TransCanada to buy National Grid plant

By Reuters


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
TransCanada has agreed to buy a large New York power plant from utility National Grid for around $2.9 billion.

National Grid is divesting the 2,480 megawatt gas-fired Ravenswood plant to satisfy regulators after its takeover of New York utility KeySpan.

"National Grid have received a price of $1,160 per kilowatt, which is a good price - slight premium to re-investment cost," said analysts at UBS.

Ravenswood is valuable as it supplies over 20 percent of the electricity for New York City, where it is difficult to find land on which to build new capacity and demand for power is always high.

The deal, which is expected to complete this summer, will reduce TransCanada earnings for the first two years but boost profit thereafter.

The sale will generate a gain for National Grid, which said KeySpan had recorded a carrying value of $1.2 billion for the plant.

Analysts at Credit Suisse estimated National Grid would gain $2 billion in proceeds after capital gains tax and accounting for fuel stocks and lease prepayment, which would give 7 pence a share of upside to their 880 pence target price.

"We estimate the sale converts into a gross $1,170 per kilowatt valuation, slightly above our estimated newbuild cost of circa $900-$1100 per kilowatt for U.S. Combined Cycle Gas Turbines and for other recent transactions in the U.S.," they added.

Related News

Coal demand dropped in Europe over winter despite energy crisis

EU Winter Energy Mix 2022-2023 shows renewables, wind, solar, and hydro overtaking coal and gas, as demand fell amid high prices; Ember and IEA confirm lower emissions across Europe during the energy crisis.

 

Key Points

It describes Europe's winter power mix: reduced coal and gas, and record wind, solar, and hydro output.

✅ Coal generation fell 11% YoY; gas output declined even more.

✅ Renewables supplied 40%: wind, solar, and hydro outpaced fossil fuels.

✅ Ember and IEA confirm trends; mild winter tempered demand.

 

The EU burned less coal this winter during the energy crisis than in previous years, according to an analysis, quashing fears that consumption of the most polluting fossil fuel would soar as countries scrambled to find substitutes for lost supplies of Russian gas.

The study from energy think-tank Ember shows that between October 2022 and March 2023 coal generation fell 27 terawatt hours, or almost 11 per cent year on year, while gas generation fell 38 terawatt hours, as renewables crowded out gas and consumers cut electricity consumption in response to soaring prices.

Renewable energy supplies also rose, with combined wind and solar power and hydroelectric output outstripping fossil fuel generation for the first time, providing 40 per cent of all electricity supplies. The Financial Times checked Ember’s findings with the International Energy Agency, which said they broadly matched its own preliminary analysis of Europe’s electricity generation over the winter.

The study demonstrates that fears of a steep rebound in coal usage in Europe’s power mix were overstated, despite the continent’s worst energy crisis in 40 years following Russia’s full-scale invasion of Ukraine, even as stunted hydro and nuclear output in parts of Europe posed challenges.

While Russia slashed gas supplies to Europe and succeeded in boosting energy prices for consumers to record levels, the push by governments to rejuvenate old coal plants, including Germany's coal generation, to ensure the lights stayed on ultimately did not lead to increased consumption.

“With Europe successfully on the other side of this winter and major supply disruptions avoided, it is clear the threatened coal comeback did not materialise,” analysts at Ember said in the report.

“With fossil fuel generation down, EU power sector emissions during winter were the lowest they have ever been.”

Ember cautioned, however, that Europe had been assisted by a mild winter that helped cut electricity demand for heating and there was no guarantee of such weather next winter. Companies and households had also endured a lot of pain as a result of the higher prices that had led them to cut consumption, even though in some periods, such as the latest lockdown, power demand held firm in parts of Europe.

Total electricity consumption between October and March declined 94 terawatt hours, or 7 per cent, compared with the same period in winter 2021/22, continuing post-Covid transition dynamics across Europe.

“For a lot of people this winter was really hard with electricity prices that were extraordinarily high and we shouldn’t lose sight of that,” said Ember analyst Harriet Fox.

 

Related News

View more

Atlantic grids, forestry, coastlines need rethink in era of intense storms: experts

Atlantic Canada Hurricane Resilience focuses on climate change adaptation: grid hardening, burying lines, coastline resiliency to sea-level rise, mixed forests, and aggressive tree trimming to reduce outages from hurricane-force winds and post-tropical storms.

 

Key Points

A strategy to harden grids, protect coasts, and manage forests to limit hurricane damage across Atlantic Canada.

