Latest Building Automation Articles
Advanced Energy Management
Advanced energy management integrates smart grid analytics, demand response, and SCADA/IoT sensors to optimize loads, enable peak shaving, enhance power quality, and coordinate renewables, storage, and microgrids for efficient, resilient electrical systems.
How Advanced Energy Management Works
Advanced energy management systems involve control systems and processes. Control systems can be as simple as a residential thermostat, to very complex computer controlled systems for multiple buildings, to industrial process control. Their diligence and repeatability can also serve to maintain the savings of project improvements for years, further justifying their existence by providing economic return to the customer. Advanced energy management systems include control technology and control mode categories, basic input and output instrumentation, and the practical need to temper “things possible” with the skill level of the operators who will inherit it. The importance of advanced energy management system controllability and user-friendliness as primary design parameters will be stressed. Industry overviews of energy management systems highlight common architectures and integration paths useful during early design.
The following is a very important first statement before any discussion about control hardware: “The type of advanced energy management systems hardware used in optimization is less important than the understanding of the process and of the control concepts that are to be implemented.” The main goal should be to become clear about the process fundamentals and what should happen—then the parts and pieces are just details. This discussion of different available hardware types is a familiar but sometimes laborious and dull part of any controls text. Remember that automatic controls are really nothing more than machines that do for us what we would do ourselves if we had nothing better to do; they do work for us like any other tool, and they are only as clever as the people who craft them. As a complement, primers on energy management controls summarize control modes and device families that support these concepts.
The field of automatic control in advanced energy management systems is similar in that we continually adjust some device to cause a particular measured variable to remain at a desired state. In facilities practice, deploying a building automation system provides the supervisory layer that implements such setpoint maintenance and scheduling.
Examples:
• The need to throttle heating and cooling equipment sized for maximum load that is effectively over-sized at part load conditions. Within building energy management systems these strategies are automated through reset logic and variable speed control for stable part-load operation.
• Varying occupancy, and systems attendant to the occupants (lighting, ventilation). Guides on energy management emphasize occupancy-based control sequences that tie lighting and ventilation to real-time demand.
• Varying product throughput rate through manufacturing facilities. Establishing an enterprise energy management program helps align throughput-driven process controls with measurable performance targets.
• Varying demands, and the need to maintain level or full state for water or fuel reservoirs, feed or coal bins, etc.
• Coordination: Organizing or sequencing multiple processes in a logical and efficient manner is an important aspect of automatic control applications.
• Automation: Human beings can make very good manual controllers because we can think on our feet and consider many variables together, but most control tasks are repetitive and suitable for mechanization. Introductory references explaining what building automation is clarify how routine tasks are delegated to algorithms while operators focus on exceptions.
Automatic operation allows people to provide oversight of advanced energy management system operations and more effectively utilize their time.
• Consistency: Manual control by people can be effective, although we are not all that repeatable and are sometimes forgetful. Using machinery for automatic control adds the improvement of consistent, repeatable operations. The repeatability and consistency feature of automatic control is very important in manufacturing.
• Conservation: Supplemental enhancement control routines can be incorporated to reduce energy use while still maintaining good control. It is important to note that control systems do not necessarily reduce energy consumption unless specifically applied and designed for that purpose.
Advanced energy management automatic controls are useful for basic regulation and quality control of processes and environments. They can also be leveraged for energy savings through optimization. Properly applied, these energy management systems are reliable and cost effective.
From: Energy Management Handbook, 7th Edition, The Fairmont Press
Related Articles
Sign Up for Electricity Forum’s Building Automation Newsletter
Stay informed with our FREE Building Automation Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.
Benefits of Industry-Standard Networks Explained
Benefits of industry networks include collaboration, knowledge sharing, standards alignment, and vendor partnerships that accelerate innovation in electrical engineering, grid modernization, smart manufacturing, and safety compliance across power systems and automation ecosystems.
What Are the Benefits of Industry Networks?
They enable faster innovation, standards compliance, risk mitigation, and scalable solutions through shared expertise.
