Claims of structural problems at Cameco refuted

By Port Hope Evening Guide


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Cameco's stock prices have dropped significantly since the announcement of the company's Cigar Lake Mine flooding and recent shutdown of the Port Hope facility's uranium hexafluoride (UF6) conversion plant, despite the uranium giant announcing its most profitable quarter ever, with $205 million in earnings on $725 million in revenues.

Share prices were at $52.15 on July 12 and, as of August 7, had hit a low of $40.37 on the Toronto Stock Exchange.

Another possible contributing factor to the stock's decline is the discovery of uranium contamination and subsequent shutdown of the Port Hope plant. The uranium and potassium was found under the plant's cooling tank July 13 and announced to the press and the public July 20.

But a possible alternative explanation behind the UF6 plant's shutdown has been advanced by local citizen Pat McNamara, a self-described "watchdog" who ran unsuccessfully for mayor in last November's municipal elections.

Mr. McNamara wrote in an e-mail to this newspaper he was contacted by "a senior Cameco employee" last year and told "the building is in danger of imminent collapse."

Mr. McNamara stated the unidentified employee "could not" go public with his concerns, "as it would have meant the end of his career in the nuclear industry."

Mr. McNamara theorized the recent revelation about contamination and need for remediation was being used as a "ruse to hide structural problems."

But United Steelworkers Local 13173 President Chris Leavitt said Mr. McNamara's comments are a "pile of hogwash" and that he "would walk into that building without a worry at any time.

"This is way over the top," Mr. Leavitt said during a phone interview.

"If the building was in imminent danger of collapsing, we couldn't hide that. I feel just as safe today as ever."

In 2005, the Canadian Nuclear Safety Commission (CNSC) hired Cyril Hare consultants to do an Emergency Response Evaluation of the facility.

According to Mr. McNamara, the report stated: "The site includes approximately 44 structures or activity areas. The structures that have been constructed since the 1960s should have been designed and constructed in compliance with one of the editions of the National Building Code. None of the structures were constructed in compliance with the edition of the National Building Code that was in effect at the time of the design and construction of the buildings."

However, "there was no evidence of specific violations provided by the consultant to substantiate the statement," said Sunni Locatelli, director of the CNSC's communications programs division, after confirming the quote in the report regarding the National Building Code.

"The consultant's findings resulted in recommendations for improvements to fire safety systems. Cameco responded to these recommendations to the satisfaction of the CNSC."

The Evening Guide forwarded Mr. McNamara's allegations to Doug Prendergast, spokesperson for Cameco, and he replied via e-mail, saying, "Cameco is not aware of any problems with the structural integrity of building 50."

He has not yet responded to a question on whether Golder Associates, the geo-technical consulting firm hired to explore the level of soil contamination at the UF6 plant, is also looking at the building's structural integrity.

Nor did he confirm whether equipment had to be moved from the upper floors, as suggested by Mr. McNamara.

"With regard to the recent contamination of the Port Hope Cameco site, CNSC staff visited the site on July 19 and July 26, met with Cameco staff and inspected the affected area of the plant," said Aurele Gervais, spokesperson for the CNSC. "Cameco is providing updates to CNSC staff daily on progress in investigating this issue. There is a weekly conference call between Cameco and CNSC staff."

Mr. Gervais said CNSC staff would do another inspection and "will continue with regular inspections until the (contamination) issue is fully understood."

Mr. Gervais added ongoing groundwater monitoring around the UF6 plant indicates the current situation does not pose a risk to public health or the environment; he said CNSC staff continues to monitor the situation to ensure it remains contained and is satisfied with the actions taken by Cameco to further investigate the matter.

"CNSC staff will present an update on this issue to the commission in September," said Mr. Gervais. "With regard to structural integrity, the UF6 facility was built to the appropriate codes in the early 1980s. The licensee is responsible to ensure that the facility continues to be maintained in a safe state and CNSC staff verifies this through our compliance program. The topic of adherence to the National Building Code of Canada and the National Fire Code of Canada was discussed extensively at the re-licensing hearing in the fall of 2006."

According to the approved licence application from March 1, 2007 to February 29, 2012, the CNSC is satisfied Cameco meets all of the requirements to carry on operations in a safe manner.