✅ Grid hardening and selective undergrounding to cut outage risk.

✅ Coastal defenses: seawalls, dikes, and shoreline vegetation upgrades.

✅ Mixed forests and proactive tree trimming to reduce windfall damage.

 

In an era when storms with hurricane-force winds are expected to keep battering Atlantic Canada, experts say the region should make major changes to electrical grids, power utilities and shoreline defences and even the types of trees being planted.

Work continues today to reconnect customers after post-tropical storm Dorian knocked out power to 80 per cent of homes and businesses in Nova Scotia. By early afternoon there were 56,000 customers without electricity in the province, compared with 400,000 at the storm's peak on the weekend, a reminder that major outages can linger long after severe weather.

Recent scientific literature says 35 hurricanes -- not including post-tropical storms like Dorian -- have made landfall in the region since 1850, an average of one every five years that underscores the value of interprovincial connections like the Maritime Link for reliability.

Heavy rains and strong winds batter Shelburne, N.S. on Saturday, Sept. 7, 2019 as Hurricane Dorian approaches, making storm safety practices crucial for residents. (Suzette Belliveau/ CTV Atlantic)

Anthony Taylor, a forest ecologist scientist with Natural Resources Canada, wrote in a recent peer-reviewed paper that climate change is expected to increase the frequency of severe hurricanes.

He says promoting more mixed forests with hardwoods would reduce the rate of destruction caused by the storms.

Erni Wiebe, former director of distribution at Manitoba Hydro, says the storms should cause Atlantic utilities to rethink their view that burying lines is too expensive and to contemplate other long-term solutions such as the Maritime Link that enhance grid resilience.

Blair Feltmate, head of the Intact Centre on Climate Change at the University of Waterloo, says Atlantic Canada should also develop standards for coastline resiliency due to predictions of rising sea levels combining with the storms, while considering how delivery rate changes influence funding timelines.

He says that would mean a more rapid refurbishing of sea walls and dike systems, along with more shoreline vegetation.

Feltmate also calls for an aggressive tree-trimming program to limit power outages that he says "will otherwise continue to plague the Maritimes," while addressing risks like copper theft through better security.

 

Related News

View more

California Welcomes 70 Volvo VNR Electric Trucks

Switch-On Project Electric Trucks accelerate California freight decarbonization, deploying Volvo VNR Electric rigs with high-capacity charging infrastructure, zero-emissions operations, and connected safety features to cut greenhouse gases and improve urban air quality.

 

Key Points

A California program deploying Volvo VNR Electric trucks and charging to decarbonize freight and improve air quality.

✅ 70 Volvo VNR Electric trucks for regional logistics

✅ Strategic high-capacity charging for heavy-duty fleets

✅ Lower TCO via fuel savings and reduced maintenance

 

In a significant step toward sustainable transportation, the Switch-On project is bringing 70 Volvo VNR Electric trucks to California. This initiative aims to bolster the state's efforts to reduce emissions and transition to greener logistics solutions. The arrival of these electric vehicles marks an important milestone in California's commitment to combating climate change and improving air quality.

The Switch-On Project: Overview and Goals

The Switch-On project is a collaborative effort designed to enhance electric truck adoption in California. It focuses on developing the necessary infrastructure and technology to support electric vehicles (EVs) in the freight and logistics sectors, building on recent nonprofit investments at California ports. The project not only seeks to increase the availability of electric trucks but also aims to demonstrate their effectiveness in real-world applications.

California has set ambitious goals for reducing greenhouse gas emissions, particularly from the transportation sector, which is one of the largest contributors to air pollution. By introducing electric trucks into freight operations, the state aims to significantly cut emissions, improve public health, and pave the way for a more sustainable future.

The Volvo VNR Electric Trucks

The Volvo VNR Electric trucks are specifically designed for regional distribution and urban transport, aligning with Volvo's broader electric lineup as the company expands offerings, making them ideal for the needs of California’s freight industry. With a range of approximately 250 miles on a single charge, these trucks can efficiently handle most regional routes. Equipped with advanced technology, including regenerative braking and connectivity features, the VNR Electric models enhance operational efficiency and safety.

These trucks not only provide a cleaner alternative to traditional diesel vehicles but also promise lower operational costs over time. With reduced fuel expenses and lower maintenance needs, and emerging vehicle-to-grid pilots that can create new value streams, businesses can benefit from significant savings while contributing to environmental sustainability.