✅ Accelerates compliance with IEEE, IEC, UL standards and codes
✅ Improves interoperability across SCADA, PLC, and smart grid systems
✅ Enables supplier benchmarking, risk sharing, and joint R&D
Modern control and business systems require open, digital communications. Industrial networks replace conventional point-to-point RS-232, RS-485, and 4-20 mA wiring between existing measurement devices and automation systems with an all-digital, 2-way communication network. Industrial networking technology offers several major improvements over existing systems. With industry-standard networks, we can select the right instrument and system for the job regardless of the control system manufacturer. Other benefits include:
To understand how device-level buses, controllers, and enterprise systems coordinate, resources like industrial automation communication outline protocol choices, latency tradeoffs, and integration patterns. Selecting between Ethernet, fieldbus, and wireless options benefits from comparing transmission methods for industrial networks with respect to determinism, noise immunity, and distance.
- Reduced wiring -- resulting in lower overall installation and maintenance costs
- Intelligent devices -- leading to higher performance and increased functionality such as advanced diagnostics
- Distributed control -- with intelligent devices providing the flexibility to apply control either centrally or distributed for improved performance and reliability
- Simplified wiring of a new installation, resulting in fewer, simpler drawings and overall reduced control system engineering costs
- Lower installation costs for wiring, marshalling, and junction boxes
Delivering these benefits also depends on choosing switches, gateways, and physical media from a well-architected set of industrial network components that match environmental and reliability requirements. Designers often map sensors, controllers, and supervisory systems across the hierarchical levels of industrial networks to balance real-time control with plantwide visibility.
Standard industrial networks offer the capability to meet the expanding needs of manufacturing operations of all sizes. As our measurement and automation system needs grow, industrial networks provide an industry-standard, open infrastructure to add new capabilities to meet increasing manufacturing and production needs. For relatively low initial investments, we can install small computer-based measurement and automation systems that are compatible with large-scale and long-term plant control and business systems. This standards-based approach aligns closely with how a building automation system aggregates HVAC, power, and security data for unified operations. For teams expanding beyond production into facilities integration, understanding what building automation entails helps frame networking requirements and data governance.
As energy costs and sustainability goals rise, leveraging advanced energy management over the same industrial network can drive measurable efficiency gains and carbon reporting accuracy.
Related Articles
Building Energy Management Systems Explained
Building Energy Management Systems integrate automation, efficiency, and monitoring of HVAC, lighting, and electrical loads. These systems optimize energy performance, reduce costs, and support sustainability goals for smart buildings and modern facilities.
What are Building Energy Management Systems?
Building Energy Management Systems (BEMS) are intelligent platforms that monitor, control, and optimize building energy usage for greater efficiency and sustainability.
✅ Automate HVAC, lighting, and power systems
✅ Lower operating costs through energy efficiency
✅ Support smart building and sustainability initiatives
Understanding Building Energy Management Systems
Building Energy Management Systems are crucial tools for optimizing energy use in industrial, commercial, and institutional facilities. By integrating advanced technologies such as the Internet of Things (IoT), machine learning, and predictive analytics, BEMS enable significant cost savings, improved performance, and measurable progress toward sustainability. The focus of building management systems is on long-term energy efficiency in commercial buildings, reducing consumption while enhancing comfort. Building Energy Management Systems are closely tied to advanced energy management strategies that help facilities optimize efficiency through real-time monitoring and automation.
How Building Energy Management Systems Work
A BEMS combines hardware and software components to monitor, control, and optimize energy consumption. Sensors, controllers, and actuators collect data on power usage, temperature, humidity, and occupancy. The system software utilizes algorithms and analytics to identify inefficiencies, optimize HVAC and lighting systems, and provide facility managers with actionable insights. IoT devices strengthen this process by enabling real-time communication between equipment, ensuring responsive and precise adjustments. A well-designed building automation system integrates HVAC, lighting, and power controls into a unified BEMS platform that improves performance and sustainability.
Generic BEMS Features: Comparison Table
| Category | Core Features | Advanced Features | Future-Ready Capabilities |
|---|---|---|---|
| System Integration | Connects HVAC, lighting, and electrical loads | Links to renewable energy systems and smart grids | Supports microgrids and distributed energy resources |
| Data & Monitoring | Tracks energy use, occupancy, and environmental conditions | Provides real-time dashboards and remote access | Predictive analytics with AI and machine learning |
| Control & Automation | Automates schedules for HVAC, lighting, and equipment | Adaptive controls based on occupancy and weather | Self-learning optimization and automated demand response |
| Sustainability | Reduces overall energy consumption and carbon footprint | Aligns with sustainability goals and reporting standards | Prepares for future certifications and regulatory changes |
| Cost Management | Identifies inefficiencies and reduces operating costs | Provides ROI analysis and benchmarking | Integrates with utility price signals for dynamic cost savings |
Key Benefits of BEMS
Building Energy Management Systems improve efficiency by identifying waste and optimizing performance. Facility managers can address equipment malfunctions, poor insulation, or inefficient lighting while reducing carbon footprint. These adjustments lead to:
-
Lower operating costs through reduced consumption
-
Enhanced occupant comfort and productivity
-
Long-term sustainability through emissions reduction
Organizations that implement energy management systems benefit from reduced costs, increased operational control, and the ability to meet regulatory requirements.