Allegations that "insider trading" was responsible for the seven-day delay from the time the uranium leak was found to its public reporting have been deemed false, according to Gord Struthers of Cameco's head office in Saskatoon, Sask. Although he admitted Cameco employees do have stock options as part of their benefits program, there are certain times when employees are in a "blackout" situation and not allowed to trade their shares.

"At the time of this development, there was a planned blackout because of the quarterly report about to be released," said Mr. Struthers. "There is no possibility that the executive or the employees could have traded shares."

At this time, Cameco has yet to determine the impacts the minimum two-month plant closure will have on its earnings forecasts as presented in July.

"Our forecasted profits are still being assessed," said Mr. Prendergast.

Related News

What can we expect from clean hydrogen in Canada

Canadian Clean Hydrogen is surging, driven by net-zero goals, tax credits, and exports. Fuel cells, electrolysis, and low-emissions power and transport signal growth, though current production is largely fossil-based and needs decarbonization.

 

Key Points

Canadian Clean Hydrogen is the shift to make and use low-emissions hydrogen for energy and industry to reach net-zero.

✅ $17B tax credits through 2035 to scale electrolyzers and hubs

✅ Export MOUs with Germany and the Netherlands target 2025 shipments

✅ IEA: 99% of hydrogen from fossil fuels; deep decarbonization needed

 

As the world races to find effective climate solutions, and toward an electric planet vision, hydrogen is earning buzz as a potentially low-emitting alternative fuel source. 

The promise of hydrogen as a clean fuel source is nothing new — as far back as the 1970s hydrogen was being promised as a "potential pollution-free fuel for our cars."

While hydrogen hasn't yet taken off as the fuel of the future  — a 2023 report from McKinsey & Company and the Hydrogen Council estimates that there is a grand total of eight hydrogen vehicle fuelling stations in Canada — many still hope that will change.

The hope is hydrogen will play a significant role in combating climate change, serving as a low-emissions substitute for fossil fuels in power generation, home heating and transportation, where cleaning up electricity remains critical, and today, interest in a Canadian clean hydrogen industry may be starting to bubble over.

"People are super excited about hydrogen because of the opportunity to use it as a clean chemical fuel. So, as a displacement for natural gas, diesel, gasoline, jet fuel," said Andrew Gillis, CEO of Canadian hydrogen company Aurora Hydrogen. 

Plans for low or zero-emissions hydrogen projects are beginning to take shape across the country. But, at the moment, hydrogen is far from a low-emissions fuel, which is why some experts suggest expectations for the resource should be tempered. 

The IEA report indicates that in 2021, global hydrogen production emitted 900 million tonnes of carbon dioxide — roughly 180 million more than the aviation industry — as roughly 99 per cent of hydrogen production came from fossil fuel sources. 

"There is a concern that the role of hydrogen in the process of decarbonization is being very greatly overstated," said Mark Winfield, professor of environmental and urban change at York University. 


A growing excitement 

In 2020, the government released a hydrogen strategy, aiming to "cement hydrogen as a tool to achieve our goal of net-zero emissions by 2050 and position Canada as a global, industrial leader of clean renewable fuels." 

The latest budget includes over $17 billion in tax credits between now and 2035 to help fund clean hydrogen projects.

Today, the most common application for hydrogen in Canada is as a material in industrial activities such as oil refining and ammonia, methanol and steel production, according to Natural Resources Canada. 

But, the buzz around hydrogen isn't exactly over its industrial applications, said Aurora Hydrogen's Gillis.

"All these sorts of things where we currently have emitting gaseous or liquid chemical fuels, hydrogen's an opportunity to replace those and access the energy without creating emissions at the point of us," Gillis said. 

When used in a fuel cell, hydrogen can produce electricity for transportation, heating and power generation without producing common harmful emissions like nitrogen oxide, hydrocarbons and particulate matter — BloombergNEF estimates that hydrogen could meet 24 per cent of global energy demand by 2050.


A growing industry

Canada's hydrogen strategy aims to have 30 per cent of end-use energy be from clean hydrogen by 2050. According to the strategy, Canada produces an estimated three million tonnes of hydrogen per year from natural gas today, but the strategy doesn't indicate how much hydrogen is produced from low-emissions sources.

In recent years, the Canadian clean hydrogen industry has earned international interest, especially as Germany's hydrogen strategy anticipates significant imports.

In 2021, Canada signed a memorandum of understanding with the Netherlands to help develop "export-import corridors for clean hydrogen" between the two countries. Canada also recently inked a deal with Germany to start exporting the resource there by 2025.

