in technology have expanded alternative energy geothermal applicable uses (such as home heating), which could lead to global exploitation. However, advances in technology, cost, government incentives and implementation of geothermal power projects will determine if alternative energy geothermal will become a viable global competitor.

    Alternative Energy Geothermal - Is Geothermal Energy a Renewable Energy Source?

    Scientific evidence shows that geothermal sites can provide heat for many decades, but eventually these specific locations cool down, which brings into question if alternative energy geothermal truly is a renewable energy source, since renewables are defined as green energy sources that never deplete. Understanding how geothermal fits into renewable alternative energy frameworks can help policymakers set realistic targets.

 

Related Articles

View more

Alternative Energy Power - Green Energy Technologies

Alternative energy power drives renewable grids using solar PV, wind turbines, and hydroelectric sources, optimized by power electronics, inverters, battery storage, and microgrids for efficient, resilient distribution and grid integration.

 

What Is Alternative Energy Power?

Alternative energy power delivers renewable power using electronics, storage and controls for efficient grids.

✅ Power electronics: MPPT inverters, VSCs, and converters

✅ Grid integration: protection, stability, and harmonics

✅ Storage: Li-ion, BESS sizing, EMS, frequency response

 

What alternative energy power technologies will make the largest impact? Alternative energy technologies have progressed so much in the past decade. However, some studies are starting to show that conventional power sources (such as fossil fuels and natural gas) will continue to have the lion's share of the world's energy mix for the next two decades. One study, conducted by the Boston Consulting Group, reports that forms of alternative energy power sources, such as wind power, will continue to provide smaller amounts of alternative energy power generation while other alternative energy power sources are ready to make a huge economic impact. Who? Let's take a look at the sources and their technologies. For readers new to the topic, this overview of what is alternative energy provides helpful context and definitions.

 

Alternative Energy Power - Solar Photovoltaic Technology

The BCG study predicts that solar PV (photovoltaic) will reach its cost competitiveness by 2015 to 2020 in the sunny regions of the world. However, the intermittency of PV's energy generation won't reach its full potential until technology breakthroughs are made in energy storage.

For practical insights, see how solar power in alternative energy is being deployed across different regions today.

Taking a look back into the last five years, it's clear that solar PV has significantly grown (up from 1.1 gigawatts in 2004 to 7.3 gigawatts in 2009, which is a 46 per cent annual increase). Today, solar panels are divided into two applications. Individual or small groups of panels can be used for distributed solar generation and larger groups of panels can be used to create utility-scale projects (also known as solar farms.) The underlying economics of the two applications are not that different, although solar farms can produce electricity at cheaper rates. Comparative data on renewable power generation helps benchmark PV performance against other resources.

 

Alternative Energy Power - Concentrated Solar Power Technology

Concentrated solar power (CSP) is another alternative energy power technology that is on its way to becoming a cost-competitive option - and soon (between 2015 and 2020). The beauty of this alternative energy power technology is that it can provide on-demand power through cost-effective thermal storage. Limitations to infrastructure and deployment barriers are significant, but surmountable.

Understanding the spectrum of renewable power sources clarifies where CSP complements wind and PV.

The generation potential of this alternative energy power solar resource over land is more than 100 times the total global demand for electricity. Solar energy without storage capacity technologies, such as thermal storage or hybrid solar-natural gas configuration, isn't reliable enough to be a sustainable energy source. However, CSP allows solar energy to play a larger part in the global electricity market and puts the alternative energy power source ahead of its alternative energy power counterparts. This perspective aligns with broader trends in renewable alternative energy adoption as grids adapt with storage and hybridization.

CSP is still small in terms of global power-generation capacity, but installed GSP capacity is expected to rise eightfold from 2009 (roughly one gigawatt) through 2015 (to more than eight gigawatts). Costs must drop for this alternative energy power technology to reach its full potential.

Cost curves are also influenced by policy and financing innovations within alternative energy solutions that scale deployment efficiently.

 

Alternative Energy Power - Smart-Grid Technologies

Many alternative energy power sources are capped due to their intermittent nature, but technologies like smart grid helps to accelerate their growth in the global energy marketplace.

A comprehensive view of the many forms of alternative energy underscores why flexibility is essential for balancing supply and demand.

By definition, a "smart grid" is a collection of equipment, infrastructure and information technologies designed to optimize the production, transmission and usage of electricity.