Case Studies and Industry Leaders
Global companies such as Schneider Electric, IBM, and Emerson offer BEMS platforms that demonstrate measurable returns. For example, AI-driven HVAC optimization has shown reductions of up to 15% in energy use by automatically adjusting based on occupancy and weather conditions. Real-world implementations demonstrate how BEMS not only reduce costs but also extend equipment life and enhance resilience. To achieve maximum value, facility managers often combine BEMS with specialized energy management controls that automate schedules, adapt to occupancy, and respond to changing conditions.
Standards and Certification
BEMS adoption aligns with international standards, such as ISO 50001, which provides a framework for continuous improvement in energy performance. Certification under ISO 50001 enhances credibility, helps organizations meet regulatory requirements, and supports recognition through programs like LEED and ENERGY STAR.
Best Practices for Implementation To maximize benefits, organizations should:
-
Conduct comprehensive energy audits to pinpoint inefficiencies
-
Set achievable energy-saving targets using benchmarking data
-
Establish monitoring and verification systems for performance tracking
-
Engage staff in awareness and training programs
-
Update BEMS continuously as technology evolves
Sustainability goals are supported by green energy integration, allowing Building Energy Management Systems to incorporate renewable sources into daily operations.
Demand Response and Future Trends
Demand response strategies are becoming integral to BEMS. These involve adjusting consumption in response to grid fluctuations, price signals, or periods of peak demand. Automated demand response enables facilities to reduce their load without compromising comfort, often earning financial incentives and contributing to grid stability. Looking forward, artificial intelligence, predictive maintenance, and data-driven decision-making will further enhance the role of BEMS in creating smarter, more sustainable buildings. Successful deployment requires a broader energy management program that aligns strategy, technology, and staff engagement across the organization.
Building Energy Management Systems are no longer optional—they are essential for organizations seeking efficiency, cost savings, and environmental stewardship. By integrating advanced technology, following best practices, and aligning with global standards, BEMS deliver long-term value while helping to meet the urgent demand for sustainable building operations.
Related Articles
PLC Training Courses
PLC training courses build automation skills in ladder logic, SCADA, HMI, and motion control, with hands-on programming on Siemens and Allen-Bradley platforms, diagnostics, IEC 61131-3 standards, safety, and commissioning best practices.
What Are PLC Training Courses?
Programs teaching PLC programming, SCADA, HMI, and industrial automation with hands-on labs and commissioning.
✅ Ladder logic, function blocks, and IEC 61131-3 programming
✅ Siemens TIA Portal and Allen-Bradley RSLogix labs
✅ Fault finding, I/O wiring, safety, and commissioning
Our PLC training courses are designed to help students keep abreast of the latest PLC technologies and techniques available for industrial automation. These courses offer an excellent opportunity for students to ask specific questions and exchange ideas relating to their own applications. For context on modern plant connectivity, see the overview of industrial automation communication standards used in training.
Our PLC training courses are intended for experienced users and will give them greater knowledge of enhanced PLC functionality. Participants also review the benefits of industry networks to understand how network design impacts reliability.
We have three PLC training courses:
Before selecting a pathway, it helps to understand the hierarchical levels of industrial networks that underpin PLC architectures.
PLC Training Basic - Our 12-Hour (2-Day) live online instructor-led industrial automation course is designed to instruct electrical control professionals on how to successfully integrate a PLCs into actual day-to-day industrial electrical processes. The course not only deals with the hardware and software, but all the surrounding systems that must be compatible to achieve a safe and reliable control system. This PLC Training Basic course is generic in nature and applies to all PLC types and manufacturers. We also examine key industrial network components so attendees can better integrate field devices.
PLC Training - Intermediate - Our 12-Hour (2-Day) live online instructor-led industrial automation course is designed to instruct electrical control professionals on how to successfully integrate a PLC into actual day-to-day industrial electrical processes. It not only deals with the hardware and software, but all the surrounding systems that must be compatible to achieve a safe and reliable control system. The curriculum compares common transmission methods in industrial networks to guide protocol selection.