But while a low-emissions hydrogen plant went online in Becancour, Que., in 2021, the rest of Canada's clean-hydrogen industry seems to be in the early stages.

 

Related News

View more

Energize America: Invest in a smarter electricity infrastructure

Smart Grid Modernization unites distributed energy resources, energy storage, EV charging, advanced metering, and bidirectional power flows to upgrade transmission and distribution infrastructure for reliability, resilience, cybersecurity, and affordable, clean power.

 

Key Points

Upgrading grid hardware and software to integrate DERs, storage, and EVs for a reliable and affordable power system.

✅ Enables DER, storage, and EV integration with bidirectional flows

✅ Improves reliability, resilience, and grid cybersecurity

✅ Requires early investment in sensors, inverters, and analytics

 

Much has been written, predicted, and debated in recent years about the future of the electricity system. The discussion isn’t simply about fossil fuels versus renewables, as often dominates mainstream energy discourse. Rather, the discussion is focused on something much larger and more fundamental: the very design of how and where electricity should be generated, delivered, and consumed.

Central to this discussion are arguments in support of, or in opposition to, the traditional model versus that of the decentralized or “emerging” model. But this is a false choice. The only choice that needs making is how to best transition to a smarter grid, and do so in a reliable and affordable manner that reflects grid modernization affordability concerns for utilities today. And the most effective and immediate means to accomplish that is to encourage and facilitate early investment in grid-related infrastructure and technology.

The traditional, or centralized, model has evolved since the days of Thomas Edison, but the basic structure is relatively unchanged: generate electrons at a central power plant, transmit them over a unidirectional system of high-voltage transmission lines, and deliver them to consumers through local distribution networks. The decentralized, or emerging, model envisions a system that moves away from the central power station as the primary provider of electricity to a system in which distributed energy resources, energy storage, electric vehicles, peer-to-peer transactions, connected appliances and devices, and sophisticated energy usage, pricing, and load management software play a more prominent role.

Whether it’s a fully decentralized and distributed power system, or the more likely centralized-decentralized hybrid, it is apparent that the way in which electricity is produced, delivered, and consumed will differ from today’s traditional model. And yet, in many ways, the fundamental design and engineering that makes up today’s electric grid will serve as the foundation for achieving a more distributed future. Indeed, as the transition to a smarter grid ramps up, the grid’s basic structure will remain the underlying commonality, allowing the grid to serve as a facilitator to integrate emerging technologies, including EV charging stations, rooftop solar, demand-side management software, and other distributed energy resources, while maximizing their potential benefits and informing discussions about California’s grid reliability under ambitious transition goals.

A loose analogy here is the internet. In its infancy, the internet was used primarily for sending and receiving email, doing homework, and looking up directions. At the time, it was never fully understood that the internet would create a range of services and products that would impact nearly every aspect of everyday life from online shopping, booking travel, and watching television to enabling the sharing economy and the emerging “Internet of Things.”

Uber, Netflix, Amazon, and Nest would not be possible without the internet. But the rapid evolution of the internet did not occur without significant investment in internet-related infrastructure. From dial-up to broadband to Wi-Fi, companies have invested billions of dollars to update and upgrade the system, allowing the internet to maximize its offerings and give way to technological breakthroughs, innovative businesses, and ways to share and communicate like never before.  

The electric grid is similar; it is both the backbone and the facilitator upon which the future of electricity can be built. If the vision for a smarter grid is to deploy advanced energy technologies, create new business models, and transform the way electricity is produced, distributed, and consumed, then updating and modernizing existing infrastructure and building out new intelligent infrastructure need to be top priorities. But this requires money. To be sure, increased investment in grid-related infrastructure is the key component to transitioning to a smarter grid; a grid capable of supporting and integrating advanced energy technologies within a more digital grid architecture that will result in a cleaner, more modern and efficient, and reliable and secure electricity system.

The inherent challenges of deploying new technologies and resources — reliability, bidirectional flow, intermittency, visibility, and communication, to name a few, as well as emerging climate resilience concerns shaping planning today, are not insurmountable and demonstrate exactly why federal and state authorities and electricity sector stakeholders should be planning for and making appropriate investment decisions now. My organization, Alliance for Innovation and Infrastructure, will release a report Wednesday addressing these challenges facing our infrastructure, and the opportunities a distributed smart grid would provide. From upgrading traditional wires and poles and integrating smart power inverters and real-time sensors to deploying advanced communications platforms and energy analytics software, there are numerous technologies currently available and capable of being deployed that warrant investment consideration.