Infrastructure Development

A crucial aspect of the Switch-On project is the development of charging infrastructure to support the new fleet of electric trucks. The project partners are working on installing high-capacity charging stations strategically located throughout California while addressing utility planning challenges that large fleets will pose to the power system. This infrastructure is essential to ensure that electric trucks can be charged efficiently, minimizing downtime and maximizing productivity.

The charging stations are designed to accommodate the specific needs of heavy-duty vehicles, and corridor models like BC's Electric Highway provide useful precedents for network design, allowing for rapid charging that aligns with operational schedules. This development not only supports the new fleet but also encourages other logistics companies to consider electric trucks as a viable option for their operations.

Benefits to California

The introduction of 70 Volvo VNR Electric trucks will have several positive impacts on California. Firstly, it will significantly reduce greenhouse gas emissions from the freight sector, contributing to the state’s ambitious climate goals even as grid expansion will be needed to support widespread electrification across sectors. The transition to electric trucks is expected to improve air quality, particularly in urban areas that struggle with high pollution levels.

Moreover, the project serves as a model for other regions considering similar initiatives. By showcasing the practicality and benefits of electric trucks, California hopes to inspire widespread adoption across the nation. As the market for electric vehicles continues to grow, this project can play a pivotal role in accelerating the transition to sustainable transportation solutions.

Industry and Community Reactions

The arrival of the Volvo VNR Electric trucks has been met with enthusiasm from both industry stakeholders and community members. Logistics companies are excited about the opportunity to reduce their carbon footprints and operational costs. Meanwhile, environmental advocates applaud the project as a crucial step toward cleaner air and healthier communities.

California’s commitment to sustainable transportation has positioned it as a leader in the shift to electric vehicles amid an ongoing biofuels vs. EVs debate over the best path forward, setting an example for other states and countries.

Conclusion

The Switch-On project represents a major advancement in California's efforts to transition to electric transportation. With the deployment of 70 Volvo VNR Electric trucks, the state is not only taking a significant step toward reducing emissions but also demonstrating the feasibility of electric logistics solutions.

As infrastructure develops and more electric trucks hit the roads, California is paving the way for a greener, more sustainable future in transportation. The success of this project could have far-reaching implications, influencing policies and practices in the broader freight industry and beyond.

 

Related News

View more

The Need for Electricity During the COVID-19 Pandemic

US utilities COVID-19 resilience shows electric utilities maintaining demand stability, reaffirming earnings guidance, and accessing the bond market for low-cost financing, as Dominion, NextEra, and Con Edison manage recession risks.

 

Key Points

It is the sector's capacity to sustain demand, financing access, and guidance despite pandemic recession pressures.

✅ Bond market access locks in low-cost, long-term debt

✅ Stable residential load offsets industrial weakness

✅ Guidance largely reaffirmed by major utilities

 

Dominion Energy (D) expects "incremental residential load" gains, consistent with COVID-19 electricity demand patterns, as a result of COVID-19 fallout. Southern Company CEO Tom Fanning says his company is "nowhere near" a need to review earnings guidance because of a potential recession, in a region where efficiency and demand response can help level electricity demand for years.

Sempra Energy (SRE) has reaffirmed earnings per share guidance for 2020 and 2021, as well timing for the sale of assets in Chile and Peru, and peers such as Duke Energy's renewables plan have reaffirmed capital investments to deliver cleaner energy and economic growth. And Xcel Energy (XEL) says it still "hasn’t seen material impact on its business."

Several electric utilities have demonstrated ability to tap the bond market, in line with utility sector trends in recent years, to lock in low-cost financing, as America moves toward broader electrification, despite ongoing turmoil. Their ranks include Dominion Energy, renewable energy leader NextEra Energy (NEE) and Consolidated Edison (ED), which last week sold $1 billion of 30-year bonds at a coupon rate of just 3.95 percent.

It’s still early days for US COVID-19 fallout. And most electric companies have yet to issue guidance. That’s understandable, since so much is still unknown about the virus and the damage it will ultimately do to human health and the global economy. But so far, the US power industry is showing typical resilience in tough times, as it coordinates closely with federal partners to maintain reliability.

Will it last? We won’t know for certain until there’s a lot more data. NextEra is usually first to report its Q1 earnings reports and detailed guidance. But that’s not expected until April 23. And companies may delay financials further, should the virus and efforts to control it impede collection and analysis of data, and as they address electricity shut-off risks affecting customers.