PLC Training Course - Advanced
In the advanced module, we connect control strategies to advanced energy management concepts for measurable performance gains.
Our 12-Hour (2-Day )Advanced PLC Training Course is designed to give students a basic understanding of Programmable Logic Controllers and how PLCs function. This Advanced PLC training course will not make students PLC experts but rather give them a basic understanding of the PLC, the PLC’s functionality and limitations. The PLC training seminar is generic in nature and applies to all types and manufacturers. Case studies include applications like smart city automated level crossings where safety and uptime are critical.
Related Articles
Energy Management Systems & Smart Buildings
Energy Management Systems (EMS) enhance energy efficiency, reduce costs, and promote sustainability by monitoring, controlling, and analyzing energy use in buildings, enabling smarter resource allocation and a reduction in carbon footprint.
What are Energy Management Systems?
Energy Management Systems (EMS) are integrated platforms that monitor, control, and optimize energy consumption in facilities to enhance efficiency, promote sustainability, and achieve cost savings.
✅ Monitor and control energy use in real time
✅ Enhance efficiency, sustainability, and cost reduction
✅ Support compliance, reporting, and renewable integration
Energy management systems transform how we manage and consume electricity in industrial, commercial, and institutional power systems. By incorporating energy efficiency, building automation, smart grid technology, demand response, power monitoring, conservation, HVAC control, power optimization, renewable energy integration, and analytics, EMS offer a comprehensive EM for a more sustainable future.
By adopting Energy Management Systems, organizations can effectively manage consumption across their facilities, tracking energy usage in real-time to uncover opportunities for energy savings. This not only lowers operational costs but also reduces carbon emissions, supporting both financial performance and environmental responsibility.
Key Components of EMS
At the core of EMS systems are key components that work together to improve efficiency. These components include sensors, controllers, actuators, and communication networks that gather real-time data from various energy-consuming devices. This data is then analyzed to optimize the system's performance, ensuring cost-effective electricity use and minimal waste.
Energy Management Systems Overview
| Aspect | Description | Examples/Applications | Benefits |
|---|---|---|---|
| Core Components | Sensors, controllers, actuators, communication networks | Building systems, industrial plants | Real-time data, automation, optimized performance |
| Building Automation | Integrated control of lighting, HVAC, and equipment | Smart buildings, commercial facilities | Lower electricity use, cost savings, comfort, productivity |
| Smart Grid Integration | Linking EMS with utilities and renewable energy | Solar, wind, microgrids | Balanced supply-demand, grid reliability |
| Demand Response | Adjusting consumption in response to grid conditions | Industrial load shifting, peak demand control | Reduced costs, grid stability, incentives |
| Analytics & AI | Data analysis, predictive maintenance, optimization algorithms | Dashboards, machine learning models | Efficiency, reduced downtime, proactive management |
| Sustainability Focus | Incorporation of renewable energy and conservation strategies | Solar panels, wind turbines, green buildings | Reduced emissions, compliance, and carbon footprint cuts |
Building Automation and Efficiency
One of the primary ways energy management systems improve efficiency is through building automation. Building managers can monitor and control various aspects of their facility's electricity usage by integrating different systems such as lighting, heating, ventilation, and air conditioning (HVAC) control. This level of control enables them to make informed decisions, reducing power consumption while maintaining a comfortable and productive environment.
Smart Grids and Renewable Integration
Energy management systems also play a significant role in developing and implementing smart grids. These grids use advanced communication technologies and IoT devices to connect renewable energy sources, such as solar panels and wind turbines, with the electric utility. As a result, power supply and demand can be better balanced, leading to more efficient and reliable electricity distribution.
Demand Response and Conservation
Demand response is another crucial aspect of Energy Management Systems, allowing consumers to adjust their consumption based on real-time information from the electric grid. By participating in demand response programs, consumers can reduce their energy consumption during peak hours and benefit from lower costs.
Power conservation is a primary goal of energy management systems, which achieve this through various strategies, including efficient HVAC control, lighting optimization, and equipment scheduling. In addition, businesses and homeowners can significantly reduce their overall power usage by ensuring that power-consuming devices are used only when necessary.
Power optimization is a crucial aspect of EMS, achieved through the ongoing analysis of consumption patterns and equipment performance. Advanced power analytics tools can identify inefficiencies and recommend actions to maximize savings. These insights can help building managers create power-saving strategies, such as adjusting temperature set points, optimizing lighting controls, and scheduling equipment use.