Incentives for smart-grid technologies include utility cost reduction, generation optimization and intelligent demand-response management. Smart-grid technologies improve the ability to integrate distributed generation and the ability to implement demand-response programs in intermittent energy sources such as wind energy and solar energy. Both factors are key enablers to expanding deployment in solar PV and wind technologies.

 

Related Articles

View more

Alternative Energy Cost - Green Energy Premiums

Alternative energy cost analyzes LCOE, CAPEX, OPEX, and grid parity across solar PV, wind turbines, and battery storage, considering efficiency, load factors, and grid integration to optimize system design and lifecycle economics.

 

What Is Alternative Energy Cost?

Alternative energy cost is LCOE-based pricing for solar, wind, and storage, reflecting CAPEX, OPEX, and grid impacts.

✅ Uses LCOE comparing PV, wind, and storage across duty cycles.

✅ Includes CAPEX, OPEX, maintenance, and financing assumptions.

✅ Evaluates grid integration, curtailment, and reliability metrics.

 

Alternative energy cost is determined by how utilities typically set their rates and account for the cost differential between alternative energy and conventional energy sources. Basically, cost recovery of a utility’s investments and operating expenses determine electricity rates. For background on definitions and resource types, see this overview of what is renewable energy to align terminology across programs.

These alternative energy costs include:

Understanding the breadth of technologies captured under renewable alternative energy helps clarify why cost components vary by resource.

  • owning generation
  • owning transmission and distribution assets
  • a return on owned assets
  • purchased power contracts
  • recovery of various operating expenses, including fuel costs, maintenance, and administration.

    Costs for generating, transmitting, and distributing electricity are in a utility’s rate. Because utility costs are bundled together, all generation resources are combined to create a utility “system mix” of generation. In other words, utilities do not normally distinguish between individual generation sources for their customers. Therefore, an equivalent mix of the utility’s generation resources and purchased power is provided to each customer. In practice, product structures for alternative energy power are designed to work within this system mix paradigm.

    For alternative energy cost determination, utilities and regulators are interested in separating the specific alternative energy costs related to securing green power. In this way, green power products are unique, differentiated electricity products. Since customer participation is voluntary, only those customers that choose to sign up for these programs pay the incremental costs. Alternative energy power program participants typically pay the higher alternative energy cost in the form of a premium on their monthly bill. In some jurisdictions, available alternative energy incentives help offset premiums for early adopters.

    Four Main Components In Determinating Alternative Energy Cost

  • 1. The cost of the alternative energy source. This includes the total cost of electricity and/or environmental attributes from all alternative energy resources used in the product, whether from wind, solar, geothermal, biomass, or another source, and whether owned by the utility or acquired through a power purchase contract. For example, cost trajectories for alternative energy solar power have declined sharply in recent years due to technology improvements.
  • 2. Program implementation costs. Any additional alternative energy costs attributed to implementing the alternative energy program, including administration and marketing. Utilities sometimes leverage alternative energy grants to defray outreach and administration expenses.
  • 3. Ancillary services costs. The additional costs incurred to integrate variable output resources, particularly wind, into a utility’s system.
  • 4. Displaced utility generation (and capacity) resource costs. The renewable resource displaces electricity that the utility would otherwise have generated or purchased.

     

    In conclusion, alternative energy costs can be represented as: Alternative energy premium = (1) + (2) + (3) – (4)

    Alternative Energy Cost Determination

    Alternative energy costs are captured through the specific power purchase agreements for alternative energy (in this case, the term alternative energy is interchanged with renewable energy) or RECs (renewable energy contracts), or through the regulatory approval process for utility-owned renewable projects. As long as these are tracked separately from the rest of the generation mix, the appropriate alternative generation costs can be determined. However, generation costs are hard to determine because it's uncertain how many customers plan to enroll in the program and how long they plan to participate. In electric markets that have not gone through restructuring from the electric industry, contracts for generation are typically long-term (10 years or more), and investment in owned facilities is generally considered to be for the life of the facility (20 years or more). For readers new to key terms and market structures, this primer on renewable energy facts provides helpful context for interpreting contract and REC pricing.

    The long-term nature of the resource commitment severely contrasts with the program subscription commitment required of most customers. Most alternative energy programs do not require that customers enroll for a specific term, much less sign up for 10 or 20 years to match the facility or contract life of the renewable power supply source. Therefore, while the annual cost of renewable energy is straightforward to determine, the utility faces some level of risk that will likely be reflected in the product pricing.