 

Related News

View more

Clean-energy generation powers economy, environment

Atlin Hydro and Transmission Project delivers First Nation-led clean energy via hydropower to the Yukon grid, replacing diesel, cutting emissions, and creating jobs, with a 69-kV line from Atlin, B.C., supplying about 35 GWh annually.

 

Key Points

A First Nation-led 8.5 MW hydropower and 69-kV line supplying clean energy to the Yukon, reducing diesel use.

✅ 8.5 MW capacity; ~35 GWh annually to Yukon grid

✅ 69-kV, 92 km line links Atlin to Jakes Corner

✅ Creates 176 construction jobs; cuts diesel and emissions

 

A First Nation-led clean-power generation project for British Columbia’s Northwest will provide a significant economic boost and good jobs for people in the area, as well as ongoing revenue from clean energy sold to the Yukon.

“This clean-energy project has the potential to be a win-win: creating opportunities for people, revenue for the community and cleaner air for everyone across the Northwest,” said Premier John Horgan. “That’s why our government is proud to be working in partnership with the Taku River Tlingit First Nation and other levels of government to make this promising project a reality. Together, we can build a stronger, cleaner future by producing more clean hydropower to replace fossil fuels – just as they have done here in Atlin.”

The Province is contributing $20 million toward a hydroelectric generation and transmission project being developed by the Taku River Tlingit First Nation (TRTFN) to replace diesel electricity generation in the Yukon, which is also supported by the Government of Yukon and the Government of Canada, and comes as BC Hydro demand fell during COVID-19 across the province.

“Renewable-energy projects are helping remote communities reduce the use of diesel for electricity generation, which reduces air pollution, improves environmental outcomes and creates local jobs,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “This project will advance reconciliation with TRTFN, foster economic development in Atlin and support intergovernmental efforts to reduce greenhouse gas emissions.”

TRTFN is based in Atlin with territory in B.C., the Yukon, and Alaska. TRTFN is an active participant in clean-energy development and, since 2009, has successfully replaced diesel-generated electricity in Atlin with a 2.1-megawatt (MW) hydro facility amid oversight issues such as BC Hydro misled regulator elsewhere in the province today.

TRTFN owns the Tlingit Homeland Energy Limited Partnership (THELP), which promotes economic development through clean energy. THELP plans to expand its hydro portfolio by constructing the Atlin Hydro and Transmission Project and selling electricity to the Yukon via a new transmission line, in a landscape shaped by T&D rates decisions in jurisdictions like Ontario for cost recovery.

The Government of Yukon is requiring its Yukon Energy Corporation (YEC) to generate 97% of its electricity from renewable resources by 2030. This project provides an opportunity for the Yukon government to reduce reliance on diesel generators and to meet future load growth, at a time when Manitoba Hydro's debt pressures highlight utility cost challenges.

The new transmission line between Atlin and the Yukon grid will include a fibre-optic data cable to support facility operations, with surplus capacity that can be used to bring high-speed internet connectivity to Atlin residents for the first time.

“Opportunities like this hydroelectricity project led by the Taku River Tlingit First Nation is a great example of identifying and then supporting First Nations-led clean-energy opportunities that will support resilient communities and provide clean economic opportunities in the region for years to come. We all have a responsibility to invest in projects that benefit our shared climate goals while advancing economic reconciliation.” said George Heyman, Minister of Environment and Climate Change Strategy.

“Thank you to the Government of British Columbia for investing in this important project, which will further strengthen the connection between the Yukon and Atlin. This ambitious initiative will expand renewable energy capacity in the North in partnership with the Taku River Tlingit First Nation while reducing the Yukon’s emissions and ensuring energy remains affordable for Yukoners.“ said Sandy Silver, Premier of Yukon.

“The Atlin Hydro Project represents an important step toward meeting the Yukon’s growing electricity needs and the renewable energy targets in the Our Clean Future strategy. Our government is proud to contribute to the development of this project and we thank the Government of British Columbia and all partners for their contributions and commitment to renewable energy initiatives. This project demonstrates what can be accomplished when communities, First Nations and federal, provincial and territorial governments come together to plan for a greener economy and future.” said John Streicker, Minister Responsible for the Yukon Development Corporation. 