One of the most exciting aspects of energy management systems is their seamless integration of renewable energy sources. By incorporating solar panels, wind turbines, and other clean power technologies, EMS can help businesses and homeowners reduce their reliance on fossil fuels and lower their carbon footprint.
The Role of IoT and AI
The role of IoT and AI in energy management systems is crucial, as they enable remote monitoring, real-time data analysis, and predictive maintenance. By utilizing IoT devices to collect data and AI algorithms to analyze it, EMS can identify inefficiencies and predict equipment failures, thereby ensuring optimal system performance.
By adopting EMS, businesses and homeowners can save money on their power bills and reduce their environmental impact. In addition, by optimizing power use, reducing waste, and integrating renewable energy sources, EMS leads to cost savings and contributes to the global effort to combat climate change.
Future Trends in EMS
The field of energy management systems is constantly evolving, with new trends and innovations emerging regularly. These innovations include integrating energy storage solutions, microgrids, and machine learning algorithms for even more precise power optimization.
Related Articles
What is Building Automation - Energy Control Explained
What is building automation? An integrated BAS/BMS using sensors, PLCs, and SCADA to control HVAC, lighting, power distribution, VFDs, and safety systems, improving energy management, demand response, monitoring, reliability, and analytics.
What Is Building Automation?
A BAS/BMS that controls electrical systems for efficiency, safety, and performance.
✅ Controls HVAC, lighting, and power via PLCs, sensors, and actuators
✅ Enables energy management, demand response, and load shedding
✅ Integrates SCADA, metering, and VFDs for reliability and safety
What is Building Automation?
Building automation is crucial in creating sustainable, efficient, and comfortable living and working environments. By incorporating advanced technologies like IoT and data analytics, building automation systems can optimize energy consumption, enhance occupant comfort, and promote cost-effective building management. As technology continues to evolve, building automation's potential benefits and applications are set to expand further, making it an essential aspect of modern building design and operation. For foundational context on how organizations plan, monitor, and optimize consumption, consult this energy management primer that aligns with modern building objectives.
Building automation refers to the centralized building control system for various systems, such as heating, ventilation, air conditioning (HVAC), lighting, security systems, and other related subsystems. The main objective of a building automation system (BAS) is to optimize energy consumption, enhance the comfort of occupants, and ensure that the building operates efficiently and cost-effectively. A concise primer on system architectures and typical functions is provided in the building automation system overview, which clarifies scope and capabilities.
A BAS comprises interconnected components and subsystems, including sensors, controllers, and user interfaces. Sensors measure temperature, humidity, and occupancy, while controllers use this information to regulate various building systems, such as air conditioning and lighting. User interfaces enable facility managers and authorized personnel to monitor and adjust system settings as needed. To understand how setpoints, scheduling, and feedback loops are orchestrated, explore energy management controls guidance that illustrates controller strategies.
One of the primary benefits of building automation is its ability to reduce energy consumption and enhance energy efficiency for building owners. A BAS can optimize energy usage and minimize waste by continuously monitoring and adjusting building systems based on real-time data. For example, automated control of lighting and HVAC systems can help maintain optimal temperature and lighting levels while conserving energy when spaces are unoccupied. This leads to lower utility bills and a reduced carbon footprint. These practices are often formalized within building energy management systems frameworks that standardize analytics and reporting.
Building automation also promotes cost-effective building management system by reducing maintenance and operational costs. A well-designed BAS can detect and address potential issues before they escalate into expensive problems, allowing facility managers to maintain building systems and extend their life expectancy proactively. Additionally, building automation control can help maximize the productivity and comfort of building occupants by maintaining a consistent and pleasant indoor environment. When aligned with enterprise objectives, broader energy management systems can integrate with BAS workflows to coordinate maintenance and savings.
The Internet of Things (IoT) plays a significant role in the development and advancement of building automation. IoT output devices and sensors provide a wealth of real-time data that can be analyzed and leveraged to enhance building performance further. This integration allows for more precise control and monitoring of building systems and the developing of new, innovative energy management and conservation solutions. This data-driven approach enables advanced energy management techniques that support predictive control and optimization.
What is Building Automation?
Building automation is also closely linked to facility management, as both disciplines aim to optimize the operation and maintenance of building systems. By integrating building automation with facility management software, facility managers can monitor and control various building systems more effectively, streamline maintenance tasks, and make data-driven decisions to optimize building performance. Interoperability relies on reliable industrial automation communication methods that allow platforms to share telemetry securely.