    However, if the utility is also subject to a renewable portfolio standard and is therefore required to procure a certain fraction of renewable energy for its overall load, there may be less risk, because the utility has greater flexibility in managing its overall renewable portfolio between its compliance and voluntary program obligations.

 

Related Articles

View more

Biomass Energy - Green Power Solutions

Biomass energy converts organic feedstocks into renewable power via combustion, gasification, and anaerobic digestion, enabling CHP systems, grid integration, carbon-neutral generation, improved thermal efficiency, and dispatchable biofuels for resilient electrical infrastructure.

 

What Is Biomass Energy?

Biomass energy produces electricity from feedstocks through combustion or digestion, enabling CHP and grid reliability.

✅ CHP raises electrical efficiency to 70% with heat recovery

✅ Gasification feeds syngas to turbines or SOFC for power

✅ Dispatchable output supports frequency and voltage stability

 

Biomass energy comes from biomass feedstock (crops and residues, farm animal wastes, industrial wood, etc.). The heat from this substantial renewable resource can generate electricity, fuel and other forms of energy. It has been estimated that just one eighth of the total biomass energy produced annually could provide all of humanity’s current demand for energy. For a deeper overview of how biomass fits within the clean energy landscape, see this guide on biomass renewable energy and its practical applications today.

Some forms of biomass fuels (or biofuels), derived from biomass feedstock, can be solid, liquid, or gas. Kitchen scraps, sewage, the leftovers of the food processing industries, paper, sawdust, and lawn clippings are some of the available biomass energy sources. Biomass energy has received a lot of attention because an opportunity to convert waste into something very valuable has presented itself. These pathways are often discussed alongside other forms of alternative energy that leverage different feedstocks and conversion methods.

 

Biomass Energy – How can we use it?

Biomass energy can be converted to generate electricity, fuel vehicles and heat buildings using biofuel technologies. At the moment, biomass energy sources used in power plants include agricultural and farm residues, food processing residues, wood residues and methane gas from land fills. Biomass energy producers hope to significantly expand the supply of biomass energy by using trees and grasses as well. In power markets, biomass can contribute to renewable electricity portfolios alongside wind and solar resources.

Currently, there are more than 350 biomass energy plants generating 7,000 megawatts of biomass power in the United States. The producers who own these plants are quite diverse; they range from the electrical utilities, independent power producers, the wood manufacturing industry, and the pulp and paper industry. Such facilities are part of broader trends in renewable power generation that emphasize reliability and grid integration.

Biomass energy is considered a renewable energy source because it can replenish itself (regrown), unlike fossil fuels such as coal and oil, which when used, are gone. And, unlike coal and oil, biomass energy is an alternative energy source because it doesn’t hurt the environment with harmful chemicals, such as carbon dioxide, which cause greenhouse gas emissions (GHG). Using renewable biomass resources not only reduce greenhouse gases, but they also reduce air pollutants and landfill wastes. This classification aligns with definitions of alternative energy that prioritize low emissions and resource sustainability.

As policies evolve, many jurisdictions frame biomass within broader renewable alternative energy strategies that support decarbonization goals.

 

Biomass Energy in Today’s Marketplace

Within the spectrum of renewable energy sources, biomass competes and collaborates with wind, solar, and hydro depending on local resource availability.

  • High costs in handling and transportation, as well as high moisture content, have long outweighed the low price of biomass energy feedstocks. Fuels that are filled with moisture are hard to burn properly and heat release is slow and hard to control. However, fuel upgrading options, such as pelletization and drying remedy this situation, thus making biomass energy more economically attractive.
  • Biomass energy can also make be useful in blending and co-firing applications with coal because of the low SO2, NOx, and metals emissions from biomass energy fuels, and their CO2 neutral status.

 

Biomass Energy – Benefits of Cogeneration

Cogeneration, the practice of producing both electricity and useful heat, is a great way of improving energy efficiency. Some sawmills, for example, use a lot of heat from boilers powered by biomass energy to supply energy to their kiln-drying operations. But any extra heat can help gasify biomass energy fuels so they can be used in a gas turbine, which is more efficient than a simple steam boiler. Additional savings can be produced by using combined cycle technology, which takes additional waste heat from the gas turbine to give power to a steam-driven turbine.

 

Related Articles

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.