“Atlin has enjoyed clean and renewable energy since 2009 because of our hydroelectric project. Over its lifespan, Atlin’s hydro opportunity will prevent more than one million tonnes of greenhouse gases from being created to power the southern Yukon. We are looking forward to the continuation of this project. Our collective dream is to meet our environmental and economic goals for the region and our local community within the next 10 years. We are so grateful to all our partners involved for their financial support, as we continue onward in creating an energy efficient and sustainable North.” said Charmaine Thom, Taku River Tlingit First Nation spokesperson.

Quick Facts:

  • The 8.5-MW project is expected to provide an average of 35 gigawatt hours of energy annually to the Yukon. To accomplish this, TRTFN plans to leverage the existing water storage capability of Surprise Lake, add new infrastructure, and send power 92 km north to Jakes Corner, Yukon, along a new 69-kilovolt transmission line.
  • The project is expected to cost $253 - 308.5 million, the higher number reflecting recently estimated impacts of inflation and supply chain cost escalation, alongside sector accounting concerns such as deferred BC Hydro costs noted in recent reports.
  • The project is expected to have a positive impact on local and provincial economic development in the form of, even as governance debates like Manitoba Hydro board changes draw attention elsewhere:
  • 176 full-time positions during construction;
  • six to eight full-time positions in operations and maintenance over 40 years; and
  • increased business for B.C. contractors.
  • Territorial and federal funders have committed $151.1 million to support the project, most recently the $32.2 million committed in the 2022 federal bdget.

 

Related News

View more

Adani Electricity's Power Supply Cuts in Mumbai

Adani Electricity Mumbai Power Cuts follow non-payment rules, reflecting billing disputes, regulatory compliance, consumer impact, and affordability concerns, while prompting mitigation measures like flexible payment plans, assistance programs, and clearer communication for residents.

 

Key Points

AEML cutoffs for unpaid bills per rules, raising affordability worries, billing issues, and calls for flexible aid.

✅ Triggered by unpaid bills under regulatory guidelines

✅ Affordability and billing transparency concerns raised

✅ Mitigation: flexible plans, aid for low-income users

 

Adani Electricity Mumbai Limited (AEML) recently made headlines by cutting power supply to around 100 homes in Mumbai, sparking discussions about the reasons behind this action and its implications for consumers, especially as reports like the Northeast D.C. outage continue to surface.

Background of the Incident

The power supply disconnections by AEML were reportedly due to non-payment of electricity bills by the affected households. This action, although necessary under AEML's policies and in accordance with regulatory guidelines, has raised concerns about the impact on residents, particularly during challenging economic times when pandemic electricity shut-offs highlighted energy insecurity.

Reasons for Non-Payment

Non-payment of electricity bills can stem from various reasons, including financial hardships, disputes over billing accuracy, or unforeseen circumstances affecting household finances. In Mumbai, where the cost of living is high, utility bills constitute a significant portion of monthly expenses for many households, mirroring trends of rising electricity bills seen elsewhere.

Regulatory and Legal Framework

AEML's decision to disconnect power supply aligns with regulatory provisions governing utility services, which may include emergency disconnection moratoriums in other jurisdictions. Utility companies are mandated to enforce bill payments to maintain operational sustainability and ensure fair distribution of resources among consumers.

Consumer Impact and Response

The power disconnections have prompted reactions from affected residents and consumer advocacy groups, highlighting issues related to affordability, transparency in billing practices, and the need for supportive measures during times of economic distress amid heat-related electricity struggles that pressure vulnerable households.

Mitigation Measures

In response to such incidents, utility companies and regulatory authorities often implement mitigation measures. These may include flexible payment options, financial assistance programs for low-income households, and enhanced communication about billing procedures and payment deadlines, along with policy scrutiny such as utility spending oversight to curb unnecessary costs.

Future Considerations

As cities like Mumbai continue to grow and face challenges related to urbanization and infrastructure development, ensuring reliable and affordable access to essential services like electricity, including efforts to prevent summer power outages, remains a priority. Balancing the operational needs of utility providers with consumer welfare concerns requires ongoing dialogue and proactive measures from all stakeholders.

Conclusion

The power supply cuts by Adani Electricity in Mumbai underscore the complexities of managing utility services in urban centers. While necessary for financial viability and regulatory compliance, such actions also highlight broader issues of affordability and consumer protection. Moving forward, collaborative efforts between utility companies, regulatory authorities, and community stakeholders are essential in addressing these challenges and ensuring equitable access to essential services for all residents.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.