Making these and similar investments will help to identify and resolve reliability issues earlier, and address vulnerabilities identified in the latest power grid report card findings, which in turn will create a stronger, more flexible grid that can then support additional emerging technologies, resulting in a system better able to address integration challenges. Doing so will ease the electricity evolution in the long-term and best realize the full reliability, economic, and environmental benefits that a smarter grid can offer.  

 

Related News

View more

Nissan accepting electricity from EVs as payment for parking

Nissan V2G Parking lets EV drivers pay with electricity via bidirectional charging at the Yokohama Nissan Pavilion, showcasing vehicle-to-grid, smart energy trading, and integrated mobility experiences like Ariya rides and Formula E simulators.

 

Key Points

A program where EV owners use V2G to pay for parking by discharging power at Nissan's Yokohama Pavilion.

✅ Pay for parking with EV energy via V2G

✅ Powered by Nissan LEAFs and solar at the Pavilion

✅ Showcases Ariya, Formula E, ProPILOT, and I2V tech

 

Nissan is letting customers pay for parking with electricity by discharging power from their electric car’s battery pack, a concept similar to how EV owners sell electricity back to the grid in other programs. In what the company claims to be a global first, owner of electric cars can trade energy for a parking space at Nissan Pavilion exhibition space in Yokohama, Japan, echoing how parked EVs earn from Europe's grids in comparable schemes.

The venue that showcases Nissan's future technologies, opened its doors to public on August 1 and will remain so through October 23, underscoring how stored EV energy can power buildings in broader applications. “(It) is a place where customers can see, feel, and be inspired by (the company's) near-future vision for society and mobility," says CEO Makoto Uchida. “As the world shifts to electric mobility, EVs will be integrated into society in ways that go beyond just transportation."

Apart from the innovate parking experience, people visiting the pavilion can also virtually experience the thrill of Formula E electric street racing or go for a ride in the all-new Ariya electric crossover, similar to demos at the Everything Electric show in Vancouver. Other experiences include ProPILOT advanced driver assistance system as well as Nissan’s Invisible-to-Visible (I2V) technology, which combines information from the real and virtual worlds to assist drivers, themes also explored at an EV education centre in Toronto for public outreach.

A mobility hub in front of the Pavilion offers a variety of services including EV car-sharing. The Pavilion also operates a cafe operated on power supplied by Nissan LEAF electric cars and solar energy, showcasing vehicle-to-building charging benefits on site.

As part of its Nissan NEXT transformation plan, the company plans to expand its global lineup of EVs and aims to sell more than 1 million electrified vehicles a year by the end of fiscal 2023, aligning with the American EV boom and the challenge of scaling charging infrastructure.

 

Related News

View more

Berlin Geothermal Plant in El Salvador Set to Launch This Year

El Salvador Geothermal Expansion boosts renewable energy with a 7 MW Berlin binary ORC plant, upgrades at Ahuachapan, and pipeline projects, strengthening clean power capacity, grid reliability, and sustainable growth in Central America.

 

Key Points

A national push adding binary-cycle capacity at Berlin and Ahuachapan, boosting geothermal supply and advancing sites.

✅ 7 MW Berlin binary ORC plant entering service.

✅ Ahuachapan upgrade adds 2 MW, total geothermal 204 MW.

✅ Next: Chinameca, San Miguel, San Vicente, World Bank backed.

 

El Salvador is set to expand its renewable energy capacity with the inauguration of the 7-MW Berlin binary geothermal power plant, slated to go online later this year. This new addition marks a significant milestone in the country’s geothermal energy development, highlighting its commitment to sustainable energy solutions. The plant, which has already been installed and is currently undergoing testing, is expected to boost the nation’s geothermal capacity, contributing to its growing renewable energy portfolio.

The Role of Geothermal Energy in El Salvador’s Energy Mix

Geothermal energy plays a pivotal role in El Salvador's energy landscape. With the combined output from the Ahuachapan and Berlin geothermal plants, geothermal energy now accounts for about 21% of the country's net electricity supply. This makes geothermal the second-largest source of energy generation in El Salvador, underscoring its importance as a reliable and sustainable energy resource alongside emerging options like advanced nuclear microreactor technologies in the broader low-carbon mix.