The future of building automation technology holds exciting possibilities, including the development of increasingly intelligent and interconnected systems. In addition, advances in artificial intelligence, machine learning, and data analytics will enable BAS to become even more efficient and responsive to changing conditions, resulting in greater energy savings and reduced environmental impact.
Related Articles
Transmission Methods In Industrial Networks
Transmission Methods Industrial Networks explain Ethernet/IP, PROFINET, Fieldbus, Modbus TCP, and wireless options, covering deterministic control, latency, throughput, topology, and noise immunity for PLC, SCADA, and IIoT connectivity in factory automation.
What Are Transmission Methods in Industrial Networks?
Methods for transferring industrial data via wired, wireless, and real-time protocols to ensure deterministic control.
✅ Compare Ethernet/IP, PROFINET, Fieldbus, Modbus TCP, and CANopen
✅ Address latency, jitter, determinism, bandwidth, and reliability
✅ Select media, topology, shielding, and QoS for harsh environments
The data communication can be analogue or digital. Analogue data takes continuously changing values.
For a broader systems perspective, building automation fundamentals explain how communication methods underpin monitoring and control.
In digital communication, the data can take only binary 1 or 0 values. The transmission itself can be asynchronous or synchronous, depending on the way data is sent. In asynchronous mode transmission, characters are sent using start and stop codes and each character can be sent independently at a nonuniform rate. The synchronous mode transmission is more efficient method. The data is transmitted in blocks of characters, and the exact departure and arrival time of each bit is predictable because the sender/receiver clocks are synchronized. For an introduction to protocols and media choices, industrial automation communication outlines typical options and tradeoffs.
The transmission methods in industrial communication networks include baseband, broadband, and carrierband. In a baseband transmission, a transmission consists of a set of signals that is applied to the transmission medium without being translated in frequency.
To relate signaling to hardware, industrial network components illustrate how cables, switches, and interfaces shape performance.
Broadband transmission uses a range of frequencies that can be divided into a number of channels. Carrier transmission uses only one frequency to transmit and receive information.
Digital optical fibre transmission is based on representing the ones and zeros as light pulses.
The type of the physical cabling system or the transmission media is a major factor in choosing a particular industrial communication network. The most common transmission media for industrial communication network is copper wire, either in the form of coaxial or twisted-pair cable. Fibre optics and wireless technologies are also being used.
Coaxial cable is used for high-speed data transmission over distances of several kilometers.
The coaxial cable is widely available, relatively inexpensive, and can be installed and maintained easily. For these reasons it is widely used in many industrial communication networks.
Twisted-pair cable may be used to transmit baseband data at several Mbit/s over distances of 1 km or more but as the speed is increased the maximum length of the cable is reduced. Twisted-pair cable has been used for many years and is also widely used in industrial communication networks. It is less expensive than coaxial cable, but it does not provide high transmission capacity or good protection from electromagnetic interference.
Fibre optic cable provides increased transmission capacity over giga bits, and it is free from electromagnetic interference. However, the associated equipment required is more expensive, and it is more difficult to tap for multidrop connections. Also, if this is used for sensor cables in process plants, separate copper wiring would be required for instrument power, which might as well be used for the signal transmission. Higher-speed backbones enable analytics such as advanced energy management that depend on timely, high-resolution data.
In many mobile or temporary measurement situations, wireless is a good solution and is being used widely. Real-world deployments like automated level crossings demonstrate how wireless links support safety-critical automation.
Today's environment
Conventional point-to-point wiring using discrete devices and analog instrumentation dominate today's computer-based measurement and automation systems. Twisted-pair wiring and 4-20 mA analog instrumentation standards work with devices from most suppliers and provide interoperability between other 4-20 mA devices. However, this is extremely limited because it provides only one piece of information from the manufacturing process. Historically, measurement networks and automation systems have used a combination of proprietary and open digital networks to provide improved information availability and increased throughput and performance. Integrating devices from several vendors is made difficult by the need for custom software and hardware interfaces. Proprietary networks offer limited multi-vendor interoperability and openness between devices. With standard industrial networks, on the other hand, we decide which devices we want to use. A concise summary of outcomes such as scalability, diagnostics, and lifecycle savings is provided in benefits of industrial networks for decision makers. Designers can map devices to control, supervisory, and enterprise layers using hierarchical network guidance before selecting vendors.