In addition to the Berlin plant, El Salvador has made significant improvements to its Ahuachapan geothermal power plant. Recent upgrades have increased its generation capacity by 2 MW, further enhancing the country’s geothermal energy output. Together, the Ahuachapan and Berlin plants bring the total installed geothermal capacity to 204 MW, positioning El Salvador as a regional leader in geothermal energy development.

The Berlin Binary Geothermal Plant: A Technological Milestone

The Berlin binary geothermal power plant is especially noteworthy for several reasons. It is the first geothermal power plant to be constructed in El Salvador since 2007, marking a significant step in the country's ongoing efforts to expand its renewable energy infrastructure while reinforcing attention to risk management in light of Hawaii geothermal safety concerns reported elsewhere. The plant utilizes a binary cycle geothermal system, which is known for its efficiency in extracting energy from lower temperature geothermal resources, making it an ideal solution for regions like Berlin, where geothermal resources are abundant but at lower temperatures.

The plant was built by Turboden, an Italian company specializing in organic Rankine cycle (ORC) technology. The binary cycle system operates by transferring heat from the geothermal fluid to a secondary fluid, which then drives a turbine to generate electricity. This system allows for the efficient use of geothermal resources that might otherwise be too low in temperature for traditional geothermal plants, enabling pairing with thermal storage demonstration solutions to optimize output.

Future Geothermal Developments in El Salvador

El Salvador is not stopping with the Berlin geothermal plant. The country is actively working on other geothermal projects, including those in Chinameca, San Miguel, and San Vicente. These developments are expected to add 50 MW of additional capacity in their first phase, reflecting a broader shift as countries pursue hydrogen-ready power plants to reduce emissions, with a second phase, supported by the World Bank, planned to add another 100 MW.

The Chinameca, San Miguel, and San Vicente projects represent the next wave of geothermal development in El Salvador. When completed, these plants will significantly increase the country’s geothermal capacity, further diversifying its energy mix and reducing reliance on fossil fuels, and will require ongoing grid upgrades, a task complicated elsewhere by Germany grid expansion challenges highlighted in Europe.

International Support and Collaboration

El Salvador’s geothermal development efforts are supported by various international partners, including the World Bank, which has been instrumental in financing the expansion of geothermal projects, as utilities such as SaskPower geothermal plans in Canada explore comparable pathways. This collaboration highlights the global recognition of El Salvador’s potential in geothermal energy and its efforts to position itself as a hub for geothermal energy development in Central America.

Additionally, the country’s expertise in geothermal energy, especially in binary cycle technology, has attracted international attention. El Salvador’s progress in the geothermal sector could serve as a model for other countries in the region that are looking to harness their geothermal resources to reduce energy costs and promote sustainable energy development.

The upcoming launch of the Berlin binary geothermal power plant is a testament to El Salvador’s commitment to sustainable energy. As the country continues to expand its geothermal capacity, it is positioning itself as a leader in renewable energy in the region. The binary cycle technology employed at the Berlin plant not only enhances energy efficiency but also demonstrates El Salvador’s ability to adapt and innovate within the renewable energy sector.

With the continued development of projects in Chinameca, San Miguel, and San Vicente, and ongoing international collaboration, El Salvador’s geothermal energy sector is set to play a crucial role in the country’s energy future. As global demand for clean energy grows, exemplified by U.S. solar capacity additions this year, El Salvador’s investments in geothermal energy are helping to build a more sustainable, resilient, and energy-independent future.

 

Related News

View more

Worker injured after GE turbine collapse

GE Wind Turbine Collapse Brazil raises safety concerns at Omega Energia's Delta VI wind farm in Maranhe3o, with GE Renewable Energy probing root-cause of turbine failure after a worker injury and similar incidents in 2024.

 

Key Points

An SEO focus on the Brazil GE turbine collapse, its causes, safety investigation, and related 2024 incidents.

✅ Incident at Omega Energia's Delta VI, Maranhao; one worker injured

✅ GE Renewable Energy conducts root-cause investigation and containment

✅ Fifth GE turbine collapse in 2024 across Brazil and the United States

 

A GE Renewable Energy turbine collapsed at a wind farm in north-east Brazil, injuring a worker and sparking a probe into the fifth such incident this year, the manufacturer confirmed.

One of the manufacturer’s GE 2.72-116 turbines collapsed at Omega Energia’s Delta VI project in Maranhão, which was commissioned in 2018.

Three GE employees were on site at the time of the collapse on Tuesday (3 September), the US manufacturer confirmed, even as U.S. offshore wind developers signal growing competitiveness with gas. 

One worker was injured and is currently receiving medical treatment, GE added.

"We are working to determine the root cause of this incident and to provide proper support as needed," it said

The turbine collapse in Brazil is the fifth such incident involving GE turbines this year, even as the UK's biggest offshore windfarm begins power supply this week, underscoring broader sector momentum.

On 16 February, a turbine collapsed at NextEra Energy Resources’ Casa Mesa wind farm in New Mexico, US, while giant wind components were being transported to a project in Saskatchewan, Canada. The site uses GE’s 2.3-116 and 2.5-127 models.

The New Mexico incident was followed by another collapse in the US — as a Scottish North Sea wind farm resumed construction after Covid-19 — this time a GE 2.4-107 unit at Tradewind Energy’s Chisholm View 2 project in Oklahoma on 21 May.

Two GE turbines then collapsed at projects in July: a 2.5-116 unit at Invenergy’s Upstreamwind farm in Nebraska on 5 July, followed by a 1.7-103 model at the Actis Group-owned Ventos de São Clemente complex in Pernambuco, north-eastern Brazil, even as tidal power in Scotland generated enough electricity to power nearly 4,000 homes.

No employees were injured in the first four turbine collapses of the year, in contrast with concerns at a Hawaii geothermal plant over potential meltdown risk.

In response to the latest incident, GE Renewable Energy added: "It is too early to speculate about the root cause of this week’s turbine collapse.

"Based on our learnings from the previous turbine collapses, we have teams in place focused on containing and resolving these issues quickly, to ensure the safe and reliable operation of our turbines."

 

Related News

View more

Smart grid and system improvements help avoid more than 500,000 outages over the summer

ComEd Smart Grid Reliability drives outage reduction across Illinois, leveraging smart switches, grid modernization, and peak demand programs to keep customers powered, improve power quality, and enhance energy savings during extreme weather and severe storms.

 

Key Points

ComEd's smart grid performance, cutting outages and improving power quality to enhance reliability and customer savings.

✅ Smart switches reroute power to avoid customer interruptions

✅ Fewer outages during extreme weather across northern Illinois

✅ Peak Time Savings rewards for reduced peak demand usage

 

While the summer of 2019 set records for heat and brought severe storms, ComEd customers stayed cool thanks to record-setting reliability during the season. These smart grid investments over the last seven years helped to set records in key reliability measurements, including frequency of outages metrics, and through smart switches that reroute power around potential problem areas, avoided more than 538,000 customer interruptions from June to August.

"In a summer where we were challenged by extreme weather, we saw our smart grid investments and our people continue to deliver the highest levels of reliability, backed by extensive disaster planning across utilities, for the families and businesses we serve," said Joe Dominguez, CEO of ComEd. "We're proud to deliver the most affordable, cleanest and, as we demonstrated this summer, most reliable energy to our customers. I want to thank our 6,000 employees who work around the clock in often challenging conditions to power our communities."

ComEd has avoided more than 13 million customer interruptions since 2012, due in part to smart grid and system improvements. The avoided outages have resulted in $2.4 billion in estimated savings to society. In addition to keeping energy flowing for residents, strong power reliability continues to help persuade industrial and commercial companies to expand in northern Illinois and Chicago. The GridWise Alliance recently recognized Illinois as the No. 2 state in the nation for its smart grid implementation.

"Our smart grid investments has vastly improved the infrastructure of our system," said Terry Donnelly, ComEd president and chief operating officer. "We review the system and our operations continually to make sure we're investing in areas that benefit the greatest number of customers, and to prepare for public-health emergencies as well. On a daily basis and during storms or to reduce wildfire risk when necessary, our customers are seeing fewer and fewer interruptions to their lives and businesses."

ComEd customers also set records for energy savings this summer. Through its Peak Time Savings program and other energy-efficiency programs offered by utilities, ComEd empowered nearly 300,000 families and individuals to lower their bills by a total of more than $4 million this summer for voluntarily reducing their energy use during times of peak demand. Since the Peak Time Savings program launched in 2015, participating customers have earned a total of more than $10 million in bill credits.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.